Research Article
BibTex RIS Cite

In vitro anticoagulant and antiinflammatory activities of Geastrum fimbriatum Fr., namely as Earthstar fungus

Year 2019, Volume: 6 Issue: 1, 1 - 9, 16.03.2019
https://doi.org/10.21448/ijsm.454836

Abstract

Mushrooms have great potential to be used as food and
pharmaceutical sources. Most of the non-edible mushrooms contain biologically
active metabolites that are functional for modern medicinal applications.
Within the present study, anticoagulant and antiinflammatory activities of
Geastrum fimbriatum Fr. (Syn. Geastrum sessile (Sowerby) Pouzar), a
mushroom naturally grown in Turkey, were investigated. The in vitro anticoagulant activity of the ethanolic extract obtained
with a soxhlet apparatus determined by
activated partial thromboplastin time (APTT) and
prothrombin time (PT) assays using commercial reagents.
The
antiinflammatory activity of the extract was determined by lipoxygenase
inhibition assay.
When
compared with the negative control DMSO, G.
fimbriatum
extract exhibited significant anticoagulant effects in
the APTT test that evaluates the intrinsic coagulation pathway. The ethanolic
extract found to prolong the coagulation time. However, no inhibition was
observed in the PT test which evaluates the extrinsic coagulation pathway, The
extract showed
12.92% inhibition on the lipoxygenase enzyme activity. Overall, G. fimbriatum ethanolic extract
exhibited potent antiinflammatory activity besides being a potential source of
anticoagulant. Further analysis is
required to evaluate the medical use of Geastrum
mushrooms from a pharmaceutical point of view.

