Research Article
BibTex RIS Cite

Investigation of Some Biological Activities of Extracts Centranthus longiflorus subsp. longiflorus

Year 2020, Volume: 7 Issue: 4, 253 - 265, 15.12.2020
https://doi.org/10.21448/ijsm.648072

Abstract

In this study, the effects of above and below-ground extracts of Centranthus longiflorus subsp. longiflorus plant, commonly found in Turkey, on antioxidant, antimicrobial and DNA damage were evaluated. Plant extracts were prepared by applying three different solvents (hexane, methanol and ethanol). The antimicrobial activity tests of the extracts were performed using four different standard strains and one yeast. DPPH, total phenolic content calculation and CUPRAC methods were applied for antioxidant activity studies. Additionally, the effects of plant extracts on DNA damage were investigated using pBR322 plasmid DNA. According to the data obtained, especially the below-ground hexane (MIC value:375μg/mL) extract showed more antimicrobial activity than other plant extracts, and it was found to be more effective Gram negative bacteria. The highest antioxidant activity was determined in extracts prepared with above (IC50 value of methanol extract:4.5mg/mL) and below-ground (IC50 value of methanol extract:5.7mg/mL) methanol. The above (93,9 μg GAE/mL) and below-ground (96.9 μg GAE/mL) methanol extracts were seen to have high total phenolic content. It has also been observed that above-ground hexane and methanol extracts have no effect on pBR322 plasmid DNA, but other extracts affect pBR322 plasmid DNA in the direction of degradation or deformation. Especially, the extracts of the above and below-ground ethanol had the effect of completely eliminating the open ring form. Therefore, it was concluded that this taxon could be widely used in the treatment and prevention of oxidative stress-related diseases in the future.

