Araştırma Makalesi
BibTex RIS Kaynak Göster

Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi

Yıl 2024, Cilt: 10 Sayı: 2, 533 - 549, 31.12.2024
https://doi.org/10.29132/ijpas.1548454

Öz

Bu çalışmada, geri dönüştürülme oranı %25 olarak üretilen 2 mm kalınlığındaki Al6016 (AL6-HDI-TZ-U) serisi saclardan birleştirme numuneleri elde edilmiştir. Test numuneleri için özel fikstür tasarlanarak üniversal kalıpçı freze tezgahına entegre edilmiştir ve birleştirmeler yapılmıştır. Birleştirici takım ucu geometrisi 10 derece konik, yüksekliği 2.9 mm, omuz çapı 15 mm olacak şekilde 2379 malzeme olarak seçilmiş ve yüzey sertliği 62-65 HRC’ye çıkartılmıştır. Kaynak bekleme süresi 4 sn olarak sabit tutulmuştur. Birleştirmeler 600, 1200, 1800, 2400, 3000, 3600 rpm olarak 6 farklı devirde sürtünme karıştırma nokta kaynağı yapılmıştır. Birleştirilen test numune bağlantılarının ısı girdileri hesaplanarak sertlik testi, çekme kesme testi ile makro ve mikroyapısal analizleri incelendi. 600, 1200, 1800, 2400, 3000, 3600 rpm hızlarda yapılan birleştirmeler başarılı oldu, tüm hızlarda SZ bölgesinde en ince tane yapısı, HAZ bölgesinde en kalın tane yapısı olduğu tespit edilmiştir. 600 rpm de en yüksek çekme kesme yükünü Rm:109 MPa olarak görüldü. En yüksek sertlik değer-leri, 600 rpm'de BM, SZ, TMAZ ve HAZ için sırasıyla 108 ± 2, 101 ± 3, 95 ± 3 ve 87 ± 5 HV0,1 olarak tespit edildi. 600 ve 1200 rpm hızlardaki birleştirmelerde gevrek, diğer hızlarda sünek kırılma modu görülmüştür. Birleştirme bölgesi, dinamik olarak yeniden kristalleşen karıştırma bölgesi (SZ), termo-mekanik olarak etkilenen bölge (TMAZ), ısıdan etkilenen bölge (HAZ) ve ana metal (BM) olarak tanımlanmıştır.

Destekleyen Kurum

Ak-Pres Otomotiv A.Ş.

Teşekkür

Desteklerinden dolayı Ak-Pres Otomotiv A.Ş. ’ye teşekkürler.