References

  • [1] Fares, A. (2013). Winter cardiovascular diseases phenomenon. N. Am. J. Med. Sci., 5, p.266-279.
  • [2] WHO – World Health Organization. Cardiovascular diseases. http://www.who.int/mediacentre/factsheets/fs317/en/ 2015. (accessed 17.03.2016).
  • [3] Aguirre, J., Borgeat, A. (2013). Drugs for Thromboprophylaxis: Unfractionated Heparin, Low Molecular Weight Heparin, Warfarin, and Fondaparinux. In: Llau JV, editor. Thromboembolism in Orthopedic Surgery. Springer, London, England, p. 53-65.
  • [4] Poulsen, B.K., Grove, E.L., Husted, S.E. (2012). New oral anticoagulants. Drugs, 72, p.1739-1753.
  • [5] García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A., Martínez, J.A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res., 58, p.537-552.
  • [6] Anilkumar, M. (2010). Ethnomedicinal plants as anti-inflammatory and analgesic agents. Ethnomedicine: A Source of Comp. Therap., p.267-293.
  • [7] Amdekar, S., Roy, P., Singh, V., Kumar, A., Singh, R., Sharma, P. (2012). Anti-inflammatory activity of Lactobacillus on carrageenan-induced paw edema in male wistar rats. Int. J. Inflam., 2012, p. 752015.
  • [8] Levick, S.P., Loch, D.C., Taylor, S.M., Janicki, J.S. (2007). Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J. Immunol., 178, p.641-646.
  • [9] Rainsford, K.D. (2007). Anti-inflammatory drugs in the 21st century. Subcell Biochem., 42, p.3-27.
  • [10] Samuelsson, B., Dahlén, S.E., Lindgren, J.Å., Rouzer, C.A., Serhan, C.N. (1987). Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science, 237, 1171-1176.
  • [11] Yedgar, S., Krimsky, M., Cohen, Y., Flower, R.J. (2007). Treatment of inflammatory diseases by selective eicosanoid inhibition: A doubleedged sword? Trends Pharmacol. Sci., 28, p.459-464.
  • [12] Czapski, G.A., Czubowicz, K., Strosznajder, R.P. (2012). Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol. Rep., 64(5), p.1179-1188. [13] Ammon, H.P.T., Annazodo, M.I., Safayhi, H., Dhawan, B.N., Scrimal, R. (1992). Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta Med., 58, p.226.
  • [14] Bensky, D., Gamble, A. (1986). Chinese Herbal Medicine: Materia Medica, 2nd edn. Seattle: Eastland Press.
  • [15] Sullivan, R., Smith, J.E., Rowan, J., 2006. Medicinal mushrooms and cancer therapy: trans-lating a traditional practice into Western medicine. Perspect Bio. Med., 49, 159-170.
  • [16] Rogers, R. (2011). The Fungal Pharmacy. The Complete Guide to Medicinal Mushrooms and Lichens of North America. North Atlantic Books, Berkeley, California.
  • [17] Thatoi, H.N., Singdevsachan, S.K. (2014). Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review. Afr. J. Biotech., 13, p.523-545.
  • [18] Sevindik, M., Akgul, H., Akata, I., Allı, H., Selamoglu, Z. (2017). Fomitopsis pinicola in Healthful Dietary Approach and their Therapeutic Potentials. Acta Alim., 46(4), p.464-469.
  • [19] Nouhra, E.R., DeToledo, D.L. (1998). The first record of Astraeus hygrometricus from Argentina. Mycol., 12, p.112-113.
  • [20] Phosri, C., Watling, R., Martín, M.P., Whalley, A.J.S. (2004). The genus Astraeus in Thailand. Mycotaxon, 89, p.453-463.
  • [21] Fangfuk, W., Petchang, R., To-anun, C., Fukuda, M., Yamada, A. (2010). Identification of Japanese Astraeus, based on morphological and phylogenetic analyses. Mycoscience, 51, p.291-299.
  • [22] Wasser, S.P., Weis, A. (1999). Medicinal properties of substances occurring in higher basidimycetes mushrooms: current perspectives. Int. J. Med. Mushrooms, 1, p.31-62.
  • [23] Guerra, D.C.M.P., Azevedo, T.C.G., DeSouza, M.C.R. (2007). Antiinflammatory, antioxidant and cytotoxic actions of 𝛽- glucan-rich extract from Geastrum saccatum mushroom. Int. Immunopharmacol., 7, p.1160-1169.
  • [24] Panda, M.K., Tayung, K. (2015). Documentation and Ethnomedical Knowledge on Wild Edible Mushrooms among Ethnic Tribes of Northern Odisha, India. Asian J. Pharma Clin. Res., 8(4), p.139-143.
  • [25] Chittaragi, A., Naika, R., Banakar, S., Vijay, K. (2013). Phytochemical and Antifungal study of different solvent extracts of Scleroderma bermudense Corker. (Sclerodermataceae). Am. J. Pharm. Tech. Res., 3, p.427-438.
  • [26] Basgedik, B., Ugur, A., Sarac, N. (2014). Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Ind. Crops Prod., 61, 526-530.
  • [27] Saraç, N., Şen, B. (2014). Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind. Crops Prod., 53, 60-64.
  • [28] Schved, J.F., Biron-Andréani, C. (2005). Hématologie: Exploration de l’hémostase. Montpellier. pp: 19.
  • [29] Dandjesso, C., Klotoa, J. R., Dougnon, T. V., Sègbo, J., Atègbo, J. M., Gbaguidi, F., Dramane, K. (2012). Phytochemistry and hemostatic properties of some medicinal plants sold as anti-hemorrhagic in Cotonou markets (Benin). Indian J. Sci. Technol., 5(8), 3105-3109.
