Review
BibTex RIS Cite

Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi

Year 2020, Volume: 5 Issue: 3, 307 - 312, 30.09.2020

Abstract

Özet

Tek zincirli doymuş yağ asitlerinin (pentadekanoik asit-C15:0 ve heptadekanoik asit-C17:0) insan sağlığı üzerindeki rolü beslenme araştırmalarının artmasıyla güçlenmiştir. Önceki dönemlerde C15:0 ve C17:0 yağ asitlerinin plazmada düşük miktarda olmasından dolayı insanlarda önemsiz olduğu düşünülmüş, fakat süt ve süt ürünleri tüketiminin artması ile kan plazmasında C15:0 ve C17:0 artışı olduğu belirlenmiştir. Temel olarak süt yağında bulunan ancak az miktarda ette de saptanan C15:0 ve C17:0 yağ asitleri süt yağı biyobelirteçleri olarak kabul edilmektedir. Bununla birlikte bu yağ asitlerinin propiyonik asitten endojen olarak insanlarda da üretilebileceği belirtilmektedir. Yapılan çalışmalarda C15:0 ve C17:0 doymuş yağ asitlerinin bazı hastalık riskini azalttığı gösterilmiştir. Ancak bu yağ asitlerinin potansiyel mekanizmaları üzerine araştırmalar hala sınırlıdır ve daha fazla çalışmaya ihtiyaç duyulmaktadır. Bu derlemede tek zincirli doymuş yağ asitlerinin beslenmedeki biyobelirteç rolü, bazı hastalıklarla ilişkisi ve olası mekanizmaları üzerine bilgi verilmesi amaçlanmıştır.


Anahtar Kelimeler: Pentadekanoik asit, heptadekanoik asit, biyobelirteç, süt ve süt ürünleri. 

