Enerji Depolamalı Bir Boruda Nanoakışkan Kullanımının Isıl Performansa Etkisinin Sayısal Olarak İncelenmesi
Year 2021,
Volume: 7 Issue: 3, 480 - 489, 31.12.2021
Eda Bakır
,
Erdem Işık
,
Aynur Uçar
,
Fatih Bayrak
Abstract
Teknolojideki gelişmeler göz önüne alındığında, yüksek verimli elektronik cihazlardan beklenen verimlilik ve güvenirliğe ulaşmak için iyi bir termal performansa sahip yeni yaklaşımlar ve soğutuculara ihtiyaç duyulmaktadır. Bu çalışmada aynı hidrolik çapa, kanal uzunluğuna ve kesit geometrisine sahip alüminyum boru kullanılmıştır. Sistemin ısı transfer hızını arttırmak için; boru içerisinde su, %1 ve %2 derişimlerine sahip Al2O3/su nanoakışkanları, boru dış yüzeyinde ise 5mm kalınlığında RT25HC faz değiştiren maddesi (FDM) kullanılmıştır. Alüminyum boru içerisinden geçirilen akışkanlar dört farklı hız ve dört farklı Reynolds sayısında ANSYS 20.2 paket programı kullanılarak analiz edilmiştir.
Elde edilen sonuçlara göre her bir akışkan için kütlesel erime oranı ve Nusselt sayısı hesaplanmıştır. Çalışmada elde edilen sonuçlar incelendiğinde en iyi Nusselt ve sıvı oranına Reynolds 1500 ve %2 Al2O3/su’da ulaşılmıştır. Tüm soğutucu akışkanlar için akışkan hızının artmasıyla soğutucu akışkanların kütlesel erime oranının ve Nusselt sayısının arttığı sonucuna ulaşılmıştır.
References
- Ahmed, Zahir U., Yasir M. Al-Abdeli, and Miccal T. Matthews. 2015. “The Effect of Inflow Conditions on the Development of Non-Swirling versus Swirling Impinging Turbulent Jets.” Computers and Fluids 118:255–73. doi: 10.1016/j.compfluid.2015.06.024.
- Azari, Ahmad, Mansour Kalbasi, Masoud Derakhshandeh, and Masoud Rahimi. 2013. “An Experimental Study on Nanofluids Convective Heat Transfer through a Straight Tube under Constant Heat Flux.” Chinese Journal of Chemical Engineering 21(10):1082–88. doi: 10.1016/S1004-9541(13)60618-7.
- Bakır, Eda, Fatih Bayrak, and Hakan Öztop. 2021. “Experimental Analysis of PV/T Collectors Assisted with PCM for Off-Grid Domestic Applications.” European Journal of Science and Technology (23):627–36. doi: 10.31590/ejosat.841922.
- Chatterjee, Dipankar, Satish Kumar Gupta, and Bittagopal Mondal. 2014. “Mixed Convective Transport in a Lid-Driven Cavity Containing a Nanofluid and a Rotating Circular Cylinder at the Center.” International Communications in Heat and Mass Transfer 56:71–78. doi: 10.1016/j.icheatmasstransfer.2014.06.002.
- Derouich, Y., Z. Nasri, S. Abide, and A. H. Laatar. 2018. “Inclination Effects on Heat Transfer by an Oscillating Square Cylinder in Channel Flow.” International Journal of Heat and Mass Transfer 125:1105–20. doi: 10.1016/j.ijheatmasstransfer.2018.04.103.
- Elsheniti, Mahmoud B., Moataz A. Hemedah, M. M. Sorour, and Wael M. El-Maghlany. 2020. “Novel Enhanced Conduction Model for Predicting Performance of a PV Panel Cooled by PCM.” Energy Conversion and Management 205(January):112456. doi: 10.1016/j.enconman.2019.112456.
- Gkountas, Apostolos A., Lefteris Th. Benos, Konstantinos Stefanos Nikas, and Ioannis E. Sarris. 2020. “Heat Transfer Improvement by an Al2O3-Water Nanofluid Coolant in Printed-Circuit Heat Exchangers of Supercritical CO2 Brayton Cycle.” Thermal Science and Engineering Progress 20(May):100694. doi: 10.1016/j.tsep.2020.100694.
