Conference Paper
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 2, 91 - 97, 27.09.2024

Abstract

Project Number

GDK201905-14

References

  • Konuk Ege, G., Yüce, H., Akay, Ö., Öner, H. and Genç, G. (2023), "A fabrication and characterization of luffa/PANI/PEO biocomposite nanofibers by means of electrospinning", Pigment & Resin Technology, Vol. 52 No. 1, pp. 151-159. https://doi.org/10.1108/PRT-09-2021-0105
  • Konuk Ege, G., Yüce, H., Akay, Ö., Öner, H. and Genç, G. (2023), "A fabrication and characterization of luffa/PANI/PEO biocomposite nanofibers by means of electrospinning", Pigment & Resin Technology, Vol. 52 No. 1, pp. 151-159. https://doi.org/10.1108/PRT-09-2021-0105
  • S. R. Djafari Petroudy, S. Arjmand Kahagh, and E. Vatankhah, “Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw,” Carbohydr. Polym., vol. 251, no. August 2020, p. 117087, 2021.
  • S. R. Djafari Petroudy, S. Arjmand Kahagh, and E. Vatankhah, “Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw,” Carbohydr. Polym., vol. 251, no. August 2020, p. 117087, 2021.
  • B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Prog. Polym. Sci., vol. 39, no. 5, pp. 862–890, 2014.
  • B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Prog. Polym. Sci., vol. 39, no. 5, pp. 862–890, 2014.
  • S. Izwan et al., “A Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications, and Future Directions,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–19, 2015.
  • S. Izwan et al., “A Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications, and Future Directions,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–19, 2015.
  • A. Chinnappan, C. Baskar, S. Baskar, G. Ratheesh, and S. Ramakrishna, “An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics,” J. Mater. Chem. C, vol. 5, no. 48, pp. 12657–12673, 2017.
  • A. Chinnappan, C. Baskar, S. Baskar, G. Ratheesh, and S. Ramakrishna, “An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics,” J. Mater. Chem. C, vol. 5, no. 48, pp. 12657–12673, 2017.
  • C. Bavatharani et al., “Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review,” Synth. Met., vol. 271, no. October 2020, p. 116609, 2021.
  • C. Bavatharani et al., “Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review,” Synth. Met., vol. 271, no. October 2020, p. 116609, 2021.
  • G. Acik, “A comprehensive study on electrospinning of poly (Vinyl alcohol): Effects of the tcd, applied voltage, flow rate, and solution concentration,” J. Turkish Chem. Soc. Sect. A Chem., vol. 7, no. 2, pp. 609–616, 2020.
  • G. Acik, “A comprehensive study on electrospinning of poly (Vinyl alcohol): Effects of the tcd, applied voltage, flow rate, and solution concentration,” J. Turkish Chem. Soc. Sect. A Chem., vol. 7, no. 2, pp. 609–616, 2020.
  • Y. Li, J. Gong, G. He, and Y. Deng, “Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application,” Mater. Chem. Phys., vol. 129, no. 1–2, pp. 477–482, 2011.
  • Y. Li, J. Gong, G. He, and Y. Deng, “Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application,” Mater. Chem. Phys., vol. 129, no. 1–2, pp. 477–482, 2011.
  • Q. Wang et al., “Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers,” Sensors (Switzerland), vol. 12, no. 12, pp. 17046–17057, 2012.
  • Q. Wang et al., “Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers,” Sensors (Switzerland), vol. 12, no. 12, pp. 17046–17057, 2012.
  • M. Imran, N. Motta, and M. Shafiei, “Electrospun one-dimensional nanostructures : a new horizon for gas sensing materials,” no. 2, 2018.
  • M. Imran, N. Motta, and M. Shafiei, “Electrospun one-dimensional nanostructures : a new horizon for gas sensing materials,” no. 2, 2018.
  • Q. Nie et al., “Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 537, no. October 2017, pp. 532–539, 2018.
  • Q. Nie et al., “Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 537, no. October 2017, pp. 532–539, 2018.
  • S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review,” J. Sci. Adv. Mater. Devices, vol. 1, no. 4, pp. 431–453, 2016.
  • S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review,” J. Sci. Adv. Mater. Devices, vol. 1, no. 4, pp. 431–453, 2016.
  • S. Neubert, D. Pliszka, V. Thavasi, and E. Wintermantel, “Conductive electrospun PANi-PEO / TiO 2 fibrous membrane for photo catalysis,” Mater. Sci. Eng. B, vol. 176, no. 8, pp. 640–646, 2011.