References

  • Abdullah, M.M., Cyr, A., Lépine, M.C., Labonté, M.È., Couture, P., Jones, P.J., et al. (2015). Recommended dairy product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study. British Journal of Nutrition, 113(3), 435-444.
  • Albani, V., Celis-Morales, C., O’Donovan, C.B., Walsh, M.C., Woolhead C, Forster H, et al. (2017). Within-person reproducibility and sensitivity to dietary change of C15:0 and C17:0 levels in dried blood spots: Data from the European Food4Me Study. Molecular Nutrition & Food Research, 61(10).
  • Aljada, A., Mohanty, P., Ghanim, H., Abdo, T., Tripathy, D., Chaudhuri, A., Dandona, P. (2004). Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. The American Journal of Clinical Nutrition, 79(4), 682-690.
  • Aravamudan, B., Thompson, M.A., Pabelick, C.M., Prakash, Y.S. (2013). Mitochondria in lung diseases. Expert Review of Respiratory Medicine, 7(6), 631-646.
  • Black, P.N., & Scragg, R. (2005). Relationship between serum 25-hydroxyvitamin d and pulmonary function in the third national health and nutrition examination survey. Chest, 128(6), 3792-3798.
  • Brevik, A., Veierød, M.B., Drevon, C.A., & Andersen, L.F. (2005). Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. European Journal of Clinical Nutrition, 59(12), 1417-1422.
  • De Oliveira Otto, M.C., Mozaffarian, D., Kromhout, D., Bertoni, A.G., Sibley, C.T., Jacobs, D.R., et al. (2012). Dietary Intake of Saturated Fat by Food Source and Incident Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. The American Journal of Clinical Nutrition, 96(2), 397-404.
  • Fonteh, A.N., Cipolla, M., Chiang, J., Arakaki, X., & Harrington, M.G. (2014). Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One, 9(6), 100519.
  • Forouhi, N.G., Koulman, A., Sharp, S.J., Imamura, F., Kroger, J., Schulze, M.B., et al. (2014). Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol, 2(10), 810-818.
  • Fumeron, F., Lamri, A., Emery, N., Bellili, N., Jaziri, R., Porchay-Balde´relli, et al. (2011). Dairy products and the metabolic syndrome in a prospective study, DESIR. J Am Coll Nutr. 30,454-463.
  • Gómez-Cortés, P., Juárez, M., & Angelde la Fuente, M. (2018). Milk fatty acids and potential health benefits: An updated vision. Trends in Food Science & Technology, 81, 1-9.
  • Guo, J., Givens, D.I., Astrup, A., Bakker, S.J.L., Goossens, G.H., Kratz, M., et al. (2019). The Impact of Dairy Products in the Development of Type 2 Diabetes: Where Does the Evidence Stand in 2019? Advances in Nutrition, 10(6), 1066-1075.
  • Haag, M. (2003). Essential fatty acids and the brain. Canadian Journal of Psychiatry, 48(3), 195–203.
  • Harris, W.S., Mozaffarian, D., Rimm, E., Kris-Etherton, P., Rudel, L.L., Appel, L.J., et al. (2009). Omega-6 fatty acids and risk for cardiovascular disease. A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation, 119(6), 902–927.
  • Hodson, L., Skeaff, C.M., & Fielding, B.A. (2008). Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Progress in Lipid Research, 47(5), 348-380.
  • International Diabetes Federation. (2017). IDF diabetes atlas. Erişim sayfası: https://diabetesatlas.org/en/sections/worldwide-toll-ofdiabetes.html (28.02.2018).
  • Jenkins, B.J., Seyssel, K., Chiu, S., Pan, P.H., Lin, S.Y., Stanley, E., et al. (2017). Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynhesis and Glucose. Scientific Reports, 7, 44845
  • Jenkins, B., West, J.A., & Koulman, A. (2015). A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (C15:0) and heptadecanoic Acid (C17:0) in health and disease. Molecules, 20(2), 2425-2444.
  • Jiménez-Cepeda, A., Dávila-Said, G., Orea-Tejeda, A., González-Islas, D., Elizondo-Montes, M., Pérez-Cortes, G., et al. (2019). Dietary intake of fatty acids and its relationship with FEV1/FVC in patients with chronic obstructive pulmonary isease. Clinical Nutrition ESPEN, 29, 92-96.
  • Joshi, P., Kim, W.J., & Lee, S.A. (2015). The effect of dietary antioxidant on the COPD risk: the community-based KoGES (Ansan-Anseong) cohort. International Journal of Chronic Obstructive Pulmonary Disease, 10, 2159-68.
  • Khaw, K.T., Friesen, M.D., Riboli, E., Luben, R., & Wareham, N. (2012). Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-norfolk prospective study. PLoS Medicine, 9(7), 1001255.
  • Kornsteiner, M., Singer, I., & Elmadfa, I. (2008). Very low n-3 long-chain polyunsaturated fatty acid status in Austrian vegetarians and vegans. Annals of Nutrition and Metabolism, 52(1), 37-47.
  • Krachler, B., Norberg, M., Eriksson, J.W., Hallmans, G., Johansson, I., Vessby, B., et al. (2008). Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Nutrition Metabolism & Cardiovascular Diseases, 18(7), 503-510.
  • Kratz, M., Marcovina, S., Nelson, J.E., Yeh, M.M., Kowdley, K.V., Callahan, H.S., et al. (2014). Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. The American Journal of Clinical Nutrition, 99(6), 1385-1396.
  • Kröger, J., Zietemann, V., Enzenbach, C., Weikert, C., Jansen, E.H., Döring, F., et al. (2011). Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. The American Journal of Clinical Nutrition, 93(1), 127-142.
  • Kurotani, K., Karunapema, P., Jayaratne, K., Sato, M., Hayashi, T., Kajio, H., et al. (2018). Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan. Nutrition Research, 50, 82-93.
  • Mannaerts, G.P., Van Veldhoven, P.P., & Casteels, M. (2000). Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochemistry and Biophysics, 32, 73-87.
  • Margolis, K.L., Wei, F., de Boer, I.H., Howard, B.V., Liu, S., Manson, J.E., et al.(2011). A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J Nutr, 141, 1969-74.
  • Oizumi, J., Giudici, T.A., Ng, W.G., Shaw, K.N., & Donnell, G.N. Propionate metabolism by cultured skin fibroblasts from normal individuals and patients with methylmalonicaciduria and propionicacidemia. Biochemia Medica, 26, 28-40.
  • Pfeuffer, M., & Jaudszus, A. (2016). Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids. Advances in Nutrition, 7(4), 730-734.
  • Pranger, I.G., Muskiet, F.A.J., Kema, I.P., Singh-Povel, C., & Bakker, S.J.L. (2019). Potential Biomarkers for Fat from Dairy and Fish and Their Association with Cardiovascular Risk Factors: Cross-sectional Data from the LifeLines Biobank and Cohort Study. Nutrients, 11(5), 1099.
  • Rosell, M., Johansson, G., Berglund, L., Vessby, B., de Faire, U., & Hellenius, M.L. (2005). The relation between alcohol intake and physical activity and the fatty acids 14:0, 15:0 and 17:0 in serum phospholipids and adipose tissue used as markers for dairy fat intake. British Journal of Nutrition, 93(1), 115-121.
  • Santaren, I.D., Watkins, S.M., Liese, A.D., Wagenknecht, L.E., Rewers, M.J., Haffner, S.M., et al. (2014). Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders.The American Journal of Clinical Nutrition, 100(6), 1532-1540.
  • Slim, M., Ha, C, Vanstone, C.A., Morin, S.N., Rahme, E., & Weilera, H.A. (2019). Evaluation of plasma and erythrocyte fatty acids C15:0, t-C16:1n-7 and C17:0 as biomarkers of dairy fat consumption in adolescents. Prostaglandins, Leukotrienes and Essential Fatty Acids, 149, 24-29.
  • Smedman, A.E., Gustafsson, I.B., Berglund, L.G., & Vessby, B.O. (1999). Pentadecanoic acid in serum as a marker for intake of milk fat: Relations between intake of milk fat and metabolic risk factors. The American Journal of Clinical Nutrition, 69(1), 22-29.
  • Sperl, W., Murr, C., Skladal, D., Sass, J.O., Suormala, T., Baumgartner, R., et al. (2000). Odd-numbered long-chain fatty acids in propionic acidaemia. European Journal of Pediatrics, 159(1-2), 54-58.
  • Stefanov, I., Baeten, V., Abbas, O., Vlaeminck, B., De Baets, B., & Fievez, V. (2013). Evaluation of FT-NIR and ATRFTIR spectroscopy techniques for determination of minor oddand branched-chain saturated and trans unsaturated milk fatty acids. Journal of Agricultural and Food Chemistry, 61(14), 3403-3413.
  • Ulbricht, T.L.V., & Southgate, D.A.T. (1991). Coronary heart disease: Seven dietary factors. Lancet, 338(8773), 985-992.
  • Varraso, R., Chiuve, S.E., Fung, T.T., Barr, R.G., Hu, F.B., Willett, W.C., et al. (2015). Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. British Medical Journal, 3. 350.
  • Wang, H., Steffen, L.M., Vessby, B., Basu, S., Steinberger, J., Moran, A., et al. (2011). Obesity modifies the relations between serum markers of dairy fats and inflammation and oxidative stress among adolescents. Obesity, 19(12), 2404-2410.
  • Weitkunat, K., Schumann, S., Nickel, D., Hornemann, S., Petzke, KJ., Schulze, M.B., et al. (2017). Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. The American Journal of Clinical Nutrition, 105(6), 1544-1551.
  • Yang, X., Sun, G.Y., Eckert, G.P., & Lee, J.C. (2014). Cellular membrane fluidity in amyloid precursor protein processing. Molecular Neurobiology, 50(1), 119-129.
Year 2020, Volume: 5 Issue: 3, 307 - 312, 30.09.2020