Kaynakça

  • Gronostajski, J., Marciniak, H., & Matuszak, A. (2000). New methods of aluminium and alu-minium-alloy chips recycling. Journal of materials processing technology, 106(1-3), 34-39.
  • Ceschini, L. O. R. E. L. L. A., Boromei, I. U. R. I., Minak, G. I. A. N. G. I. A. C. O. M. O., Morri, A. L. E. S. S. A. N. D. R. O., & Tarterini, F. A. B. R. I. Z. I. O. (2007). Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p compo-site. Composites science and technology, 67(3-4), 605-615.
  • Charit, I., & Mishra, R. S. (2005). Low temperature superplasticity in a friction-stir-processed utrafine grained Al–Zn–Mg–Sc alloy. Acta Materialia, 53(15), 4211-4223.
  • Commin, L., Dumont, M., Masse, J. E., & Barrallier, L. (2009). Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters. Acta materialia, 57(2), 326-334.
  • Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials & design, 29(2), 362-373.
  • El-Rayes, M. M., & El-Danaf, E. A. (2012). The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. Journal of Materials Processing Technology, 212(5), 1157-1168.
  • Li, Y., Murr, L. E., & McClure, J. C. (1999). Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum. Materials Science and Engineering: A, 271(1-2), 213-223.
  • Liu, G., Murr, L. E., Niou, C. S., McClure, J. C., & Vega, F. R. (1997). Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripta materialia, 37(3), 355-361.
  • Chai, F., Zhang, D. T., & Li, Y. Y. (2014). Effect of rotation speeds on microstructures and tensile properties of submerged friction stir processed AZ31 magnesium alloy. Materials Research In-novations, 18(sup4), S4-152.
  • Kulekci, M. K., Esme, U., & Buldum, B. (2016). Critical analysis of friction stir-based manu-facturing processes. The International Journal of Advanced Manufacturing Technology, 85, 1687-1712.
  • Kwon, Y. J., Saito, N., & Shigematsu, I. (2002). Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. Journal of materials science letters, 21(19), 1473-1476.
  • Peel, M., Steuwer, A., Preuss, M., & Withers, P. J. (2003). Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta materialia, 51(16), 4791-4801.
  • Rhodes, C. G., Mahoney, M. W., Bingel, W. H., & Calabrese, M. (2003). Fine-grain evolution in friction-stir processed 7050 aluminum. Scripta materialia, 48(10), 1451-1455.
  • Santella, M. L., Engstrom, T., Storjohann, D., & Pan, T. (2005). Effects of friction stir processing on mechanical properties of the cast aluminum alloy A356. SAE transactions, 599-603.
  • Sen, U., & Sharma, K. (2016). Friction stir processing of aluminum alloys: A literature sur-vey. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 2(2).
  • Su, J. Q., Nelson, T. W., Mishra, R., & Mahoney, M. J. A. M. (2003). Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta materialia, 51(3), 713-729.
  • Thomas, W. M., & Nicholas, E. D. (1997). Friction stir welding for the transportation indus-tries. Materials & design, 18(4-6), 269-273.
  • De Caro, D., Tedesco, M. M., Pujante, J., Bongiovanni, A., Sbrega, G., Baricco, M., & Rizzi, P. (2023). Effect of Recycling on the Mechanical Properties of 6000 Series Aluminum-Alloy Sheet. Materials, 16(20), 6778.
  • Wang'ombe, D. N., Mose, B. R., Maranga, S. M., & Mbuya, T. O. (2021). Effects of friction stir welding on microstructure and mechanical properties of extruded secondary aluminum 6061 al-loy. Materialwissenschaft und Werkstofftechnik, 52(3), 270-278.
  • Mubiayi, M. P., & Akinlabi, E. T. (2016). Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000. Transactions of Nonferrous Metals Society of China, 26(7), 1852-1862.
  • Garg, A., & Bhattacharya, A. (2017). Strength and failure analysis of similar and dissimilar friction stir spot welds: Influence of different tools and pin geometries. Materials & Design, 127, 272-286.
  • Tunçel, O., Tutar, M., & Bayram, A. (2020). Effect of tool pin profile on the hook geometry and mechanical properties of a friction stir spot welded AA6082-T6 aluminum alloy. Transactions of the Canadian Society for Mechanical Engineering, 45(2), 233-248.
  • Shen, Z., Ding, Y., & Gerlich, A. P. (2020). Advances in friction stir spot welding. Critical Reviews in Solid State and Materials Sciences, 45(6), 457-534.
  • Ahmed, M. M. Z., Wynne, B. P., Rainforth, W. M., Addison, A., Martin, J. P., & Threadgill, P. L. (2019). Effect of tool geometry and heat input on the hardness, grain structure, and crystallographic texture of thick-section friction stir-welded aluminium. Metallurgical and Materials Transactions A, 50, 271-284.
  • Ahmed, M. M., Ataya, S., El-Sayed Seleman, M. M., Mahdy, A. M., Alsaleh, N. A., & Ahmed, E. (2020). Heat input and mechanical properties investigation of friction stir welded aa5083/aa5754 and aa5083/aa7020. Metals, 11(1), 68.
  • Atak, A., Sik, A., & Ozdemir, V. (2018). Thermo-mechanical modeling of friction stir spot welding and numerical solution with the finite element method. International Journal of Engineering and Applied Sciences, 5(2), 257275.
  • Wiedenhoft, A. G., Amorim, H. J. D., Rosendo, T. D. S., Tier, M. A. D., & Reguly, A. (2018). Effect of heat input on the mechanical behaviour of Al-Cu FSW lap joints. Materials Re-search, 21(4),.
  • Ahmed, M. M., IA Habba, M., Jouini, N., Alzahrani, B., Seleman, M. M. E. S., & El-Nikhaily, A. (2021). Bobbin tool friction stir welding of aluminum using different tool pin geometries: Mathematical models for the heat generation. Metals, 11(3), 438.
  • Ataya, S., Ahmed, M. M., El-Sayed Seleman, M. M., Hajlaoui, K., Latief, F. H., Soliman, A. M., ... & Habba, M. I. (2022). Effective range of FSSW parameters for high load-carrying capacity of dissimilar steel A283M-C/brass CuZn40 joints. Materials, 15(4), 1394.
  • Aydin, H., Tuncel, O., Umur, Y. E. L. İ. Z., Tutar, M. Ü. M. İ. N., & Bayram, A. (2017). Effect of welding parameters on microstructure and mechanical properties of aluminum alloy AA6082-T6 friction stir spot welds.
  • Abdul-Maksoud, M., Ahmed, M. Z., Seleman, M. M. E. S., & Ammer, A. M. (2022). Effect of dwelling time and plunge depth on the joint properties of the dissimilar friction stir spot welded aluminum and steel. Journal of Engineering Research, 10(2B), 264-279.
  • Xie, G. M., Cui, H. B., Luo, Z. A., Yu, W., Ma, J., & Wang, G. D. (2016). Effect of rotation rate on microstructure and mechanical properties of friction stir spot welded DP780 steel. Journal of Materials Science & Technology, 32(4), 326-332.
  • Ohashi, R., Fujimoto, M., Mironov, S., Sato, Y. S., & Kokawa, H. (2009). Effect of contamination on microstructure in friction stir spot welded DP590 steel. Science and Technology of Welding and Joining, 14(3), 221-227.
  • Zhu, R., Gong, W. B., & Cui, H. (2020). Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints. The International Journal of Advanced Manufacturing Technology, 108, 331-343.