  • S. Neubert, D. Pliszka, V. Thavasi, and E. Wintermantel, “Conductive electrospun PANi-PEO / TiO 2 fibrous membrane for photo catalysis,” Mater. Sci. Eng. B, vol. 176, no. 8, pp. 640–646, 2011.
  • W. Wang, Y. Zheng, X. Jin, Y. Sun, B. Lu, and H. Wang, “Nano Energy Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nano fi ber membranes,” Nano Energy, vol. 56, no. November 2018, pp. 588–594, 2019.
  • W. Wang, Y. Zheng, X. Jin, Y. Sun, B. Lu, and H. Wang, “Nano Energy Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nano fi ber membranes,” Nano Energy, vol. 56, no. November 2018, pp. 588–594, 2019.
  • F. I. M. Ali, F. Awwad, Y. E. Greish, A. F. S. Abu-Hani, and S. T. Mahmoud, “Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane,” Org. Electron., vol. 76, no. October 2019, p. 105486, 2020.
  • F. I. M. Ali, F. Awwad, Y. E. Greish, A. F. S. Abu-Hani, and S. T. Mahmoud, “Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane,” Org. Electron., vol. 76, no. October 2019, p. 105486, 2020.
  • F. K. Mwiiri and R. Daniels, “Chapter 3 - Electrospun nanofibers for biomedical applications,” in Delivery of Drugs, R. Shegokar, Ed. Elsevier, 2020, pp. 53–74.
  • F. K. Mwiiri and R. Daniels, “Chapter 3 - Electrospun nanofibers for biomedical applications,” in Delivery of Drugs, R. Shegokar, Ed. Elsevier, 2020, pp. 53–74.
  • V. Leung and F. Ko, “Biomedical applications of nanofibers,” Polym. Adv. Technol., vol. 22, no. 3, pp. 350–365, 2011.
  • V. Leung and F. Ko, “Biomedical applications of nanofibers,” Polym. Adv. Technol., vol. 22, no. 3, pp. 350–365, 2011.
  • O. Akampumuza, H. Gao, H. Zhang, D. Wu, and X. H. Qin, “Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit,” Macromol. Mater. Eng., vol. 303, no. 1, pp. 1–17, 2018.
  • O. Akampumuza, H. Gao, H. Zhang, D. Wu, and X. H. Qin, “Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit,” Macromol. Mater. Eng., vol. 303, no. 1, pp. 1–17, 2018.
  • M. M. Harussani, S. M. Sapuan, G. Nadeem, T. Rafin, and W. Kirubaanand, “Recent applications of carbon-based composites in defence industry: A review,” Def. Technol., 2022.
  • M. M. Harussani, S. M. Sapuan, G. Nadeem, T. Rafin, and W. Kirubaanand, “Recent applications of carbon-based composites in defence industry: A review,” Def. Technol., 2022.
  • G. Acik and C. Altinkok, “Polypropylene microfibers via solution electrospinning under ambient conditions,” J. Appl. Polym. Sci., vol. 136, no. 45, pp. 1–6, 2019.
  • G. Acik and C. Altinkok, “Polypropylene microfibers via solution electrospinning under ambient conditions,” J. Appl. Polym. Sci., vol. 136, no. 45, pp. 1–6, 2019.
  • J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, 2019.
  • J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, 2019.
  • Z. Pang et al., “A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 494, pp. 248–255, 2016.
  • Z. Pang et al., “A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 494, pp. 248–255, 2016.
  • Z. Fan, Z. Wang, N. Sun, J. Wang, and S. Wang, “Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers,” J. Memb. Sci., vol. 320, no. 1–2, pp. 363–371, 2008.
  • Z. Fan, Z. Wang, N. Sun, J. Wang, and S. Wang, “Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers,” J. Memb. Sci., vol. 320, no. 1–2, pp. 363–371, 2008.
  • Y. Li, M. Jiao, H. Zhao, and M. Yang, “High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: The effect of morphology on the sensing properties,” Sensors Actuators, B Chem., vol. 264, no. 2, pp. 285–295, 2018.
  • Y. Li, M. Jiao, H. Zhao, and M. Yang, “High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: The effect of morphology on the sensing properties,” Sensors Actuators, B Chem., vol. 264, no. 2, pp. 285–295, 2018.
  • V. Kumar, A. Mirzaei, M. Bonyani, K. H. Kim, H. W. Kim, and S. S. Kim, “Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia,” TrAC - Trends Anal. Chem., vol. 129, p. 115938, 2020.
  • V. Kumar, A. Mirzaei, M. Bonyani, K. H. Kim, H. W. Kim, and S. S. Kim, “Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia,” TrAC - Trends Anal. Chem., vol. 129, p. 115938, 2020.
  • G. Acik, C. E. Cansoy, and M. Kamaci, “Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers,” Colloid Polym. Sci., vol. 297, no. 1, pp. 77–83, 2019.
  • G. Acik, C. E. Cansoy, and M. Kamaci, “Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers,” Colloid Polym. Sci., vol. 297, no. 1, pp. 77–83, 2019.

