Research Article
BibTex RIS Cite

In-vitro anti-diabetic, anti-Alzheimer, anti-tyrosinase, antioxidant activities of selected coumarin and dihydroisocoumarin derivatives

Year 2023, Volume: 10 Issue: 3, 361 - 369, 27.08.2023
https://doi.org/10.21448/ijsm.1196712

Abstract

Benzo-α-pyrone structured coumarin derivatives are secondary metabolites first obtained from Coumarouna odorata in 1822. Coumarin and its structural isomer dihydroisocoumarin derivatives are found in many different sources in nature. Several different bioactivities of these compounds have been reported. In this study, preliminary activity screening and comparison of four purchased coumarin derivatives (esculetin, esculin monohydrate, umbelliferon, scoparone) and four previously isolated 3-phenyl-3,4-dihydroisocoumarin derivatives (thunberginol C, scorzocreticoside I, scorzocreticoside II, scorzopygmaecoside) from a medicinal plant were carried out by in-vitro methods. α-Glucosidase, acetylcholinesterase, butyrylcholinesterase, tyrosinase inhibitor activities and antioxidant potentials of the compounds were evaluated. Consequently, thunberginol C (free – not glycosylated form of 3,4-dihydroisocoumarin structure) showed better potential in all enzyme inhibitory activities compared to coumarin structure. Particularly, α-glucosidase inhibitory activity of this compound with a very low IC50 value (94.76±2.98 µM) compared to standard acarbose (1036.2±2.70 µM) should be noted. Glycosylation and/or methoxy substitution of 3,4-dihydroisocoumarin structure resulted a significant decrease in all tested enzyme inhibitory activities. The structures of esculin MH, umbelliferone, scoparone, scorzocreticoside I, and scorzopygmaeceoside might be considered in further synthetic studies as selective acetylcholinesterase inhibitors. Thunberginol C has a promising potential in tyrosinase inhibitory activity. Esculetin and thunberginol C showed the best results with high potentials in antioxidant activity via 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radical decolorization, and cupric ion reducing antioxidant capacity assays compared to the standards.