  • [30] Ratnasary, N., Walters, M., Tsopmo, A. (2017). Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon, 3, e00351.
  • [31] Zhu, Z.Y. (1997). New concept of blood clotting. Shanghai Med. J., 2, p.115-117.
  • [32] Li, M., Jia, Z., Hu, Z., Zhang, R., Shen, T. (2008). Experimental Study on the Hemostatic Activity of the Tibetan Medicinal Herb Lamiophlomis rotata. Phytoth. Res., 22, p.759-765.
  • [33] Liu, Z., Li, N., Gao, W., Man, S., Yin, S., Liu, C. (2012). Comparative study on hemostatic, cytotoxic and hemolytic activities of different species of Paris L. J. Ethnopharmacol., 142, p.789-794.
  • [34] Lee, W., Ku, S.K., Bae, J.S. (2015). Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res., 38, p.893-903.
  • [35] Hull, R.D., Merali, T., Mills, A., Stevenson, A.L., Liang, J. (2013). Venous Thromboembolism in Elderly High-Risk Medical Patients Time Course of Events and Influence of Risk Factors. Clin. Appl. Thromb. Hemost., 19(4), p.357-362.
  • [36] John Camm, A. (2013). Managing anticoagulation for atrial fibrillation: current issues and future strategies. J. Int. Med., 273(1), p.31-41.
  • [37] Piazza, G., Nguyen, T.N., Cios, D., Labreche, M., Hohlfelder, B., Fanikos, J., Fiumara, K., Goldhaber, S.Z. (2011). Anticoagulation-associated Adverse Drug Events. Am. J. Med., 124(12), p.1136-1142.
  • [38] Alquwaizani, M., Buckley, L., Adams, C., Fanikos, J. (2013). Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Cur. Emerg. Hos. Med. Rep., 1(2), p.83-97.
  • [39] Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J., Bork, P. (2010). A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 6, p. 343-348.
  • [40] Pharma, A. Coumadin consumer medicine information. https://wwwebstgagovau/ebs/picmi/picmirepositorynsf/pdf?OpenAgent&id=CP-2010-CMI-02587-3. 2011 (accessed 18 November 2011).
  • [41] Winslow, L.C., Kroll, D.J. (1998). Herbs as medicines. Arch. Intern. Med., 158, p.2192- 2199.
  • [42] Ernst, E. (2007). Herbal medicines: balancing benefits and risks. Novartis Found Symp., 67-72, p.212-218.
  • [43] Yamamoto, S. (1992). Mammalian lipoxygenases: molecular structures and functions. Biochim. Biophys. Acta, 1128, p.117-131.
  • [44] Yahaya, Y.A., Don, M.M. (2012). Evaluation of Trametes Lactinea extracts on the inhibition of Hyaluronidase, Lipoxygenase and Xanthine Oxidase activities in vitro. J. Phy. Sci., 23, p.1-15.
  • [45] Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotech., 60(3), p.258-274.
  • [46] Harada, T., Ohno, N. Dectin-1 and GM-CSF on immunomodulating activities of fungal 6-branched 1, 3-ß-glucans. Int. J. Med. Mushrooms, 10, p.101-114.
  • [47] Cai, Y., Luo, Q., Sun, M., Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 74(17), p.2157-2184.
  • [48] Deng, G., Lim, H., Seidman, A., Fornier, M., D’Andrea, G., Wesa, K., Yeung, S., Cunningham-Rundles, S., Vickers, A.J., Cassileth, B. (2009). A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J. Cancer Res. Clin. Oncol., 135, p.1215-1221.
  • [49] Mau, J.L., Lin, H.C., Chen, C.C. (2002). Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem., 50(21), p.6072-6077.
  • [50] Gao, Y., Zhou, S.H., Huang, M., Xu, A. (2003). Antibacterial and antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromy-cetideae): a review. Int. J. Med. Mushrooms, 5, p.235-246.
  • [51] Verticka, V., Vetrickova, J. (2009). Effects of yeast-derived beta-glucan on blood cholesterol and mactophage functionality. J. Immunotoxicol., 6, p.30-35.
  • [52] Gao, Y., Lan, J., Dai, X., Ye, J., Zhou, S.H. (2004). A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoro-mycetideae) extract in patients with type II diabetes mellitus. Int. J. Med. Mushrooms, 6, p.96-107.
  • [53] Bisht, R., Bhattacharya, S., Jaliwala, Y.A. (2014). COX and LOX inhibitory potential of Abroma augusta and Desmodium gangeticum. J. Phytopharmacol., 3(3), p.168-175.
  • [54] Guerradore, C., Azevedo, T., Desouza, M., Rego, L., Dedantas, J., Silva, F., Rocha, H., Baseia, I. (2007). Antiinflammatory, antioxidant and cytotoxic actions of ß-glucan-rich extract from Geastrum saccatum mushroom. Int. Immunopharmacol., 7(9), p.1160-1169.
  • [55] Sevindik, M., Akgul, H., Akata, I., Selamoglu, Z. (2017). Geastrum pectinatum as an Alternative Antioxidant Source with some Biochemical Analysis. Medical Mycology: Open Access, 3(2), 1-4.
  • [56] Chittaragi, A., Naika, R., Ashwini, H.S., Nagaraj, K. 2013. Antibacterial Potential of Geastrum triplex Jungh. Against Plant and Human Pathogens. Int. J. PharmTech Res., 5(4), 1456-1464.