The Characterization of Electrospun PANI/PEO Nanofibers at Different Electrospinning Conditions at Room Temperature

Year 2024, Volume: 2 Issue: 2, 91 - 97, 27.09.2024

Abstract

Nanofiber structures have wide usage area thanks to their excellent properties from sensor technologies, biomedical systems to tissue engineering, drug delivery systems. Electrospinning method is a versatile method that can produce very fine nanofibers with a simple production mechanism. On the other hand, it is important to optimize the fabrication parameters in order to obtain the appropriate nanofiber structure. In this study, PANI/PEO (Polyaniline/Polyethylene oxide) electrospun nanofibers are fabricated under ambient conditions and the effects of solution viscosity and collector rotation speed on fiber structure are discussed. Electrospun PANI/PEO nanofibers structures are investigated by scanning electron microscope (SEM). According to the SEM results, it is seen that the high viscosity nanofibers have straight and rigid structures. However, the low viscosity nanofiber structures break down at each collector speed, but the fiber orientations increase as the collector rotation speed increases. It is estimated that this study will be guide for future work on PANI.

Supporting Institution

İstanbul Gedik Üniversitesi

Project Number

GDK201905-14

Thanks

This work was supported by Scientific Research Projects Coordination Unit of Istanbul Gedik University, Project number “GDK201905-14”.