References

  • Adhami, H.-R., Fitz, V., Lubich, A., Kaehlig, H., Zehl, M., & Krenn, L. (2014). Acetylcholinesterase inhibitors from galbanum, the oleo gum-resin of Ferula gummosa Boiss. Phytochemistry Letters, 10, lxxxii lxxxvii. https://doi.org/10.1016/j.phytol.2014.08.023
  • Ali, M.Y., Jannat, S., Jung, H.A., Choi, R.J., Roy, A., & Choi, J.S. (2016). Anti-Alzheimer's disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pacific Journal of Tropical Medicine, 9(2), 103-111. https://doi.org/10.1016/j.apjtm.2016.01.014
  • Anand, P., Singh, B., & Singh, N. (2012). A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 20(3), 1175-1180. https://doi.org/10.1016/j.bmc.2011.12.042
  • Apak, R., Güçlü, K., Ozyürek, M., & Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x
  • Blois, M.S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Bonesi, M., Xiao, J., Tundis, R., Aiello, F., Sicari, V., & Loizzo, M.R. (2019). Advances in the Tyrosinase Inhibitors from Plant Source. Current Medicinal Chemistry, 26(18), 3279-3299. https://doi.org/10.2174/0929867325666180522091311
  • Braca, A., Bader, A., & De Tommasi, N. (2012). Chapter 7 - Plant and Fungi 3,4-Dihydroisocoumarins: Structures, Biological Activity, and Taxonomic Relationships. In R. Atta ur (Ed.), Studies in Natural Products Chemistry (Vol. 37, pp. 191-215). Elsevier. https://doi.org/10.1016/B978-0-444-59514-0.00007-9
  • Bruneton, J. (1995). Pharmacognosy, phytochemistry, medicinal plants. Lavoisier publishing.
  • Çiçek, S.S., Vitalini, S., & Zidorn, C. (2018). Natural Phenyldihydroisocoumarins: Sources, Chemistry and Bioactivity. Natural Product Communications, 13(3), https://doi.org/10.1177/1934578X1801300306
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Evans, W.C., & Evans, D. (2009). Chapter 21 - Phenols and phenolic glycosides. In W. C. Evans & D. Evans (Eds.), Trease and Evans' Pharmacognosy (Sixteenth Edition) (pp. 219-262). W.B. Saunders. https://doi.org/10.1016/B978-0-7020-2933-2.00021-6
  • Francis, P.T., Ramírez, M.J., & Lai, M.K. (2010). Neurochemical basis for symptomatic treatment of Alzheimer's disease. Neuropharmacology, 59(4), 221 229. https://doi.org/10.1016/j.neuropharm.2010.02.010
  • Garcia-Molina, M.o.t.S., Munoz-Munoz, J.L., Garcia-Molina, F., Rodriguez-Lopez, J.N., & Garcia-Canovas, F. (2013). Study of Umbelliferone Hydroxylation to Esculetin Catalyzed by Polyphenol Oxidase. Biological and Pharmaceutical Bulletin, 36(7), 1140-1145. https://doi.org/10.1248/bpb.b13-00119
  • Hearing, V.J., & Jiménez, M. (1987). Mammalian tyrosinase—The critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19(12), 1141-1147. https://doi.org/10.1016/0020-711X(87)90095-4
  • Hwang, J., Youn, K., Lim, G., Lee, J., Kim, D.H., & Jun, M. (2021). Discovery of Natural Inhibitors of Cholinesterases from Hydrangea: In Vitro and In Silico Approaches. Nutrients, 13(1), 254. https://doi.org/10.3390/nu13010254
  • Karakaya, S., Gözcü, S., Güvenalp, Z., Özbek, H., Yuca, H., Dursunoğlu, B., Kazaz, C., & Kılıç, C.S. (2018). The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharmaceutical Biology, 56(1), 18-24. https://doi.org/10.1080/13880209.2017.1414857
  • Kontogiorgis, C., Detsi, A., & Hadjipavlou-Litina, D. (2012). Coumarin-based drugs: a patent review (2008 – present). Expert Opinion on Therapeutic Patents, 22(4), 437-454. https://doi.org/10.1517/13543776.2012.678835
  • Lane, R.M., Potkin, S.G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. International Journal of Neuropsychopharmacology, 9(1), 101-124. https://doi.org/10.1017/s1461145705005833
  • Masamoto, Y., Ando, H., Murata, Y., Shimoishi, Y., Tada, M., & Takahata, K. (2003). Mushroom Tyrosinase Inhibitory Activity of Esculetin Isolated from Seeds of Euphorbia lathyris L. Bioscience, Biotechnology, and Biochemistry, 67(3), 631-634. https://doi.org/10.1271/bbb.67.631
