Research Article
BibTex RIS Cite

Köprü Yapısından Piezoelektrik Tabanlı Enerji Hasadının Sayısal Modellemesi

Year 2020, Volume: 6 Issue: 2, 130 - 139, 31.12.2020
https://doi.org/10.29132/ijpas.796480

Abstract

Köprüler, dengesizlik ve titreşimlere neden olabilecek çeşitli harici yüklere maruz kalabilirler. İyi tarafından bakıldığında, bu tür titreşimler sınırsız bir enerji kaynağı olabilir ve köprüleri izlemek için kullanılan cihazlara güç sağlayabilirler. Mekanik titreşimler, genellikle piezoelektrik tabanlı enerji hasadı olarak bilinen bir işlem olan doğrudan piezoelektrik etkisinden yararlanılarak elektrik enerjisine dönüştürülür. Bu çalışmada bir köprüdeki piezoelektrik enerji kazanımı incelendi. Piezoelektrik enerji toplayıcıları yerleştirilen köprünün bir modeli ANSYS APDL kullanılarak oluşturuldu. Zaman ve frekans bölgelerinde farklı hareketli yüklere sahip çeşitli senaryolar incelendi. Ayrıca, toplayıcıların pozisyonlarının etkisi de araştırıldı. Elde edilen sonuçlar, köprü sistemlerinden titreşim enerjisinin toplanmasının umut verici bir enerji kaynağı olduğunu gösterdi. Ayrıca toplayıcıların maksimum mod şekil genliğine yakın yerleştirilmesi ve hareketli yüklerin doğal frekanslarının toplayıcıların doğal frekansına uyacak şekilde tasarlanması durumunda daha faydalı olabileceğini gösterdi.

References

  • Anton, S.R., Sodano, H.A., 2007. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3):1-10.
  • Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., Bourouina, T., 2014. . Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3):1-10.
  • Bendine, K., Boukhoulda, F.B., Haddag, B., Nouari, M., 2017. Active vibration control of composite plate with optimal placement of piezoelectric patches. Mechanics of Advanced Materials and Structures, 26(4): 341-349.
  • Bendine, K., Hamdaoui, M., Boukhoulda, B.F., 2019. Piezoelectric energy harvesting from a bridge subjected to time-dependent moving loads using finite elements. Arabıan Journal for Scıence and Engıneerıng, DOI: 10.1007/s13369-019-03721-0
  • Boisseau, S., Despesse, G., Seddik, B.A., 2012. Electrostatic conversion for vibration energy harvesting. https://arxiv.org/abs/1210.5191
  • Cahill, P., Nuallain, N.A.N., Jackson, N., Mathewson, A., Karoumi, R., Pakrashi, V., 2014. Energy harvesting from train-induced response in bridges. Journal of Bridge Engineering, 19(9).
  • Erturk, A., Inman, D.J., 2008. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130(4): 041002
  • Erturk, A., Renno, J.M., Inman, D.J., 2009. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. Journal of Intelligent Material Systems and Structures, 20(5):529-544.
  • Erturk, A., 2011. Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. Journal of Intelligent Material Systems and Structures, 22(17):1959-1973.
  • Jung, I., Shin, Y.-H., Kim, S., Choi, J., Kang, C.-Y., 2017. Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Applied Energy, 197:222-229.
  • Junior, C.D.M., Erturk, A., Inman, D.J., 2009. . An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327:9-25.
  • Karimi, M., Karimi, A.H., Tikani, R., Ziaei-Rad, S., 2016. Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles. International Journal of Mechanical Sciences, 119:1-11.
  • Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M., 2007. Health monitoring of civil infrastructures using wireless sensor networks. Proceedings of the 6th International Conference on Information Processing in Sensor Networks, ACM, 254–263.
  • Lin, Z.-Q., Gea, H.C., Liu, S.-T., 2011. Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Acta Mechanica Sinica, 27(5):730-737.
  • Lynch, J.P., Loh, K.J., 2006. A summary review of wireless sensors and sensor networks for structural health monitoring. Acta Mechanica Sinica, 38:91-130.
  • Paek, J., Chintalapudi, K., Govindan, R., Caffrey, J., Masri, S., 2005. A wireless sensor network for structural health monitoring: Performance and experience. Performance and experience, in: Emnets. IEEE,1-9.
  • Park, H., Kim, J., 2016. Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Internatıonal Journal of Precision Engineering and Manufacturing-Green Technology, 3(1):41-48.
  • Peigney, M., Siegert, D., 2013. piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Materials Structure, 22:95019.
  • Song, Y., 2018. , Finite-element ımplementation of piezoelectric energy harvesting system from vibrations of the railway bridge. Journal of Energy Engineering, 145(2): 04018076.
  • Torres, E., Ponce, P., Molina, A., 2017. Electromagnetic induction generator toward energy harvesting for dynamic systems. Industrial Technology (ICIT), 2017 IEEE International Conference on. IEEE,, 418-422.
  • Tzou, H.S., Tseng, C.I., 1990. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. Journal of Sound and Vibration, 138:17-34.
  • Upadrashta, D., Yang, Y., 2015. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction. Smart Materials Structure, 24:45042.
  • Zhang, Y., Cai, S.C., Deng, L., 2014. Piezoelectric-based energy harvesting in bridge systems. Journal of Intelligent Material Systems and Structures, 25: 1414–1428.
  • Zhang, Z., Xiang, H., Shi, Z., 2016. Modeling on piezoelectric energy harvesting from pavements under traffic loads. Journal of Intelligent Material Systems and Structures, 27: 567-578.
  • Zhang, Z., Xiang, H., Shi, Z., 2017. Mechanism exploration of piezoelectric energy harvesting from vibration in beams subjected to moving harmonic loads. Composite Structures, 179: 368-376.
  • Zhang, Z., Xiang, H., Shi, Z., Zhan, J., 2018. Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration. Energy Conversion and Management, 163: 169-179.
  • Zhao, Q., Liu, Y., Wang, L., Yang, H., Cao, D., 2018. Design method for piezoelectric cantilever beam structure under low frequency condition. International Journal of Pavement Research and Technology, 11(2): 153-159.

Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure

Year 2020, Volume: 6 Issue: 2, 130 - 139, 31.12.2020
https://doi.org/10.29132/ijpas.796480

Abstract

Bridges can be subjected to a variety of external loads that can lead to instability and cause vibrations. Fortunately, such vibrations can be a source of unlimited sustainable energy that may powers the devices used to monitor the bridges. A possible way to convert such vibrations is by utilizing the direct piezoelectric effect, a process known as piezoelectric based energy harvesting. The present study investigates piezoelectric energy harvesting from a bridge. A model of the bridge with mounted piezoelectric harvesters was developed under ANSYS APDL. Various scenarios with different moving loads were investigated in time and frequency domains. Moreover, the effect of the positions of the harvesters was also explored. Results confirmed that harvesting vibration energy from bridge systems is a promising source of energy. Also, it can be profitable if the harvesters are located near the maximum mode shape amplitude and they are designed in a way to make their natural frequency match the natural frequency of the moving loads.

References

  • Anton, S.R., Sodano, H.A., 2007. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3):1-10.
  • Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., Bourouina, T., 2014. . Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3):1-10.
  • Bendine, K., Boukhoulda, F.B., Haddag, B., Nouari, M., 2017. Active vibration control of composite plate with optimal placement of piezoelectric patches. Mechanics of Advanced Materials and Structures, 26(4): 341-349.
  • Bendine, K., Hamdaoui, M., Boukhoulda, B.F., 2019. Piezoelectric energy harvesting from a bridge subjected to time-dependent moving loads using finite elements. Arabıan Journal for Scıence and Engıneerıng, DOI: 10.1007/s13369-019-03721-0
  • Boisseau, S., Despesse, G., Seddik, B.A., 2012. Electrostatic conversion for vibration energy harvesting. https://arxiv.org/abs/1210.5191
  • Cahill, P., Nuallain, N.A.N., Jackson, N., Mathewson, A., Karoumi, R., Pakrashi, V., 2014. Energy harvesting from train-induced response in bridges. Journal of Bridge Engineering, 19(9).
  • Erturk, A., Inman, D.J., 2008. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130(4): 041002
  • Erturk, A., Renno, J.M., Inman, D.J., 2009. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. Journal of Intelligent Material Systems and Structures, 20(5):529-544.
  • Erturk, A., 2011. Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. Journal of Intelligent Material Systems and Structures, 22(17):1959-1973.
  • Jung, I., Shin, Y.-H., Kim, S., Choi, J., Kang, C.-Y., 2017. Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Applied Energy, 197:222-229.
  • Junior, C.D.M., Erturk, A., Inman, D.J., 2009. . An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327:9-25.
  • Karimi, M., Karimi, A.H., Tikani, R., Ziaei-Rad, S., 2016. Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles. International Journal of Mechanical Sciences, 119:1-11.
  • Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M., 2007. Health monitoring of civil infrastructures using wireless sensor networks. Proceedings of the 6th International Conference on Information Processing in Sensor Networks, ACM, 254–263.
  • Lin, Z.-Q., Gea, H.C., Liu, S.-T., 2011. Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Acta Mechanica Sinica, 27(5):730-737.
  • Lynch, J.P., Loh, K.J., 2006. A summary review of wireless sensors and sensor networks for structural health monitoring. Acta Mechanica Sinica, 38:91-130.
  • Paek, J., Chintalapudi, K., Govindan, R., Caffrey, J., Masri, S., 2005. A wireless sensor network for structural health monitoring: Performance and experience. Performance and experience, in: Emnets. IEEE,1-9.