References

  • Konuk Ege, G., Yüce, H., Akay, Ö., Öner, H. and Genç, G. (2023), "A fabrication and characterization of luffa/PANI/PEO biocomposite nanofibers by means of electrospinning", Pigment & Resin Technology, Vol. 52 No. 1, pp. 151-159. https://doi.org/10.1108/PRT-09-2021-0105
  • Konuk Ege, G., Yüce, H., Akay, Ö., Öner, H. and Genç, G. (2023), "A fabrication and characterization of luffa/PANI/PEO biocomposite nanofibers by means of electrospinning", Pigment & Resin Technology, Vol. 52 No. 1, pp. 151-159. https://doi.org/10.1108/PRT-09-2021-0105
  • S. R. Djafari Petroudy, S. Arjmand Kahagh, and E. Vatankhah, “Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw,” Carbohydr. Polym., vol. 251, no. August 2020, p. 117087, 2021.
  • S. R. Djafari Petroudy, S. Arjmand Kahagh, and E. Vatankhah, “Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw,” Carbohydr. Polym., vol. 251, no. August 2020, p. 117087, 2021.
  • B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Prog. Polym. Sci., vol. 39, no. 5, pp. 862–890, 2014.
  • B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Prog. Polym. Sci., vol. 39, no. 5, pp. 862–890, 2014.
  • S. Izwan et al., “A Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications, and Future Directions,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–19, 2015.
  • S. Izwan et al., “A Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications, and Future Directions,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–19, 2015.
  • A. Chinnappan, C. Baskar, S. Baskar, G. Ratheesh, and S. Ramakrishna, “An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics,” J. Mater. Chem. C, vol. 5, no. 48, pp. 12657–12673, 2017.
  • A. Chinnappan, C. Baskar, S. Baskar, G. Ratheesh, and S. Ramakrishna, “An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics,” J. Mater. Chem. C, vol. 5, no. 48, pp. 12657–12673, 2017.
  • C. Bavatharani et al., “Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review,” Synth. Met., vol. 271, no. October 2020, p. 116609, 2021.
  • C. Bavatharani et al., “Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review,” Synth. Met., vol. 271, no. October 2020, p. 116609, 2021.
  • G. Acik, “A comprehensive study on electrospinning of poly (Vinyl alcohol): Effects of the tcd, applied voltage, flow rate, and solution concentration,” J. Turkish Chem. Soc. Sect. A Chem., vol. 7, no. 2, pp. 609–616, 2020.
  • G. Acik, “A comprehensive study on electrospinning of poly (Vinyl alcohol): Effects of the tcd, applied voltage, flow rate, and solution concentration,” J. Turkish Chem. Soc. Sect. A Chem., vol. 7, no. 2, pp. 609–616, 2020.
  • Y. Li, J. Gong, G. He, and Y. Deng, “Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application,” Mater. Chem. Phys., vol. 129, no. 1–2, pp. 477–482, 2011.
  • Y. Li, J. Gong, G. He, and Y. Deng, “Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application,” Mater. Chem. Phys., vol. 129, no. 1–2, pp. 477–482, 2011.
  • Q. Wang et al., “Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers,” Sensors (Switzerland), vol. 12, no. 12, pp. 17046–17057, 2012.
  • Q. Wang et al., “Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers,” Sensors (Switzerland), vol. 12, no. 12, pp. 17046–17057, 2012.
  • M. Imran, N. Motta, and M. Shafiei, “Electrospun one-dimensional nanostructures : a new horizon for gas sensing materials,” no. 2, 2018.
  • M. Imran, N. Motta, and M. Shafiei, “Electrospun one-dimensional nanostructures : a new horizon for gas sensing materials,” no. 2, 2018.
  • Q. Nie et al., “Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 537, no. October 2017, pp. 532–539, 2018.
  • Q. Nie et al., “Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 537, no. October 2017, pp. 532–539, 2018.
  • S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review,” J. Sci. Adv. Mater. Devices, vol. 1, no. 4, pp. 431–453, 2016.
  • S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review,” J. Sci. Adv. Mater. Devices, vol. 1, no. 4, pp. 431–453, 2016.
  • S. Neubert, D. Pliszka, V. Thavasi, and E. Wintermantel, “Conductive electrospun PANi-PEO / TiO 2 fibrous membrane for photo catalysis,” Mater. Sci. Eng. B, vol. 176, no. 8, pp. 640–646, 2011.
  • S. Neubert, D. Pliszka, V. Thavasi, and E. Wintermantel, “Conductive electrospun PANi-PEO / TiO 2 fibrous membrane for photo catalysis,” Mater. Sci. Eng. B, vol. 176, no. 8, pp. 640–646, 2011.
  • W. Wang, Y. Zheng, X. Jin, Y. Sun, B. Lu, and H. Wang, “Nano Energy Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nano fi ber membranes,” Nano Energy, vol. 56, no. November 2018, pp. 588–594, 2019.