Supporting Institution

Amasya University

Project Number

FMP-BAP 14-073

References

  • Güner, A. (2012). Centranthus DC. In List of Turkey Plants (Vascular Pants), ed.; Aslan, S., Ekim, T., Vural, M., Babaç, M.T.; Publication of Nezahat Gökyiğit Botanic Garden and Floristic Research Society: İstanbul, Turkey, pp. 314. ISSN:978-605-60425-7-7.
  • Baytop, T. (1999). Used Medicine Plants in Turkey. In Therapy with Plant in Turkey (Past and Present). Ed.; Baytop, T.; Nobel Medicine Bookstores: İstanbul, Turkey, 975-420-021-1.
  • Rice-Evans, C., Miller, A., Paganga, G. (1997). Antioxidant Properties of Phenolic Compounds. Trends Plant Sci., 2, 152-59. https://doi.org/10.1016/SI3601385(97)01018-2
  • Rammal, H., Farhan, H., Hijazi, A., Bassal, A., Kobeissy, A., Badrtan, B. (2013). Phytochemical Screening and Antioxidant Activity of Centranthus longiflorus L. J. Nat Prod Plant Resour., 3, 29-36.
  • Wong, C.C., Li, H.B., Cheng, K.W., Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem., 97, 705-711. https://doi.org/10.1016/j.foodchem.2005.05.049
  • Sener, B., Mutlugil, A., Bingöl, F. (2008). Analysis of valepotriates in Centranthus longiflorus Stev. by reversed-phase high pressure liquid chromatography. Pharm Biol., 25, 133-136. https://doi.org/10.3109/13880208709060916
  • Demirezer, L.Ö., Güvenalp, Z., Schiewe, H.J., Strietzel, I., Harmandar, M., Zeeck, A. (1999). Iridoids from Centranthus longiflorus ssp. longiflorus. Phytochemistry, 51, 909-912. https://doi.org/10.1016/s0031-9422(99)00152-1
  • Kuruüzüm, A-Uz., Güvenalp, Z., Demirezer, L.Ö., Bergere, I., Stroch, K., Zeeck, A. (2002). 4-deoxy iridoid glycoides from Centranthus longiflorus. Phytochemistry, 61, 937-941. https://doi.org/10.1016/S0031-9422(02)00476-4
  • Hassan, E., Tayebeh, R., Samaneh, E.T. (2008). Quantification of Valerenic Acid and its derivatives in some species of Valeriana L. and Centranthus longiflorus Stev. Asian J. Plant Sci., 7, 195-200. https://doi.org/10.3923/ajps.2008.195.200
  • Makki, R., Dirani, Z. E., Rammal, H., Sweidan, A., Al Bazzal, A., Chokr, A. (2015). Antibacterial Activity of Two Lebanese Plants: Eryngium creticum and Centranthus longiflorus. J. Nanomed. Nanotechnol., 6, 315-320. https://doi.org/10.4172/2157-7439.1000315
  • Aliyazıcıoğlu, R., Korkmaz, N., Akkaya, S., Sener, S.Ö., Badem, M., Karaoğlu, S.A., Eyüpoğlu, O.E. (2016). Phenolic components, antioxidant and antimicrobial activities of Centranthus longiflorus L. Int. J. Adv. Res. Biol. Sci., 3, 80-87. https://doi.org/10.22192/ijarbs.2016.03.10.012
  • Cowan, M.M. (1999). Plant Products as Antimicrobial Agent. Clin microbiol Rev., 12, 564-582. https://doi.org/10.1128/CMR.12.4.564
  • Okunade, A.L., Elvin-Lewis, M.P.F. (2004). Natural Antimycobacterial Metabolites: Current Status. Phytochemistry, 65, 1017-1032. https://doi.org/10.1016/j.phytochem.2004.02.013
  • Taguri, T., Tanaka, T., Kouno, I. (2004). Antimicrobial Activity of 10 Different Plant Polyphenol Against Bacteria Causing Food-Borne Disease. Biol Pharm Bull., 27, 1965-1969. https://doi.org/10.1248/bpb.27.1965
  • Cheesman, L., Nair, J.J., Van Staden, J. (2012). Antibacterial Activity of Crinane Alkaloids From Boophone disticha (Amaryllidaceae). J Ethnopharmacol., 140, 405-408. https://doi.org/10.1016/j.jep.2012.01.037
  • Topal, Y. (2013). Investigation of Antioxidant and Antimicrobial Effects of Phenolic Compounds of Some Species of Alchemilla L. (Rosaceae) genus. Master thesis, Bingöl Üniversity, Institute of Science and Technology, Bingöl, 2013.
  • Kawanishi, S., Hiraku, Y. (2004). Amplification of anticancer drug-induced DNA damage and apoptosis by DNA-binding compounds. Curr Med Chem-Anticancer Agents, 4(5), 415-419. https://doi.org/10.2174/1568011043352867
  • Richardson, I.B.K. (1972). Centranthus DC. In Flora of Turkey and The East Aegean Islands, 4th ed.; Davis, H.P., Chamberlain, D.F., Phil, D., Victoria, A., Matthews, B.; Edinburgh University Press: Edinburg, England, 1972; Volume 4, pp. 558-559; ISSN:0852242085
  • Mammadov, R., Ili, P., Vaizoğullar, H.E., Makasçı, AA. (2011). Antioxidant Activity and Total Phenolic Content of Gagea fibrosa and Romulea ramiflora. Iran J. Chem. Chem. Eng., 30, 57-62.
  • Singleton, V.L., Rossi, J.A. (1965). Colimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Vitic., 16, 144-158.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol., 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). A novel total antioxidant capacity index for dietary polyphenols, Vitamin C and E, using their cupric ion reducing capability in the presence of neocuroine: CUPRAC method. J. Agric. Food Chem., 52, 7970- 7981. https://doi.org/10.1021/jf048741x
  • Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother., 48, 5-16. https://doi.org/10.1093/jac/48.suppl._1.5
  • Babu, J., Pramod, W.R., George, T., Nitisha, S. (2007). Standard Review Cold-active microbial Lipases: a versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev., 2, 39-48.
  • Wink, M., Ashour, M.L., El-Readi, M.Z. (2012). Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxicand Antimicrobial Agents. Front Microbiol., 3, 130. https://doi.org/10.3389/fmicb.2012.00130