Investigation of Weldability of 25% Recycled Al6016 Series Sheet Metal Materials Used in Automotive by Friction Stir Spot Welding

Yıl 2024, Cilt: 10 Sayı: 2, 533 - 549, 31.12.2024
https://doi.org/10.29132/ijpas.1548454

Öz

In this study, joint samples were obtained from 2 mm thick Al6016 (AL6-HDI-TZ-U) series sheets produced with a recycling rate of 25%. A special fixture was designed for the test samples and integrated into the universal mold milling machine and joints were made. The joint tool tip geometry was selected as 2379 material with a 10-degree conical, 2.9 mm height, and 15 mm shoulder diameter and the surface hardness was increased to 62-65 HRC. The welding waiting time was kept constant as 4 s. The joints were made by friction stir spot welding at 6 different speeds as 600, 1200, 1800, 2400, 3000, 3600 rpm. The heat inputs of the jointed test sample connections were calcu-lated and hardness test, tensile shear test and macro and microstructural analyzes were examined. The joints made at speeds of 600, 1200, 1800, 2400, 3000, 3600 rpm were successful, the finest grain structure was found in the SZ region and the coarsest grain structure was found in the HAZ region at all speeds. The highest tensile shear load was observed as Rm:109 MPa at 600 rpm. The highest hardness values were determined as 108 ± 2, 101 ± 3, 95 ± 3 and 87 ± 5 HV0,1 for BM, SZ, TMAZ and HAZ at 600 rpm, respectively. Brittle fracture mode was observed in joints at speeds of 600 and 1200 rpm, while ductile fracture mode was observed at other speeds. The joining zone was defined as the dynamically recrystallising stir zone (SZ), thermo-mechanically af-fected zone (TMAZ), heat-affected zone (HAZ) and base metal (BM).