- Hassani, S. M., M. Khoshvaght-Aliabadi, and S. H. Mazloumi. 2018. “Influence of Chevron Fin Interruption on Thermo-Fluidic Transport Characteristics of Nanofluid-Cooled Electronic Heat Sink.” Chemical Engineering Science 191:436–47. doi: 10.1016/j.ces.2018.07.010.
- Heris, S. Zeinali, S. Gh Etemad, and M. Nasr Esfahany. 2006. “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer.” International Communications in Heat and Mass Transfer 33(4):529–35. doi: 10.1016/j.icheatmasstransfer.2006.01.005.
- Hussein, Adnan M., R. A. Bakar, and K. Kadirgama. 2014. “Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System.” Case Studies in Thermal Engineering 2:50–61. doi: 10.1016/j.csite.2013.12.001.
- Işık, E. & Tuğan, V.(2021). Dairesel Bir Boruda Kullanılan Boyuna Dalgalı Kanatçıkların Isı Transferine Etkisinin Sayısal Olarak İncelenmesi . International Journal of Pure and Applied Sciences, 7(1), 19-26. doi:10.29132/ijpas.907077
- İşkan, Ü., Direk, M., Yüksel, F. & Soylu, E. (2021). Otomobil İklimlendirme Sistemlerinde Farklı Soğutucu Akışkan Kullanılmasında Kompresörün Hacimsel Verim Analizi. International Journal of Pure and Applied Sciences, (1),41-50. doi:10.29132/ijpas.881952
- Keshavarz Moraveji, Mostafa, Reza Mohammadi Ardehali, and Ali Ijam. 2013. “CFD Investigation of Nanofluid Effects (Cooling Performance and Pressure Drop) in Mini-Channel Heat Sink.” International Communications in Heat and Mass Transfer 40(1):58–66. doi: 10.1016/j.icheatmasstransfer.2012.10.021.
- Kok, Besir. 2020. “Examining Effects of Special Heat Transfer Fins Designed for the Melting Process of PCM and Nano-PCM.” Applied Thermal Engineering 170(August 2019). doi: 10.1016/j.applthermaleng.2020.114989.
- Lo, D. C., C. P. Lee, and I. F. Lin. 2018. “An Efficient Immersed Boundary Method for Fluid Flow Simulations with Moving Boundaries.” Applied Mathematics and Computation 328:312–37. doi: 10.1016/j.amc.2018.01.022.
- Mohammadpourfard, M., H. Aminfar, and M. Karimi. 2016. “Numerical Investigation of Non-Uniform Transverse Magnetic Field Effects on the Swirling Flow Boiling of Magnetic Nanofluid in Annuli.” International Communications in Heat and Mass Transfer 75:240–52. doi: 10.1016/j.icheatmasstransfer.2016.04.019.
- Nnanna, A. G. Agw., William Rutherford, Wessam Elomar, and Brian Sankowski. 2009. “Assessment of Thermoelectric Module with Nanofluid Heat Exchanger.” Applied Thermal Engineering 29(2–3):491–500. doi: 10.1016/j.applthermaleng.2008.03.007.
- Piratheepan, M., and T. N. Anderson. 2014. “An Experimental Investigation of Turbulent Forced Convection Heat Transfer by a Multi-Walled Carbon-Nanotube Nanofluid.” International Communications in Heat and Mass Transfer 57:286–90. doi: 10.1016/j.icheatmasstransfer.2014.08.010.
- Saqr, Khalid M., and Mazlan A. Wahid. 2014. “Effects of Swirl Intensity on Heat Transfer and Entropy Generation in Turbulent Decaying Swirl Flow.” Applied Thermal Engineering 70(1):486–93. doi: 10.1016/j.applthermaleng.2014.05.059.
- Selimefendigil, Fatih, and Hakan F. Öztop. 2020. “Mixed Convection in a PCM Filled Cavity under the Influence of a Rotating Cylinder.” Solar Energy 200(June 2019):61–75. doi: 10.1016/j.solener.2019.05.062.
- Won, S. Y., and P. M. Ligrani. 2004. “Comparisons of Flow Structure and Local Nusselt Numbers in Channels with Parallel- and Crossed-Rib Turbulators.” International Journal of Heat and Mass Transfer 47(8–9):1573–86. doi: 10.1016/j.ijheatmasstransfer.2003.10.026.