  • Law, P.C., Auyeung, K.K., Chan, L.Y., Ko, J.K. (2012). Astragalus Saponins Downregulate Vascular Endothelial Growth Factor Under Cobalt Chloride-Stimulated Hypoxia in Colon Cancer Cells. BMC Complement Altern Med., 12, 160. https://doi.org/10.1186/1472-6882-12-160
  • Zamora-Ros, R., Agudo, A., Luján-Barroso, L., Romieu, I., Ferrari, P., Knaze, V., Sánchez-Cantalejo, E., et al. (2012). Dietary Flavonoid and Lignan Intake and Gastric Adenocarcinoma Risk in The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr., 96, 1398-1408. https://doi.org/10.3945/ajcn.112.037358
  • Süleyman, H., Güvenalp, Z., Kızılkaya, M., Demirezer, Ö.L. (2007). Sedative effect of Centranthus longiflorus ssp. longiflorus in rats and the influence of adrenalectomy on its effect. Yakugaku Zasshi., 127, 1263-1265. https://doi.org/10.1248/yakushi.127.1263.
  • Hassan, R., Hussein, F., Akram, H., Ali, B., Ahmed, K., Bassam, B. (2013). Phytochemical Screening and Antioxidant Activity of Centranthus longiflorus. L. J. Nat. Prod. Plant Resour., 3, 29-36.
  • Yen, G.C., Wu, S.C., Duh, P.D. (1996). Extraction and Identification of Antioxidant Components from The Leaves of Mulberry (Morus alba L.). J. Agric. Food Chem., 44, 1687-1690. https://doi.org/10.1021/jf9503725
  • Yılmaz, A., Yıldız, S., Tabbouche, S., Kılıç, A.O., Can, Z. (2016) Total Phenolic Content, Antioxidant and Antimicrobial Properties of Pleurotos ostreatus Grown on Lime (Tilia tomentosa) Leaves. Hacettepe J. Bio and Chem, 44, 119-124. https://doi.org/10.15671/HJBC.20184417585
  • Zengin, G., Nithiyanantham, S., Locatelli, M., Ceylan, R., Uysal, S., Aktumsek, A., Palaniswamy, K., Maskovic, P. (2016). Screening of In vitro Antioxidant and Enzyme Inhibitory Activities of Different Extracts from Two Uninvestigated Wild Plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur. J. Integr., 8, 286-292. https://doi.org/10.1016/j.eujim.2015.12.004
  • Turan, M., Mammadov, R. (2018). Antioxidant, Antimicrobial, Cytotoxic, Larvicidal and Anthelmintic Activities and Phenolic Contents of Cyclamen alpinum. Pharmacol Pharm., 9, 100-116. https://doi.org/10.4236/pp.2018.94008
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicryllhydrazyl (dpph) for estimating antioxidant activity. Songklanakarin J. Sci Technol., 26, 211-219.
  • Balunas, M., Douglaskinghorn, AD. (2005). Drug discovery from medicinal plants. Life Sci., 78, 431-441. https://doi.org/10.1016/j.lfs.2005.09.012
  • Çoban, T., Saltan, ÇG., Sever, B., İşcan, M. (2003). Antioxidant activities of plants used inTraditional Medicine in Turkey. Pharm. Biol. 41, 608-613. https://doi.org/10.1080/13880200390501974
  • Hasanaki, Y., Ogawar, S., Fukui, S. (1994). The correlation between active oxygen species and antioxidative effects of flavonoids. Free Radic Biol Med., 16, 845-850. https://doi.org/10.1016/0891-5849(94)90202-x
  • Sanz, MJ., Ferrandiz, M., Cejudo, M., Terencio, MC., Gil, B., Bustos, G., Ubeda, A., Gunasegara, R., Alcanaz, MJ. (1994). Influence of a series of natural flavonoids on free-radical generating systems and oxidative stress. Xenobiotica, 24, 689-699. https://doi.org/10.3109/00498259409043270
  • Sağlam, G., Kandemir, N. (2020). Comparison of Biological and Antioxidant Activities of Above and Below-Ground Extracts of Endemic Heliotropium samolifolium subsp. erzurumicum. KSU J. Agric. Nat., 23, 1054-1063. https://doi.org/10.18016/ksutarimdoğa.vi.672571
  • Emaduldeen, A. (2014). Investigation of Biological Activities of Iris kirkwoodii. Master Thesis, Gaziantep University, Institute of Science and Technology, Gaziantep, 2014.
  • Azmaz, M., Aksoy, Ö.K., Katılmış, Y., Mammadov, R. (2020). Investigation of the Antioxidant Activity and Phenolic Compounds of Andricus quercustozae Gall and Host Plant (Quercus infectoria). Int. J. Second. Metab., 7, 77-87. https://doi.org/10.21448/ijsm.674930
  • Makki, R., Rammal, H., Farhan, H., Nasser, M., Dirani, El Z., Hijazi, A. (2015). The antioxidant and anti-tumor activity of the Lebanese Centranthus longiflorus L. World J. Pharm. Sci., 3, 347-354.
  • Büyükokuroğlu, M.E., Demirezer, L.O., Güvenalp, Z. (2002). Sedative, Anticonvulsant and Behaviour Modifying Effects of Centranthus longiflorus ssp. longiflorus: A Study of Comparison to Diazepam. Pharmazie, 57, 559-561.
  • Orhan, E. (2015). Investigation of Biological Activities of Endemic Iris galatica. Master Thesis, Gaziantep University, Institute of Science and Technology, Gaziantep, 2015.
  • Hundur, Ö.D., İdil, Ö., Kandemir, N., Gül, M., Konar, V. (2018). Phytochemical Screening and In vitro Antioxidant, Antimicrobial Activity and DNA Interaction of Leucojum aestivum. Fresen Environ Bull., 27, 6704-6710.
  • Gül, M., Öztürk, Çalı, I., Cansaran, A., Idil, O., Kulu, I., Çelikoglu, U. (2017). Evaluation of Phytochemical Content, Antioxidant, Antimicrobial Activity and DNA Cleavage Effect of Endemic Linaria corifolia Desf. (Plantaginaceae). Cogent Chem., 3, 1-14. https://doi.org/10.1080/23312009.2017.1337293