Kaynakça

  • Gronostajski, J., Marciniak, H., & Matuszak, A. (2000). New methods of aluminium and alu-minium-alloy chips recycling. Journal of materials processing technology, 106(1-3), 34-39.
  • Ceschini, L. O. R. E. L. L. A., Boromei, I. U. R. I., Minak, G. I. A. N. G. I. A. C. O. M. O., Morri, A. L. E. S. S. A. N. D. R. O., & Tarterini, F. A. B. R. I. Z. I. O. (2007). Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p compo-site. Composites science and technology, 67(3-4), 605-615.
  • Charit, I., & Mishra, R. S. (2005). Low temperature superplasticity in a friction-stir-processed utrafine grained Al–Zn–Mg–Sc alloy. Acta Materialia, 53(15), 4211-4223.
  • Commin, L., Dumont, M., Masse, J. E., & Barrallier, L. (2009). Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters. Acta materialia, 57(2), 326-334.
  • Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials & design, 29(2), 362-373.
  • El-Rayes, M. M., & El-Danaf, E. A. (2012). The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. Journal of Materials Processing Technology, 212(5), 1157-1168.
  • Li, Y., Murr, L. E., & McClure, J. C. (1999). Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum. Materials Science and Engineering: A, 271(1-2), 213-223.
  • Liu, G., Murr, L. E., Niou, C. S., McClure, J. C., & Vega, F. R. (1997). Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripta materialia, 37(3), 355-361.
  • Chai, F., Zhang, D. T., & Li, Y. Y. (2014). Effect of rotation speeds on microstructures and tensile properties of submerged friction stir processed AZ31 magnesium alloy. Materials Research In-novations, 18(sup4), S4-152.
  • Kulekci, M. K., Esme, U., & Buldum, B. (2016). Critical analysis of friction stir-based manu-facturing processes. The International Journal of Advanced Manufacturing Technology, 85, 1687-1712.
  • Kwon, Y. J., Saito, N., & Shigematsu, I. (2002). Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. Journal of materials science letters, 21(19), 1473-1476.
  • Peel, M., Steuwer, A., Preuss, M., & Withers, P. J. (2003). Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta materialia, 51(16), 4791-4801.
  • Rhodes, C. G., Mahoney, M. W., Bingel, W. H., & Calabrese, M. (2003). Fine-grain evolution in friction-stir processed 7050 aluminum. Scripta materialia, 48(10), 1451-1455.
  • Santella, M. L., Engstrom, T., Storjohann, D., & Pan, T. (2005). Effects of friction stir processing on mechanical properties of the cast aluminum alloy A356. SAE transactions, 599-603.
  • Sen, U., & Sharma, K. (2016). Friction stir processing of aluminum alloys: A literature sur-vey. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 2(2).
  • Su, J. Q., Nelson, T. W., Mishra, R., & Mahoney, M. J. A. M. (2003). Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta materialia, 51(3), 713-729.
  • Thomas, W. M., & Nicholas, E. D. (1997). Friction stir welding for the transportation indus-tries. Materials & design, 18(4-6), 269-273.
  • De Caro, D., Tedesco, M. M., Pujante, J., Bongiovanni, A., Sbrega, G., Baricco, M., & Rizzi, P. (2023). Effect of Recycling on the Mechanical Properties of 6000 Series Aluminum-Alloy Sheet. Materials, 16(20), 6778.
  • Wang'ombe, D. N., Mose, B. R., Maranga, S. M., & Mbuya, T. O. (2021). Effects of friction stir welding on microstructure and mechanical properties of extruded secondary aluminum 6061 al-loy. Materialwissenschaft und Werkstofftechnik, 52(3), 270-278.
  • Mubiayi, M. P., & Akinlabi, E. T. (2016). Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000. Transactions of Nonferrous Metals Society of China, 26(7), 1852-1862.
  • Garg, A., & Bhattacharya, A. (2017). Strength and failure analysis of similar and dissimilar friction stir spot welds: Influence of different tools and pin geometries. Materials & Design, 127, 272-286.
  • Tunçel, O., Tutar, M., & Bayram, A. (2020). Effect of tool pin profile on the hook geometry and mechanical properties of a friction stir spot welded AA6082-T6 aluminum alloy. Transactions of the Canadian Society for Mechanical Engineering, 45(2), 233-248.
  • Shen, Z., Ding, Y., & Gerlich, A. P. (2020). Advances in friction stir spot welding. Critical Reviews in Solid State and Materials Sciences, 45(6), 457-534.
  • Ahmed, M. M. Z., Wynne, B. P., Rainforth, W. M., Addison, A., Martin, J. P., & Threadgill, P. L. (2019). Effect of tool geometry and heat input on the hardness, grain structure, and crystallographic texture of thick-section friction stir-welded aluminium. Metallurgical and Materials Transactions A, 50, 271-284.
  • Ahmed, M. M., Ataya, S., El-Sayed Seleman, M. M., Mahdy, A. M., Alsaleh, N. A., & Ahmed, E. (2020). Heat input and mechanical properties investigation of friction stir welded aa5083/aa5754 and aa5083/aa7020. Metals, 11(1), 68.
  • Atak, A., Sik, A., & Ozdemir, V. (2018). Thermo-mechanical modeling of friction stir spot welding and numerical solution with the finite element method. International Journal of Engineering and Applied Sciences, 5(2), 257275.
  • Wiedenhoft, A. G., Amorim, H. J. D., Rosendo, T. D. S., Tier, M. A. D., & Reguly, A. (2018). Effect of heat input on the mechanical behaviour of Al-Cu FSW lap joints. Materials Re-search, 21(4),.
  • Ahmed, M. M., IA Habba, M., Jouini, N., Alzahrani, B., Seleman, M. M. E. S., & El-Nikhaily, A. (2021). Bobbin tool friction stir welding of aluminum using different tool pin geometries: Mathematical models for the heat generation. Metals, 11(3), 438.
  • Ataya, S., Ahmed, M. M., El-Sayed Seleman, M. M., Hajlaoui, K., Latief, F. H., Soliman, A. M., ... & Habba, M. I. (2022). Effective range of FSSW parameters for high load-carrying capacity of dissimilar steel A283M-C/brass CuZn40 joints. Materials, 15(4), 1394.
  • Aydin, H., Tuncel, O., Umur, Y. E. L. İ. Z., Tutar, M. Ü. M. İ. N., & Bayram, A. (2017). Effect of welding parameters on microstructure and mechanical properties of aluminum alloy AA6082-T6 friction stir spot welds.
  • Abdul-Maksoud, M., Ahmed, M. Z., Seleman, M. M. E. S., & Ammer, A. M. (2022). Effect of dwelling time and plunge depth on the joint properties of the dissimilar friction stir spot welded aluminum and steel. Journal of Engineering Research, 10(2B), 264-279.
  • Xie, G. M., Cui, H. B., Luo, Z. A., Yu, W., Ma, J., & Wang, G. D. (2016). Effect of rotation rate on microstructure and mechanical properties of friction stir spot welded DP780 steel. Journal of Materials Science & Technology, 32(4), 326-332.
  • Ohashi, R., Fujimoto, M., Mironov, S., Sato, Y. S., & Kokawa, H. (2009). Effect of contamination on microstructure in friction stir spot welded DP590 steel. Science and Technology of Welding and Joining, 14(3), 221-227.
  • Zhu, R., Gong, W. B., & Cui, H. (2020). Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints. The International Journal of Advanced Manufacturing Technology, 108, 331-343.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kaynak Teknolojileri
Bölüm Makaleler
Yazarlar