  • Park, H., Kim, J., 2016. Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Internatıonal Journal of Precision Engineering and Manufacturing-Green Technology, 3(1):41-48.
  • Peigney, M., Siegert, D., 2013. piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Materials Structure, 22:95019.
  • Song, Y., 2018. , Finite-element ımplementation of piezoelectric energy harvesting system from vibrations of the railway bridge. Journal of Energy Engineering, 145(2): 04018076.
  • Torres, E., Ponce, P., Molina, A., 2017. Electromagnetic induction generator toward energy harvesting for dynamic systems. Industrial Technology (ICIT), 2017 IEEE International Conference on. IEEE,, 418-422.
  • Tzou, H.S., Tseng, C.I., 1990. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. Journal of Sound and Vibration, 138:17-34.
  • Upadrashta, D., Yang, Y., 2015. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction. Smart Materials Structure, 24:45042.
  • Zhang, Y., Cai, S.C., Deng, L., 2014. Piezoelectric-based energy harvesting in bridge systems. Journal of Intelligent Material Systems and Structures, 25: 1414–1428.
  • Zhang, Z., Xiang, H., Shi, Z., 2016. Modeling on piezoelectric energy harvesting from pavements under traffic loads. Journal of Intelligent Material Systems and Structures, 27: 567-578.
  • Zhang, Z., Xiang, H., Shi, Z., 2017. Mechanism exploration of piezoelectric energy harvesting from vibration in beams subjected to moving harmonic loads. Composite Structures, 179: 368-376.
  • Zhang, Z., Xiang, H., Shi, Z., Zhan, J., 2018. Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration. Energy Conversion and Management, 163: 169-179.
  • Zhao, Q., Liu, Y., Wang, L., Yang, H., Cao, D., 2018. Design method for piezoelectric cantilever beam structure under low frequency condition. International Journal of Pavement Research and Technology, 11(2): 153-159.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Alper Polat 0000-0002-6368-5276

Kouider Bendıne 0000-0003-1842-5157

Publication Date December 31, 2020
Submission Date September 17, 2020
Acceptance Date December 16, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Polat, A., & Bendıne, K. (2020). Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure. International Journal of Pure and Applied Sciences, 6(2), 130-139. https://doi.org/10.29132/ijpas.796480
AMA Polat A, Bendıne K. Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure. International Journal of Pure and Applied Sciences. December 2020;6(2):130-139. doi:10.29132/ijpas.796480
Chicago Polat, Alper, and Kouider Bendıne. “Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure”. International Journal of Pure and Applied Sciences 6, no. 2 (December 2020): 130-39. https://doi.org/10.29132/ijpas.796480.
EndNote Polat A, Bendıne K (December 1, 2020) Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure. International Journal of Pure and Applied Sciences 6 2 130–139.
IEEE A. Polat and K. Bendıne, “Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure”, International Journal of Pure and Applied Sciences, vol. 6, no. 2, pp. 130–139, 2020, doi: 10.29132/ijpas.796480.
ISNAD Polat, Alper - Bendıne, Kouider. “Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure”. International Journal of Pure and Applied Sciences 6/2 (December 2020), 130-139. https://doi.org/10.29132/ijpas.796480.
JAMA Polat A, Bendıne K. Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure. International Journal of Pure and Applied Sciences. 2020;6:130–139.
MLA Polat, Alper and Kouider Bendıne. “Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure”. International Journal of Pure and Applied Sciences, vol. 6, no. 2, 2020, pp. 130-9, doi:10.29132/ijpas.796480.
Vancouver Polat A, Bendıne K. Numerical Modelling of Piezoelectric Based Energy Harvesting from The Bridge Structure. International Journal of Pure and Applied Sciences. 2020;6(2):130-9.

154501544915448154471544615445