Investigation of Some Biological Activities of Extracts Centranthus longiflorus subsp. longiflorus

Year 2020, Volume: 7 Issue: 4, 253 - 265, 15.12.2020
https://doi.org/10.21448/ijsm.648072

Abstract

In this study, the effects of above and below-ground extracts of Centranthus longiflorus subsp. longiflorus plant, commonly found in Turkey, on antioxidant, antimicrobial and DNA damage were evaluated. Plant extracts were prepared by applying three different solvents (hexane, methanol and ethanol). The antimicrobial activity tests of the extracts were performed using four different standard strains and one yeast. DPPH, total phenolic content calculation and CUPRAC methods were applied for antioxidant activity studies. Additionally, the effects of plant extracts on DNA damage were investigated using pBR322 plasmid DNA. According to the data obtained, especially the below-ground hexane (MIC value:375μg/mL) extract showed more antimicrobial activity than other plant extracts, and it was found to be more effective Gram negative bacteria. The highest antioxidant activity was determined in extracts prepared with above (IC50 value of methanol extract:4.5mg/mL) and below-ground (IC50 value of methanol extract:5.7mg/mL) methanol. The above (93,9 μg GAE/mL) and below-ground (96.9 μg GAE/mL) methanol extracts were seen to have high total phenolic content. It has also been observed that above-ground hexane and methanol extracts have no effect on pBR322 plasmid DNA, but other extracts affect pBR322 plasmid DNA in the direction of degradation or deformation. Especially, the extracts of the above and below-ground ethanol had the effect of completely eliminating the open ring form. Therefore, it was concluded that this taxon could be widely used in the treatment and prevention of oxidative stress-related diseases in the future.