  • Maurya, A.K., Mulpuru, V., & Mishra, N. (2020). Discovery of Novel Coumarin Analogs against the α-Glucosidase Protein Target of Diabetes Mellitus: Pharmacophore-Based QSAR, Docking, and Molecular Dynamics Simulation Studies. ACS Omega, 5(50), 32234-32249. https://doi.org/10.1021/acsomega.0c03871
  • Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223 232. https://doi.org/10.1016/j.bfopcu.2017.05.001
  • Munoz-Munoz, J.L., Garcia-Molina, F., Varon, R., Rodriguez-Lopez, J.N., Garcia-Canovas, F., & Tudela, J. (2007). Kinetic Characterization of the Oxidation of Esculetin by Polyphenol Oxidase and Peroxidase. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1271/bbb.60431
  • Nurul Islam, M., Jung, H.A., Sohn, H.S., Kim, H.M., & Choi, J.S. (2013). Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Archives of Pharmacal Research, 36(5), 542-552. https://doi.org/10.1007/s12272-013-0069-7
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9/10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Saddiqa, A., Usman, M., & ÇAkmak, O. (2017). Isocoumarins and 3,4-dihydroisocoumarins, amazing natural products: a review. Turkish Journal of Chemistry, 41, 153-178. https://doi.org/10.3906/kim-1604-66
  • Saeed, A. (2016). Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. European Journal of Medicinal Chemistry, 116, 290-317. https://doi.org/10.1016/j.ejmech.2016.03.025
  • Sen, S., & Chakraborty, R. (2011). The Role of Antioxidants in Human Health. In Oxidative Stress: Diagnostics, Prevention, and Therapy (Vol. 1083, pp. 1-37). American Chemical Society. https://doi.org/doi:10.1021/bk-2011-1083.ch001
  • Srikrishna, D., Godugu, C., & Dubey, P.K. (2018). A Review on Pharmacological Properties of Coumarins. Mini Reviews in Medicinal Chemistry, 18(2), 113 141. https://doi.org/10.2174/1389557516666160801094919
  • Şahin, H., Sarı, A., Özsoy, N., & Özbek Çelik, B. (2020a). Phenolic compounds and bioactivity of Scorzonera pygmaea Sibth. & Sm. aerial parts: In vitro antioxidant, anti-inflammatory and antimicrobial activities. İstanbul Journal of Pharmacy, 50(3). https://doi.org/10.26650/IstanbulJPharm.2020.0052
  • Şahin, H., Sarı, A., Özsoy, N., Özbek Çelik, B., & Koyuncu, O. (2020b). Two new phenolic compounds and some biological activities of Scorzonera pygmaea Sibth. & Sm. subaerial parts. Natural Product Research, 34(5), 621 628. https://doi.org/10.1080/14786419.2018.1493585
  • Trinh, B.T.D., Staerk, D., & Jäger, A.K. (2016). Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology, 186, 189 195. https://doi.org/10.1016/j.jep.2016.03.060
  • Venkata Sairam, K., M. Gurupadayya, B., S. Chandan, R., K. Nagesha, D., & Vishwanathan, B. (2016). A Review on Chemical Profile of Coumarins and their Therapeutic Role in the Treatment of Cancer. Current Drug Delivery, 13(2), 186 201. https://www.ingentaconnect.com/content/ben/cdd/2016/00000013/00000002/art00005
  • Witaicenis, A., Seito, L.N., da Silveira Chagas, A., de Almeida, L.D., Luchini, A.C., Rodrigues-Orsi, P., Cestari, S.H., & Di Stasi, L.C. (2014). Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine, 21(3), 240-246. https://doi.org/10.1016/j.phymed.2013.09.001
  • Wu, C.-R., Huang, M.-Y., Lin, Y.-T., Ju, H.-Y., & Ching, H. (2007). Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chemistry, 104(4), 1464-1471. https://doi.org/10.1016/j.foodchem.2007.02.023
  • Yıldız, M., Bingul, M., Zorlu, Y., Saglam, M.F., Boga, M., Temel, M., Koca, M.S., Kandemir, H., & Sengul, I.F. (2022). Dimethoxyindoles based thiosemicarbazones as multi-target agents; synthesis, crystal interactions, biological activity and molecular modeling. Bioorganic Chemistry, 120, 105647. https://doi.org/10.1016/j.bioorg.2022.105647
  • Zidorn, C., Lohwasser, U., Pschorr, S., Salvenmoser, D., Ongania, K.-H., Ellmerer, E.P., Boerner, A., & Stuppner, H. (2005). Bibenzyls and dihydroisocoumarins from white salsify (Tragopogon porrifolius subsp. porrifolius). Phytochemistry, 66(14), 1691-1697. https://doi.org/10.1016/j.phytochem.2005.05.004