  • W. Wang, Y. Zheng, X. Jin, Y. Sun, B. Lu, and H. Wang, “Nano Energy Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nano fi ber membranes,” Nano Energy, vol. 56, no. November 2018, pp. 588–594, 2019.
  • F. I. M. Ali, F. Awwad, Y. E. Greish, A. F. S. Abu-Hani, and S. T. Mahmoud, “Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane,” Org. Electron., vol. 76, no. October 2019, p. 105486, 2020.
  • F. I. M. Ali, F. Awwad, Y. E. Greish, A. F. S. Abu-Hani, and S. T. Mahmoud, “Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane,” Org. Electron., vol. 76, no. October 2019, p. 105486, 2020.
  • F. K. Mwiiri and R. Daniels, “Chapter 3 - Electrospun nanofibers for biomedical applications,” in Delivery of Drugs, R. Shegokar, Ed. Elsevier, 2020, pp. 53–74.
  • F. K. Mwiiri and R. Daniels, “Chapter 3 - Electrospun nanofibers for biomedical applications,” in Delivery of Drugs, R. Shegokar, Ed. Elsevier, 2020, pp. 53–74.
  • V. Leung and F. Ko, “Biomedical applications of nanofibers,” Polym. Adv. Technol., vol. 22, no. 3, pp. 350–365, 2011.
  • V. Leung and F. Ko, “Biomedical applications of nanofibers,” Polym. Adv. Technol., vol. 22, no. 3, pp. 350–365, 2011.
  • O. Akampumuza, H. Gao, H. Zhang, D. Wu, and X. H. Qin, “Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit,” Macromol. Mater. Eng., vol. 303, no. 1, pp. 1–17, 2018.
  • O. Akampumuza, H. Gao, H. Zhang, D. Wu, and X. H. Qin, “Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit,” Macromol. Mater. Eng., vol. 303, no. 1, pp. 1–17, 2018.
  • M. M. Harussani, S. M. Sapuan, G. Nadeem, T. Rafin, and W. Kirubaanand, “Recent applications of carbon-based composites in defence industry: A review,” Def. Technol., 2022.
  • M. M. Harussani, S. M. Sapuan, G. Nadeem, T. Rafin, and W. Kirubaanand, “Recent applications of carbon-based composites in defence industry: A review,” Def. Technol., 2022.
  • G. Acik and C. Altinkok, “Polypropylene microfibers via solution electrospinning under ambient conditions,” J. Appl. Polym. Sci., vol. 136, no. 45, pp. 1–6, 2019.
  • G. Acik and C. Altinkok, “Polypropylene microfibers via solution electrospinning under ambient conditions,” J. Appl. Polym. Sci., vol. 136, no. 45, pp. 1–6, 2019.
  • J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, 2019.
  • J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, 2019.
  • Z. Pang et al., “A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 494, pp. 248–255, 2016.
  • Z. Pang et al., “A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 494, pp. 248–255, 2016.
  • Z. Fan, Z. Wang, N. Sun, J. Wang, and S. Wang, “Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers,” J. Memb. Sci., vol. 320, no. 1–2, pp. 363–371, 2008.
  • Z. Fan, Z. Wang, N. Sun, J. Wang, and S. Wang, “Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers,” J. Memb. Sci., vol. 320, no. 1–2, pp. 363–371, 2008.
  • Y. Li, M. Jiao, H. Zhao, and M. Yang, “High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: The effect of morphology on the sensing properties,” Sensors Actuators, B Chem., vol. 264, no. 2, pp. 285–295, 2018.
  • Y. Li, M. Jiao, H. Zhao, and M. Yang, “High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: The effect of morphology on the sensing properties,” Sensors Actuators, B Chem., vol. 264, no. 2, pp. 285–295, 2018.
  • V. Kumar, A. Mirzaei, M. Bonyani, K. H. Kim, H. W. Kim, and S. S. Kim, “Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia,” TrAC - Trends Anal. Chem., vol. 129, p. 115938, 2020.
  • V. Kumar, A. Mirzaei, M. Bonyani, K. H. Kim, H. W. Kim, and S. S. Kim, “Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia,” TrAC - Trends Anal. Chem., vol. 129, p. 115938, 2020.
  • G. Acik, C. E. Cansoy, and M. Kamaci, “Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers,” Colloid Polym. Sci., vol. 297, no. 1, pp. 77–83, 2019.
  • G. Acik, C. E. Cansoy, and M. Kamaci, “Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers,” Colloid Polym. Sci., vol. 297, no. 1, pp. 77–83, 2019.
There are 52 citations in total.

Details

Primary Language English
Subjects Nanotechnology (Other)
Journal Section Research Articles
Authors

Gözde Konuk Ege

Ozge Akay Sefer

Hüseyin Yüce

Project Number GDK201905-14
Publication Date September 27, 2024
Submission Date January 26, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

IEEE G. Konuk Ege, O. Akay Sefer, and H. Yüce, “The Characterization of Electrospun PANI/PEO Nanofibers at Different Electrospinning Conditions at Room Temperature”, IJONFEST, vol. 2, no. 2, pp. 91–97, 2024.