In vitro anticoagulant and antiinflammatory activities of Geastrum fimbriatum Fr., namely as Earthstar fungus

Year 2019, Volume: 6 Issue: 1, 1 - 9, 16.03.2019
https://doi.org/10.21448/ijsm.454836

Abstract

Mushrooms have great potential to be used as food and pharmaceutical sources. Most of the non-edible mushrooms contain biologically active metabolites that are functional for modern medicinal applications. Within the present study, anticoagulant and antiinflammatory activities of Geastrum fimbriatum Fr. (Syn. Geastrum sessile (Sowerby) Pouzar), a mushroom naturally grown in Turkey, were investigated. The in vitro anticoagulant activity of the ethanolic extract obtained with a soxhlet apparatus determined by activated partial thromboplastin time (APTT) and prothrombin time (PT) assays using commercial reagents. The antiinflammatory activity of the extract was determined by lipoxygenase inhibition assay. When compared with the negative control DMSO, G. fimbriatum extract exhibited significant anticoagulant effects in the APTT test that evaluates the intrinsic coagulation pathway. The ethanolic extract found to prolong the coagulation time. However, no inhibition was observed in the PT test which evaluates the extrinsic coagulation pathway, The extract showed 12.92% inhibition on the lipoxygenase enzyme activity. Overall, G. fimbriatum ethanolic extract exhibited potent antiinflammatory activity besides being a potential source of anticoagulant. Further analysis is required to evaluate the medical use of Geastrum mushrooms from a pharmaceutical point of view.