Project Number

FMP-BAP 14-073

References

  • Güner, A. (2012). Centranthus DC. In List of Turkey Plants (Vascular Pants), ed.; Aslan, S., Ekim, T., Vural, M., Babaç, M.T.; Publication of Nezahat Gökyiğit Botanic Garden and Floristic Research Society: İstanbul, Turkey, pp. 314. ISSN:978-605-60425-7-7.
  • Baytop, T. (1999). Used Medicine Plants in Turkey. In Therapy with Plant in Turkey (Past and Present). Ed.; Baytop, T.; Nobel Medicine Bookstores: İstanbul, Turkey, 975-420-021-1.
  • Rice-Evans, C., Miller, A., Paganga, G. (1997). Antioxidant Properties of Phenolic Compounds. Trends Plant Sci., 2, 152-59. https://doi.org/10.1016/SI3601385(97)01018-2
  • Rammal, H., Farhan, H., Hijazi, A., Bassal, A., Kobeissy, A., Badrtan, B. (2013). Phytochemical Screening and Antioxidant Activity of Centranthus longiflorus L. J. Nat Prod Plant Resour., 3, 29-36.
  • Wong, C.C., Li, H.B., Cheng, K.W., Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem., 97, 705-711. https://doi.org/10.1016/j.foodchem.2005.05.049
  • Sener, B., Mutlugil, A., Bingöl, F. (2008). Analysis of valepotriates in Centranthus longiflorus Stev. by reversed-phase high pressure liquid chromatography. Pharm Biol., 25, 133-136. https://doi.org/10.3109/13880208709060916
  • Demirezer, L.Ö., Güvenalp, Z., Schiewe, H.J., Strietzel, I., Harmandar, M., Zeeck, A. (1999). Iridoids from Centranthus longiflorus ssp. longiflorus. Phytochemistry, 51, 909-912. https://doi.org/10.1016/s0031-9422(99)00152-1
  • Kuruüzüm, A-Uz., Güvenalp, Z., Demirezer, L.Ö., Bergere, I., Stroch, K., Zeeck, A. (2002). 4-deoxy iridoid glycoides from Centranthus longiflorus. Phytochemistry, 61, 937-941. https://doi.org/10.1016/S0031-9422(02)00476-4
  • Hassan, E., Tayebeh, R., Samaneh, E.T. (2008). Quantification of Valerenic Acid and its derivatives in some species of Valeriana L. and Centranthus longiflorus Stev. Asian J. Plant Sci., 7, 195-200. https://doi.org/10.3923/ajps.2008.195.200
  • Makki, R., Dirani, Z. E., Rammal, H., Sweidan, A., Al Bazzal, A., Chokr, A. (2015). Antibacterial Activity of Two Lebanese Plants: Eryngium creticum and Centranthus longiflorus. J. Nanomed. Nanotechnol., 6, 315-320. https://doi.org/10.4172/2157-7439.1000315
  • Aliyazıcıoğlu, R., Korkmaz, N., Akkaya, S., Sener, S.Ö., Badem, M., Karaoğlu, S.A., Eyüpoğlu, O.E. (2016). Phenolic components, antioxidant and antimicrobial activities of Centranthus longiflorus L. Int. J. Adv. Res. Biol. Sci., 3, 80-87. https://doi.org/10.22192/ijarbs.2016.03.10.012
  • Cowan, M.M. (1999). Plant Products as Antimicrobial Agent. Clin microbiol Rev., 12, 564-582. https://doi.org/10.1128/CMR.12.4.564
  • Okunade, A.L., Elvin-Lewis, M.P.F. (2004). Natural Antimycobacterial Metabolites: Current Status. Phytochemistry, 65, 1017-1032. https://doi.org/10.1016/j.phytochem.2004.02.013
  • Taguri, T., Tanaka, T., Kouno, I. (2004). Antimicrobial Activity of 10 Different Plant Polyphenol Against Bacteria Causing Food-Borne Disease. Biol Pharm Bull., 27, 1965-1969. https://doi.org/10.1248/bpb.27.1965
  • Cheesman, L., Nair, J.J., Van Staden, J. (2012). Antibacterial Activity of Crinane Alkaloids From Boophone disticha (Amaryllidaceae). J Ethnopharmacol., 140, 405-408. https://doi.org/10.1016/j.jep.2012.01.037
  • Topal, Y. (2013). Investigation of Antioxidant and Antimicrobial Effects of Phenolic Compounds of Some Species of Alchemilla L. (Rosaceae) genus. Master thesis, Bingöl Üniversity, Institute of Science and Technology, Bingöl, 2013.
  • Kawanishi, S., Hiraku, Y. (2004). Amplification of anticancer drug-induced DNA damage and apoptosis by DNA-binding compounds. Curr Med Chem-Anticancer Agents, 4(5), 415-419. https://doi.org/10.2174/1568011043352867