- Xuan, Yimin, and Qiang Li. 2000. “Heat Transfer Enhancement of Nanofluids.” International Journal of Heat and Fluid Flow 21(1):58–64. doi: 10.1016/S0142-727X(99)00067-3.
Numerical Investigation of the Effect of Using Nanofluids on Thermal Performance in an Energy Storage Pipe
Year 2021,
Volume: 7 Issue: 3, 480 - 489, 31.12.2021
Eda Bakır
,
Erdem Işık
,
Aynur Uçar
,
Fatih Bayrak
Abstract
Considering the advances in technology, new approaches and heatsinks with good thermal performance are needed to achieve the efficiency and reliability expected from high-efficiency electronic devices. In this numerical study, an aluminum pipe with the same hydraulic diameter, channel length and cross-section geometry was used. To increase the heat transfer rate of the system; Al2O3/water nanofluids with water, 1% and 2% concentrations were used in the pipe, and a 5mm thick RT25HC phase change material (PCM) was used on the outer surface of the pipe. The fluids passed through the aluminum pipe were analyzed using the ANSYS 20.2 package program at four different speeds and four different Reynolds numbers.
According to the results obtained, the mass melting ratio and Nusselt number were calculated for each fluid. When the results obtained from the study were examined, it was seen that the best Nusselt and liquid fraction was Reynolds 1500 and 2% Al2O3/water. For all refrigerants, it was concluded that the mass melting rate of the refrigerants and the Nusselt number increased with the increase of the fluid velocity.
References
- Ahmed, Zahir U., Yasir M. Al-Abdeli, and Miccal T. Matthews. 2015. “The Effect of Inflow Conditions on the Development of Non-Swirling versus Swirling Impinging Turbulent Jets.” Computers and Fluids 118:255–73. doi: 10.1016/j.compfluid.2015.06.024.
- Azari, Ahmad, Mansour Kalbasi, Masoud Derakhshandeh, and Masoud Rahimi. 2013. “An Experimental Study on Nanofluids Convective Heat Transfer through a Straight Tube under Constant Heat Flux.” Chinese Journal of Chemical Engineering 21(10):1082–88. doi: 10.1016/S1004-9541(13)60618-7.
- Bakır, Eda, Fatih Bayrak, and Hakan Öztop. 2021. “Experimental Analysis of PV/T Collectors Assisted with PCM for Off-Grid Domestic Applications.” European Journal of Science and Technology (23):627–36. doi: 10.31590/ejosat.841922.
- Chatterjee, Dipankar, Satish Kumar Gupta, and Bittagopal Mondal. 2014. “Mixed Convective Transport in a Lid-Driven Cavity Containing a Nanofluid and a Rotating Circular Cylinder at the Center.” International Communications in Heat and Mass Transfer 56:71–78. doi: 10.1016/j.icheatmasstransfer.2014.06.002.
- Derouich, Y., Z. Nasri, S. Abide, and A. H. Laatar. 2018. “Inclination Effects on Heat Transfer by an Oscillating Square Cylinder in Channel Flow.” International Journal of Heat and Mass Transfer 125:1105–20. doi: 10.1016/j.ijheatmasstransfer.2018.04.103.
- Elsheniti, Mahmoud B., Moataz A. Hemedah, M. M. Sorour, and Wael M. El-Maghlany. 2020. “Novel Enhanced Conduction Model for Predicting Performance of a PV Panel Cooled by PCM.” Energy Conversion and Management 205(January):112456. doi: 10.1016/j.enconman.2019.112456.
- Gkountas, Apostolos A., Lefteris Th. Benos, Konstantinos Stefanos Nikas, and Ioannis E. Sarris. 2020. “Heat Transfer Improvement by an Al2O3-Water Nanofluid Coolant in Printed-Circuit Heat Exchangers of Supercritical CO2 Brayton Cycle.” Thermal Science and Engineering Progress 20(May):100694. doi: 10.1016/j.tsep.2020.100694.
- Hassani, S. M., M. Khoshvaght-Aliabadi, and S. H. Mazloumi. 2018. “Influence of Chevron Fin Interruption on Thermo-Fluidic Transport Characteristics of Nanofluid-Cooled Electronic Heat Sink.” Chemical Engineering Science 191:436–47. doi: 10.1016/j.ces.2018.07.010.