In-vitro anti-diabetic, anti-Alzheimer, anti-tyrosinase, antioxidant activities of selected coumarin and dihydroisocoumarin derivatives

Year 2023, Volume: 10 Issue: 3, 361 - 369, 27.08.2023
https://doi.org/10.21448/ijsm.1196712

Abstract

Benzo-α-pyrone structured coumarin derivatives are secondary metabolites first obtained from Coumarouna odorata in 1822. Coumarin and its structural isomer dihydroisocoumarin derivatives are found in many different sources in nature. Several different bioactivities of these compounds have been reported. In this study, preliminary activity screening and comparison of four purchased coumarin derivatives (esculetin, esculin monohydrate, umbelliferon, scoparone) and four previously isolated 3-phenyl-3,4-dihydroisocoumarin derivatives (thunberginol C, scorzocreticoside I, scorzocreticoside II, scorzopygmaecoside) from a medicinal plant were carried out by in-vitro methods. α-Glucosidase, acetylcholinesterase, butyrylcholinesterase, tyrosinase inhibitor activities and antioxidant potentials of the compounds were evaluated. Consequently, thunberginol C (free – not glycosylated form of 3,4-dihydroisocoumarin structure) showed better potential in all enzyme inhibitory activities compared to coumarin structure. Particularly, α-glucosidase inhibitory activity of this compound with a very low IC50 value (94.76±2.98 µM) compared to standard acarbose (1036.2±2.70 µM) should be noted. Glycosylation and/or methoxy substitution of 3,4-dihydroisocoumarin structure resulted a significant decrease in all tested enzyme inhibitory activities. The structures of esculin MH, umbelliferone, scoparone, scorzocreticoside I, and scorzopygmaeceoside might be considered in further synthetic studies as selective acetylcholinesterase inhibitors. Thunberginol C has a promising potential in tyrosinase inhibitory activity. Esculetin and thunberginol C showed the best results with high potentials in antioxidant activity via 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radical decolorization, and cupric ion reducing antioxidant capacity assays compared to the standards.