References

  • [1] Fares, A. (2013). Winter cardiovascular diseases phenomenon. N. Am. J. Med. Sci., 5, p.266-279.
  • [2] WHO – World Health Organization. Cardiovascular diseases. http://www.who.int/mediacentre/factsheets/fs317/en/ 2015. (accessed 17.03.2016).
  • [3] Aguirre, J., Borgeat, A. (2013). Drugs for Thromboprophylaxis: Unfractionated Heparin, Low Molecular Weight Heparin, Warfarin, and Fondaparinux. In: Llau JV, editor. Thromboembolism in Orthopedic Surgery. Springer, London, England, p. 53-65.
  • [4] Poulsen, B.K., Grove, E.L., Husted, S.E. (2012). New oral anticoagulants. Drugs, 72, p.1739-1753.
  • [5] García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A., Martínez, J.A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res., 58, p.537-552.
  • [6] Anilkumar, M. (2010). Ethnomedicinal plants as anti-inflammatory and analgesic agents. Ethnomedicine: A Source of Comp. Therap., p.267-293.
  • [7] Amdekar, S., Roy, P., Singh, V., Kumar, A., Singh, R., Sharma, P. (2012). Anti-inflammatory activity of Lactobacillus on carrageenan-induced paw edema in male wistar rats. Int. J. Inflam., 2012, p. 752015.
  • [8] Levick, S.P., Loch, D.C., Taylor, S.M., Janicki, J.S. (2007). Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J. Immunol., 178, p.641-646.
  • [9] Rainsford, K.D. (2007). Anti-inflammatory drugs in the 21st century. Subcell Biochem., 42, p.3-27.
  • [10] Samuelsson, B., Dahlén, S.E., Lindgren, J.Å., Rouzer, C.A., Serhan, C.N. (1987). Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science, 237, 1171-1176.
  • [11] Yedgar, S., Krimsky, M., Cohen, Y., Flower, R.J. (2007). Treatment of inflammatory diseases by selective eicosanoid inhibition: A doubleedged sword? Trends Pharmacol. Sci., 28, p.459-464.
  • [12] Czapski, G.A., Czubowicz, K., Strosznajder, R.P. (2012). Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol. Rep., 64(5), p.1179-1188. [13] Ammon, H.P.T., Annazodo, M.I., Safayhi, H., Dhawan, B.N., Scrimal, R. (1992). Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta Med., 58, p.226.
  • [14] Bensky, D., Gamble, A. (1986). Chinese Herbal Medicine: Materia Medica, 2nd edn. Seattle: Eastland Press.
  • [15] Sullivan, R., Smith, J.E., Rowan, J., 2006. Medicinal mushrooms and cancer therapy: trans-lating a traditional practice into Western medicine. Perspect Bio. Med., 49, 159-170.
  • [16] Rogers, R. (2011). The Fungal Pharmacy. The Complete Guide to Medicinal Mushrooms and Lichens of North America. North Atlantic Books, Berkeley, California.
  • [17] Thatoi, H.N., Singdevsachan, S.K. (2014). Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review. Afr. J. Biotech., 13, p.523-545.
  • [18] Sevindik, M., Akgul, H., Akata, I., Allı, H., Selamoglu, Z. (2017). Fomitopsis pinicola in Healthful Dietary Approach and their Therapeutic Potentials. Acta Alim., 46(4), p.464-469.
  • [19] Nouhra, E.R., DeToledo, D.L. (1998). The first record of Astraeus hygrometricus from Argentina. Mycol., 12, p.112-113.
  • [20] Phosri, C., Watling, R., Martín, M.P., Whalley, A.J.S. (2004). The genus Astraeus in Thailand. Mycotaxon, 89, p.453-463.
  • [21] Fangfuk, W., Petchang, R., To-anun, C., Fukuda, M., Yamada, A. (2010). Identification of Japanese Astraeus, based on morphological and phylogenetic analyses. Mycoscience, 51, p.291-299.
  • [22] Wasser, S.P., Weis, A. (1999). Medicinal properties of substances occurring in higher basidimycetes mushrooms: current perspectives. Int. J. Med. Mushrooms, 1, p.31-62.
  • [23] Guerra, D.C.M.P., Azevedo, T.C.G., DeSouza, M.C.R. (2007). Antiinflammatory, antioxidant and cytotoxic actions of 𝛽- glucan-rich extract from Geastrum saccatum mushroom. Int. Immunopharmacol., 7, p.1160-1169.
  • [24] Panda, M.K., Tayung, K. (2015). Documentation and Ethnomedical Knowledge on Wild Edible Mushrooms among Ethnic Tribes of Northern Odisha, India. Asian J. Pharma Clin. Res., 8(4), p.139-143.
  • [25] Chittaragi, A., Naika, R., Banakar, S., Vijay, K. (2013). Phytochemical and Antifungal study of different solvent extracts of Scleroderma bermudense Corker. (Sclerodermataceae). Am. J. Pharm. Tech. Res., 3, p.427-438.
  • [26] Basgedik, B., Ugur, A., Sarac, N. (2014). Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Ind. Crops Prod., 61, 526-530.
  • [27] Saraç, N., Şen, B. (2014). Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind. Crops Prod., 53, 60-64.
  • [28] Schved, J.F., Biron-Andréani, C. (2005). Hématologie: Exploration de l’hémostase. Montpellier. pp: 19.
  • [29] Dandjesso, C., Klotoa, J. R., Dougnon, T. V., Sègbo, J., Atègbo, J. M., Gbaguidi, F., Dramane, K. (2012). Phytochemistry and hemostatic properties of some medicinal plants sold as anti-hemorrhagic in Cotonou markets (Benin). Indian J. Sci. Technol., 5(8), 3105-3109.
  • [30] Ratnasary, N., Walters, M., Tsopmo, A. (2017). Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon, 3, e00351.
  • [31] Zhu, Z.Y. (1997). New concept of blood clotting. Shanghai Med. J., 2, p.115-117.