  • Richardson, I.B.K. (1972). Centranthus DC. In Flora of Turkey and The East Aegean Islands, 4th ed.; Davis, H.P., Chamberlain, D.F., Phil, D., Victoria, A., Matthews, B.; Edinburgh University Press: Edinburg, England, 1972; Volume 4, pp. 558-559; ISSN:0852242085
  • Mammadov, R., Ili, P., Vaizoğullar, H.E., Makasçı, AA. (2011). Antioxidant Activity and Total Phenolic Content of Gagea fibrosa and Romulea ramiflora. Iran J. Chem. Chem. Eng., 30, 57-62.
  • Singleton, V.L., Rossi, J.A. (1965). Colimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Vitic., 16, 144-158.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol., 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). A novel total antioxidant capacity index for dietary polyphenols, Vitamin C and E, using their cupric ion reducing capability in the presence of neocuroine: CUPRAC method. J. Agric. Food Chem., 52, 7970- 7981. https://doi.org/10.1021/jf048741x
  • Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother., 48, 5-16. https://doi.org/10.1093/jac/48.suppl._1.5
  • Babu, J., Pramod, W.R., George, T., Nitisha, S. (2007). Standard Review Cold-active microbial Lipases: a versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev., 2, 39-48.
  • Wink, M., Ashour, M.L., El-Readi, M.Z. (2012). Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxicand Antimicrobial Agents. Front Microbiol., 3, 130. https://doi.org/10.3389/fmicb.2012.00130
  • Law, P.C., Auyeung, K.K., Chan, L.Y., Ko, J.K. (2012). Astragalus Saponins Downregulate Vascular Endothelial Growth Factor Under Cobalt Chloride-Stimulated Hypoxia in Colon Cancer Cells. BMC Complement Altern Med., 12, 160. https://doi.org/10.1186/1472-6882-12-160
  • Zamora-Ros, R., Agudo, A., Luján-Barroso, L., Romieu, I., Ferrari, P., Knaze, V., Sánchez-Cantalejo, E., et al. (2012). Dietary Flavonoid and Lignan Intake and Gastric Adenocarcinoma Risk in The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr., 96, 1398-1408. https://doi.org/10.3945/ajcn.112.037358
  • Süleyman, H., Güvenalp, Z., Kızılkaya, M., Demirezer, Ö.L. (2007). Sedative effect of Centranthus longiflorus ssp. longiflorus in rats and the influence of adrenalectomy on its effect. Yakugaku Zasshi., 127, 1263-1265. https://doi.org/10.1248/yakushi.127.1263.
  • Hassan, R., Hussein, F., Akram, H., Ali, B., Ahmed, K., Bassam, B. (2013). Phytochemical Screening and Antioxidant Activity of Centranthus longiflorus. L. J. Nat. Prod. Plant Resour., 3, 29-36.
  • Yen, G.C., Wu, S.C., Duh, P.D. (1996). Extraction and Identification of Antioxidant Components from The Leaves of Mulberry (Morus alba L.). J. Agric. Food Chem., 44, 1687-1690. https://doi.org/10.1021/jf9503725
  • Yılmaz, A., Yıldız, S., Tabbouche, S., Kılıç, A.O., Can, Z. (2016) Total Phenolic Content, Antioxidant and Antimicrobial Properties of Pleurotos ostreatus Grown on Lime (Tilia tomentosa) Leaves. Hacettepe J. Bio and Chem, 44, 119-124. https://doi.org/10.15671/HJBC.20184417585
  • Zengin, G., Nithiyanantham, S., Locatelli, M., Ceylan, R., Uysal, S., Aktumsek, A., Palaniswamy, K., Maskovic, P. (2016). Screening of In vitro Antioxidant and Enzyme Inhibitory Activities of Different Extracts from Two Uninvestigated Wild Plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur. J. Integr., 8, 286-292. https://doi.org/10.1016/j.eujim.2015.12.004
  • Turan, M., Mammadov, R. (2018). Antioxidant, Antimicrobial, Cytotoxic, Larvicidal and Anthelmintic Activities and Phenolic Contents of Cyclamen alpinum. Pharmacol Pharm., 9, 100-116. https://doi.org/10.4236/pp.2018.94008