References

  • Adhami, H.-R., Fitz, V., Lubich, A., Kaehlig, H., Zehl, M., & Krenn, L. (2014). Acetylcholinesterase inhibitors from galbanum, the oleo gum-resin of Ferula gummosa Boiss. Phytochemistry Letters, 10, lxxxii lxxxvii. https://doi.org/10.1016/j.phytol.2014.08.023
  • Ali, M.Y., Jannat, S., Jung, H.A., Choi, R.J., Roy, A., & Choi, J.S. (2016). Anti-Alzheimer's disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pacific Journal of Tropical Medicine, 9(2), 103-111. https://doi.org/10.1016/j.apjtm.2016.01.014
  • Anand, P., Singh, B., & Singh, N. (2012). A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 20(3), 1175-1180. https://doi.org/10.1016/j.bmc.2011.12.042
  • Apak, R., Güçlü, K., Ozyürek, M., & Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x
  • Blois, M.S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Bonesi, M., Xiao, J., Tundis, R., Aiello, F., Sicari, V., & Loizzo, M.R. (2019). Advances in the Tyrosinase Inhibitors from Plant Source. Current Medicinal Chemistry, 26(18), 3279-3299. https://doi.org/10.2174/0929867325666180522091311
  • Braca, A., Bader, A., & De Tommasi, N. (2012). Chapter 7 - Plant and Fungi 3,4-Dihydroisocoumarins: Structures, Biological Activity, and Taxonomic Relationships. In R. Atta ur (Ed.), Studies in Natural Products Chemistry (Vol. 37, pp. 191-215). Elsevier. https://doi.org/10.1016/B978-0-444-59514-0.00007-9
  • Bruneton, J. (1995). Pharmacognosy, phytochemistry, medicinal plants. Lavoisier publishing.
  • Çiçek, S.S., Vitalini, S., & Zidorn, C. (2018). Natural Phenyldihydroisocoumarins: Sources, Chemistry and Bioactivity. Natural Product Communications, 13(3), https://doi.org/10.1177/1934578X1801300306
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Evans, W.C., & Evans, D. (2009). Chapter 21 - Phenols and phenolic glycosides. In W. C. Evans & D. Evans (Eds.), Trease and Evans' Pharmacognosy (Sixteenth Edition) (pp. 219-262). W.B. Saunders. https://doi.org/10.1016/B978-0-7020-2933-2.00021-6
  • Francis, P.T., Ramírez, M.J., & Lai, M.K. (2010). Neurochemical basis for symptomatic treatment of Alzheimer's disease. Neuropharmacology, 59(4), 221 229. https://doi.org/10.1016/j.neuropharm.2010.02.010
  • Garcia-Molina, M.o.t.S., Munoz-Munoz, J.L., Garcia-Molina, F., Rodriguez-Lopez, J.N., & Garcia-Canovas, F. (2013). Study of Umbelliferone Hydroxylation to Esculetin Catalyzed by Polyphenol Oxidase. Biological and Pharmaceutical Bulletin, 36(7), 1140-1145. https://doi.org/10.1248/bpb.b13-00119
  • Hearing, V.J., & Jiménez, M. (1987). Mammalian tyrosinase—The critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19(12), 1141-1147. https://doi.org/10.1016/0020-711X(87)90095-4
  • Hwang, J., Youn, K., Lim, G., Lee, J., Kim, D.H., & Jun, M. (2021). Discovery of Natural Inhibitors of Cholinesterases from Hydrangea: In Vitro and In Silico Approaches. Nutrients, 13(1), 254. https://doi.org/10.3390/nu13010254
  • Karakaya, S., Gözcü, S., Güvenalp, Z., Özbek, H., Yuca, H., Dursunoğlu, B., Kazaz, C., & Kılıç, C.S. (2018). The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharmaceutical Biology, 56(1), 18-24. https://doi.org/10.1080/13880209.2017.1414857
  • Kontogiorgis, C., Detsi, A., & Hadjipavlou-Litina, D. (2012). Coumarin-based drugs: a patent review (2008 – present). Expert Opinion on Therapeutic Patents, 22(4), 437-454. https://doi.org/10.1517/13543776.2012.678835
  • Lane, R.M., Potkin, S.G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. International Journal of Neuropsychopharmacology, 9(1), 101-124. https://doi.org/10.1017/s1461145705005833
  • Masamoto, Y., Ando, H., Murata, Y., Shimoishi, Y., Tada, M., & Takahata, K. (2003). Mushroom Tyrosinase Inhibitory Activity of Esculetin Isolated from Seeds of Euphorbia lathyris L. Bioscience, Biotechnology, and Biochemistry, 67(3), 631-634. https://doi.org/10.1271/bbb.67.631
  • Maurya, A.K., Mulpuru, V., & Mishra, N. (2020). Discovery of Novel Coumarin Analogs against the α-Glucosidase Protein Target of Diabetes Mellitus: Pharmacophore-Based QSAR, Docking, and Molecular Dynamics Simulation Studies. ACS Omega, 5(50), 32234-32249. https://doi.org/10.1021/acsomega.0c03871
  • Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223 232. https://doi.org/10.1016/j.bfopcu.2017.05.001