  • [32] Li, M., Jia, Z., Hu, Z., Zhang, R., Shen, T. (2008). Experimental Study on the Hemostatic Activity of the Tibetan Medicinal Herb Lamiophlomis rotata. Phytoth. Res., 22, p.759-765.
  • [33] Liu, Z., Li, N., Gao, W., Man, S., Yin, S., Liu, C. (2012). Comparative study on hemostatic, cytotoxic and hemolytic activities of different species of Paris L. J. Ethnopharmacol., 142, p.789-794.
  • [34] Lee, W., Ku, S.K., Bae, J.S. (2015). Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res., 38, p.893-903.
  • [35] Hull, R.D., Merali, T., Mills, A., Stevenson, A.L., Liang, J. (2013). Venous Thromboembolism in Elderly High-Risk Medical Patients Time Course of Events and Influence of Risk Factors. Clin. Appl. Thromb. Hemost., 19(4), p.357-362.
  • [36] John Camm, A. (2013). Managing anticoagulation for atrial fibrillation: current issues and future strategies. J. Int. Med., 273(1), p.31-41.
  • [37] Piazza, G., Nguyen, T.N., Cios, D., Labreche, M., Hohlfelder, B., Fanikos, J., Fiumara, K., Goldhaber, S.Z. (2011). Anticoagulation-associated Adverse Drug Events. Am. J. Med., 124(12), p.1136-1142.
  • [38] Alquwaizani, M., Buckley, L., Adams, C., Fanikos, J. (2013). Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Cur. Emerg. Hos. Med. Rep., 1(2), p.83-97.
  • [39] Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J., Bork, P. (2010). A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 6, p. 343-348.
  • [40] Pharma, A. Coumadin consumer medicine information. https://wwwebstgagovau/ebs/picmi/picmirepositorynsf/pdf?OpenAgent&id=CP-2010-CMI-02587-3. 2011 (accessed 18 November 2011).
  • [41] Winslow, L.C., Kroll, D.J. (1998). Herbs as medicines. Arch. Intern. Med., 158, p.2192- 2199.
  • [42] Ernst, E. (2007). Herbal medicines: balancing benefits and risks. Novartis Found Symp., 67-72, p.212-218.
  • [43] Yamamoto, S. (1992). Mammalian lipoxygenases: molecular structures and functions. Biochim. Biophys. Acta, 1128, p.117-131.
  • [44] Yahaya, Y.A., Don, M.M. (2012). Evaluation of Trametes Lactinea extracts on the inhibition of Hyaluronidase, Lipoxygenase and Xanthine Oxidase activities in vitro. J. Phy. Sci., 23, p.1-15.
  • [45] Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotech., 60(3), p.258-274.
  • [46] Harada, T., Ohno, N. Dectin-1 and GM-CSF on immunomodulating activities of fungal 6-branched 1, 3-ß-glucans. Int. J. Med. Mushrooms, 10, p.101-114.
  • [47] Cai, Y., Luo, Q., Sun, M., Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 74(17), p.2157-2184.
  • [48] Deng, G., Lim, H., Seidman, A., Fornier, M., D’Andrea, G., Wesa, K., Yeung, S., Cunningham-Rundles, S., Vickers, A.J., Cassileth, B. (2009). A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J. Cancer Res. Clin. Oncol., 135, p.1215-1221.
  • [49] Mau, J.L., Lin, H.C., Chen, C.C. (2002). Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem., 50(21), p.6072-6077.
  • [50] Gao, Y., Zhou, S.H., Huang, M., Xu, A. (2003). Antibacterial and antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromy-cetideae): a review. Int. J. Med. Mushrooms, 5, p.235-246.
  • [51] Verticka, V., Vetrickova, J. (2009). Effects of yeast-derived beta-glucan on blood cholesterol and mactophage functionality. J. Immunotoxicol., 6, p.30-35.
  • [52] Gao, Y., Lan, J., Dai, X., Ye, J., Zhou, S.H. (2004). A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoro-mycetideae) extract in patients with type II diabetes mellitus. Int. J. Med. Mushrooms, 6, p.96-107.
  • [53] Bisht, R., Bhattacharya, S., Jaliwala, Y.A. (2014). COX and LOX inhibitory potential of Abroma augusta and Desmodium gangeticum. J. Phytopharmacol., 3(3), p.168-175.
  • [54] Guerradore, C., Azevedo, T., Desouza, M., Rego, L., Dedantas, J., Silva, F., Rocha, H., Baseia, I. (2007). Antiinflammatory, antioxidant and cytotoxic actions of ß-glucan-rich extract from Geastrum saccatum mushroom. Int. Immunopharmacol., 7(9), p.1160-1169.
  • [55] Sevindik, M., Akgul, H., Akata, I., Selamoglu, Z. (2017). Geastrum pectinatum as an Alternative Antioxidant Source with some Biochemical Analysis. Medical Mycology: Open Access, 3(2), 1-4.
  • [56] Chittaragi, A., Naika, R., Ashwini, H.S., Nagaraj, K. 2013. Antibacterial Potential of Geastrum triplex Jungh. Against Plant and Human Pathogens. Int. J. PharmTech Res., 5(4), 1456-1464.
There are 55 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Nurdan Sarac 0000-0001-7676-542X

Hakan Alli 0000-0001-8781-7029

Tuba Baygar This is me 0000-0002-1238-3227

Aysel Ugur 0000-0002-5188-1106

Publication Date March 16, 2019
Submission Date August 22, 2018
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

APA Sarac, N., Alli, H., Baygar, T., Ugur, A. (2019). In vitro anticoagulant and antiinflammatory activities of Geastrum fimbriatum Fr., namely as Earthstar fungus. International Journal of Secondary Metabolite, 6(1), 1-9. https://doi.org/10.21448/ijsm.454836
International Journal of Secondary Metabolite

e-ISSN: 2148-6905