Cihan Yakupoğlu 0000-0003-3596-9623

Halil Kirdemir 0009-0008-9471-9812

Ömer Adanur 0000-0001-5591-9661

Faruk Varol 0000-0003-2952-2251

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 11 Eylül 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Yakupoğlu, C., Kirdemir, H., Adanur, Ö., Varol, F. (2024). Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi. International Journal of Pure and Applied Sciences, 10(2), 533-549. https://doi.org/10.29132/ijpas.1548454
AMA Yakupoğlu C, Kirdemir H, Adanur Ö, Varol F. Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi. International Journal of Pure and Applied Sciences. Aralık 2024;10(2):533-549. doi:10.29132/ijpas.1548454
Chicago Yakupoğlu, Cihan, Halil Kirdemir, Ömer Adanur, ve Faruk Varol. “Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı Ile Birleştirilebilirliğinin İncelenmesi”. International Journal of Pure and Applied Sciences 10, sy. 2 (Aralık 2024): 533-49. https://doi.org/10.29132/ijpas.1548454.
EndNote Yakupoğlu C, Kirdemir H, Adanur Ö, Varol F (01 Aralık 2024) Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi. International Journal of Pure and Applied Sciences 10 2 533–549.
IEEE C. Yakupoğlu, H. Kirdemir, Ö. Adanur, ve F. Varol, “Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi”, International Journal of Pure and Applied Sciences, c. 10, sy. 2, ss. 533–549, 2024, doi: 10.29132/ijpas.1548454.
ISNAD Yakupoğlu, Cihan vd. “Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı Ile Birleştirilebilirliğinin İncelenmesi”. International Journal of Pure and Applied Sciences 10/2 (Aralık 2024), 533-549. https://doi.org/10.29132/ijpas.1548454.
JAMA Yakupoğlu C, Kirdemir H, Adanur Ö, Varol F. Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi. International Journal of Pure and Applied Sciences. 2024;10:533–549.
MLA Yakupoğlu, Cihan vd. “Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı Ile Birleştirilebilirliğinin İncelenmesi”. International Journal of Pure and Applied Sciences, c. 10, sy. 2, 2024, ss. 533-49, doi:10.29132/ijpas.1548454.
Vancouver Yakupoğlu C, Kirdemir H, Adanur Ö, Varol F. Otomotivde Kullanılan %25 Geri Dönüştürülmüş Al6016 Serisi Sacların Sürtünme Karıştırma Nokta Kaynağı ile Birleştirilebilirliğinin İncelenmesi. International Journal of Pure and Applied Sciences. 2024;10(2):533-49.

154501544915448154471544615445