  • Munoz-Munoz, J.L., Garcia-Molina, F., Varon, R., Rodriguez-Lopez, J.N., Garcia-Canovas, F., & Tudela, J. (2007). Kinetic Characterization of the Oxidation of Esculetin by Polyphenol Oxidase and Peroxidase. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1271/bbb.60431
  • Nurul Islam, M., Jung, H.A., Sohn, H.S., Kim, H.M., & Choi, J.S. (2013). Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Archives of Pharmacal Research, 36(5), 542-552. https://doi.org/10.1007/s12272-013-0069-7
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9/10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Saddiqa, A., Usman, M., & ÇAkmak, O. (2017). Isocoumarins and 3,4-dihydroisocoumarins, amazing natural products: a review. Turkish Journal of Chemistry, 41, 153-178. https://doi.org/10.3906/kim-1604-66
  • Saeed, A. (2016). Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. European Journal of Medicinal Chemistry, 116, 290-317. https://doi.org/10.1016/j.ejmech.2016.03.025
  • Sen, S., & Chakraborty, R. (2011). The Role of Antioxidants in Human Health. In Oxidative Stress: Diagnostics, Prevention, and Therapy (Vol. 1083, pp. 1-37). American Chemical Society. https://doi.org/doi:10.1021/bk-2011-1083.ch001
  • Srikrishna, D., Godugu, C., & Dubey, P.K. (2018). A Review on Pharmacological Properties of Coumarins. Mini Reviews in Medicinal Chemistry, 18(2), 113 141. https://doi.org/10.2174/1389557516666160801094919
  • Şahin, H., Sarı, A., Özsoy, N., & Özbek Çelik, B. (2020a). Phenolic compounds and bioactivity of Scorzonera pygmaea Sibth. & Sm. aerial parts: In vitro antioxidant, anti-inflammatory and antimicrobial activities. İstanbul Journal of Pharmacy, 50(3). https://doi.org/10.26650/IstanbulJPharm.2020.0052
  • Şahin, H., Sarı, A., Özsoy, N., Özbek Çelik, B., & Koyuncu, O. (2020b). Two new phenolic compounds and some biological activities of Scorzonera pygmaea Sibth. & Sm. subaerial parts. Natural Product Research, 34(5), 621 628. https://doi.org/10.1080/14786419.2018.1493585
  • Trinh, B.T.D., Staerk, D., & Jäger, A.K. (2016). Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology, 186, 189 195. https://doi.org/10.1016/j.jep.2016.03.060
  • Venkata Sairam, K., M. Gurupadayya, B., S. Chandan, R., K. Nagesha, D., & Vishwanathan, B. (2016). A Review on Chemical Profile of Coumarins and their Therapeutic Role in the Treatment of Cancer. Current Drug Delivery, 13(2), 186 201. https://www.ingentaconnect.com/content/ben/cdd/2016/00000013/00000002/art00005
  • Witaicenis, A., Seito, L.N., da Silveira Chagas, A., de Almeida, L.D., Luchini, A.C., Rodrigues-Orsi, P., Cestari, S.H., & Di Stasi, L.C. (2014). Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine, 21(3), 240-246. https://doi.org/10.1016/j.phymed.2013.09.001
  • Wu, C.-R., Huang, M.-Y., Lin, Y.-T., Ju, H.-Y., & Ching, H. (2007). Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chemistry, 104(4), 1464-1471. https://doi.org/10.1016/j.foodchem.2007.02.023
  • Yıldız, M., Bingul, M., Zorlu, Y., Saglam, M.F., Boga, M., Temel, M., Koca, M.S., Kandemir, H., & Sengul, I.F. (2022). Dimethoxyindoles based thiosemicarbazones as multi-target agents; synthesis, crystal interactions, biological activity and molecular modeling. Bioorganic Chemistry, 120, 105647. https://doi.org/10.1016/j.bioorg.2022.105647
  • Zidorn, C., Lohwasser, U., Pschorr, S., Salvenmoser, D., Ongania, K.-H., Ellmerer, E.P., Boerner, A., & Stuppner, H. (2005). Bibenzyls and dihydroisocoumarins from white salsify (Tragopogon porrifolius subsp. porrifolius). Phytochemistry, 66(14), 1691-1697. https://doi.org/10.1016/j.phytochem.2005.05.004
There are 36 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Pharmacognosy
Journal Section Articles
Authors

Hasan Şahin 0000-0002-8325-8116

Early Pub Date July 31, 2023
Publication Date August 27, 2023
Submission Date October 31, 2022
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

APA Şahin, H. (2023). In-vitro anti-diabetic, anti-Alzheimer, anti-tyrosinase, antioxidant activities of selected coumarin and dihydroisocoumarin derivatives. International Journal of Secondary Metabolite, 10(3), 361-369. https://doi.org/10.21448/ijsm.1196712
International Journal of Secondary Metabolite

e-ISSN: 2148-6905