- Heris, S. Zeinali, S. Gh Etemad, and M. Nasr Esfahany. 2006. “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer.” International Communications in Heat and Mass Transfer 33(4):529–35. doi: 10.1016/j.icheatmasstransfer.2006.01.005.
- Hussein, Adnan M., R. A. Bakar, and K. Kadirgama. 2014. “Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System.” Case Studies in Thermal Engineering 2:50–61. doi: 10.1016/j.csite.2013.12.001.
- Işık, E. & Tuğan, V.(2021). Dairesel Bir Boruda Kullanılan Boyuna Dalgalı Kanatçıkların Isı Transferine Etkisinin Sayısal Olarak İncelenmesi . International Journal of Pure and Applied Sciences, 7(1), 19-26. doi:10.29132/ijpas.907077
- İşkan, Ü., Direk, M., Yüksel, F. & Soylu, E. (2021). Otomobil İklimlendirme Sistemlerinde Farklı Soğutucu Akışkan Kullanılmasında Kompresörün Hacimsel Verim Analizi. International Journal of Pure and Applied Sciences, (1),41-50. doi:10.29132/ijpas.881952
- Keshavarz Moraveji, Mostafa, Reza Mohammadi Ardehali, and Ali Ijam. 2013. “CFD Investigation of Nanofluid Effects (Cooling Performance and Pressure Drop) in Mini-Channel Heat Sink.” International Communications in Heat and Mass Transfer 40(1):58–66. doi: 10.1016/j.icheatmasstransfer.2012.10.021.
- Kok, Besir. 2020. “Examining Effects of Special Heat Transfer Fins Designed for the Melting Process of PCM and Nano-PCM.” Applied Thermal Engineering 170(August 2019). doi: 10.1016/j.applthermaleng.2020.114989.
- Lo, D. C., C. P. Lee, and I. F. Lin. 2018. “An Efficient Immersed Boundary Method for Fluid Flow Simulations with Moving Boundaries.” Applied Mathematics and Computation 328:312–37. doi: 10.1016/j.amc.2018.01.022.
- Mohammadpourfard, M., H. Aminfar, and M. Karimi. 2016. “Numerical Investigation of Non-Uniform Transverse Magnetic Field Effects on the Swirling Flow Boiling of Magnetic Nanofluid in Annuli.” International Communications in Heat and Mass Transfer 75:240–52. doi: 10.1016/j.icheatmasstransfer.2016.04.019.
- Nnanna, A. G. Agw., William Rutherford, Wessam Elomar, and Brian Sankowski. 2009. “Assessment of Thermoelectric Module with Nanofluid Heat Exchanger.” Applied Thermal Engineering 29(2–3):491–500. doi: 10.1016/j.applthermaleng.2008.03.007.
- Piratheepan, M., and T. N. Anderson. 2014. “An Experimental Investigation of Turbulent Forced Convection Heat Transfer by a Multi-Walled Carbon-Nanotube Nanofluid.” International Communications in Heat and Mass Transfer 57:286–90. doi: 10.1016/j.icheatmasstransfer.2014.08.010.
- Saqr, Khalid M., and Mazlan A. Wahid. 2014. “Effects of Swirl Intensity on Heat Transfer and Entropy Generation in Turbulent Decaying Swirl Flow.” Applied Thermal Engineering 70(1):486–93. doi: 10.1016/j.applthermaleng.2014.05.059.
- Selimefendigil, Fatih, and Hakan F. Öztop. 2020. “Mixed Convection in a PCM Filled Cavity under the Influence of a Rotating Cylinder.” Solar Energy 200(June 2019):61–75. doi: 10.1016/j.solener.2019.05.062.
- Won, S. Y., and P. M. Ligrani. 2004. “Comparisons of Flow Structure and Local Nusselt Numbers in Channels with Parallel- and Crossed-Rib Turbulators.” International Journal of Heat and Mass Transfer 47(8–9):1573–86. doi: 10.1016/j.ijheatmasstransfer.2003.10.026.
- Xuan, Yimin, and Qiang Li. 2000. “Heat Transfer Enhancement of Nanofluids.” International Journal of Heat and Fluid Flow 21(1):58–64. doi: 10.1016/S0142-727X(99)00067-3.