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicryllhydrazyl (dpph) for estimating antioxidant activity. Songklanakarin J. Sci Technol., 26, 211-219.
  • Balunas, M., Douglaskinghorn, AD. (2005). Drug discovery from medicinal plants. Life Sci., 78, 431-441. https://doi.org/10.1016/j.lfs.2005.09.012
  • Çoban, T., Saltan, ÇG., Sever, B., İşcan, M. (2003). Antioxidant activities of plants used inTraditional Medicine in Turkey. Pharm. Biol. 41, 608-613. https://doi.org/10.1080/13880200390501974
  • Hasanaki, Y., Ogawar, S., Fukui, S. (1994). The correlation between active oxygen species and antioxidative effects of flavonoids. Free Radic Biol Med., 16, 845-850. https://doi.org/10.1016/0891-5849(94)90202-x
  • Sanz, MJ., Ferrandiz, M., Cejudo, M., Terencio, MC., Gil, B., Bustos, G., Ubeda, A., Gunasegara, R., Alcanaz, MJ. (1994). Influence of a series of natural flavonoids on free-radical generating systems and oxidative stress. Xenobiotica, 24, 689-699. https://doi.org/10.3109/00498259409043270
  • Sağlam, G., Kandemir, N. (2020). Comparison of Biological and Antioxidant Activities of Above and Below-Ground Extracts of Endemic Heliotropium samolifolium subsp. erzurumicum. KSU J. Agric. Nat., 23, 1054-1063. https://doi.org/10.18016/ksutarimdoğa.vi.672571
  • Emaduldeen, A. (2014). Investigation of Biological Activities of Iris kirkwoodii. Master Thesis, Gaziantep University, Institute of Science and Technology, Gaziantep, 2014.
  • Azmaz, M., Aksoy, Ö.K., Katılmış, Y., Mammadov, R. (2020). Investigation of the Antioxidant Activity and Phenolic Compounds of Andricus quercustozae Gall and Host Plant (Quercus infectoria). Int. J. Second. Metab., 7, 77-87. https://doi.org/10.21448/ijsm.674930
  • Makki, R., Rammal, H., Farhan, H., Nasser, M., Dirani, El Z., Hijazi, A. (2015). The antioxidant and anti-tumor activity of the Lebanese Centranthus longiflorus L. World J. Pharm. Sci., 3, 347-354.
  • Büyükokuroğlu, M.E., Demirezer, L.O., Güvenalp, Z. (2002). Sedative, Anticonvulsant and Behaviour Modifying Effects of Centranthus longiflorus ssp. longiflorus: A Study of Comparison to Diazepam. Pharmazie, 57, 559-561.
  • Orhan, E. (2015). Investigation of Biological Activities of Endemic Iris galatica. Master Thesis, Gaziantep University, Institute of Science and Technology, Gaziantep, 2015.
  • Hundur, Ö.D., İdil, Ö., Kandemir, N., Gül, M., Konar, V. (2018). Phytochemical Screening and In vitro Antioxidant, Antimicrobial Activity and DNA Interaction of Leucojum aestivum. Fresen Environ Bull., 27, 6704-6710.
  • Gül, M., Öztürk, Çalı, I., Cansaran, A., Idil, O., Kulu, I., Çelikoglu, U. (2017). Evaluation of Phytochemical Content, Antioxidant, Antimicrobial Activity and DNA Cleavage Effect of Endemic Linaria corifolia Desf. (Plantaginaceae). Cogent Chem., 3, 1-14. https://doi.org/10.1080/23312009.2017.1337293
There are 46 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Elif Ayar This is me 0000-0001-9281-1545

Nezahat Kandemir 0000-0002-5428-4139

Dr. Şevket Kandemir 0000-0001-6781-0057

Umut Çelikoğlu 0000-0003-0995-8154

Önder İdil 0000-0003-1744-4006

Project Number FMP-BAP 14-073
Publication Date December 15, 2020
Submission Date November 18, 2019
Published in Issue Year 2020 Volume: 7 Issue: 4

Cite

APA Ayar, E., Kandemir, N., Kandemir, D. Ş., Çelikoğlu, U., et al. (2020). Investigation of Some Biological Activities of Extracts Centranthus longiflorus subsp. longiflorus. International Journal of Secondary Metabolite, 7(4), 253-265. https://doi.org/10.21448/ijsm.648072
International Journal of Secondary Metabolite

e-ISSN: 2148-6905