Abstract

References

  • Abdullah, M.M., Cyr, A., Lépine, M.C., Labonté, M.È., Couture, P., Jones, P.J., et al. (2015). Recommended dairy product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study. British Journal of Nutrition, 113(3), 435-444.
  • Albani, V., Celis-Morales, C., O’Donovan, C.B., Walsh, M.C., Woolhead C, Forster H, et al. (2017). Within-person reproducibility and sensitivity to dietary change of C15:0 and C17:0 levels in dried blood spots: Data from the European Food4Me Study. Molecular Nutrition & Food Research, 61(10).
  • Aljada, A., Mohanty, P., Ghanim, H., Abdo, T., Tripathy, D., Chaudhuri, A., Dandona, P. (2004). Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. The American Journal of Clinical Nutrition, 79(4), 682-690.
  • Aravamudan, B., Thompson, M.A., Pabelick, C.M., Prakash, Y.S. (2013). Mitochondria in lung diseases. Expert Review of Respiratory Medicine, 7(6), 631-646.
  • Black, P.N., & Scragg, R. (2005). Relationship between serum 25-hydroxyvitamin d and pulmonary function in the third national health and nutrition examination survey. Chest, 128(6), 3792-3798.
  • Brevik, A., Veierød, M.B., Drevon, C.A., & Andersen, L.F. (2005). Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. European Journal of Clinical Nutrition, 59(12), 1417-1422.
  • De Oliveira Otto, M.C., Mozaffarian, D., Kromhout, D., Bertoni, A.G., Sibley, C.T., Jacobs, D.R., et al. (2012). Dietary Intake of Saturated Fat by Food Source and Incident Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. The American Journal of Clinical Nutrition, 96(2), 397-404.
  • Fonteh, A.N., Cipolla, M., Chiang, J., Arakaki, X., & Harrington, M.G. (2014). Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One, 9(6), 100519.
  • Forouhi, N.G., Koulman, A., Sharp, S.J., Imamura, F., Kroger, J., Schulze, M.B., et al. (2014). Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol, 2(10), 810-818.
  • Fumeron, F., Lamri, A., Emery, N., Bellili, N., Jaziri, R., Porchay-Balde´relli, et al. (2011). Dairy products and the metabolic syndrome in a prospective study, DESIR. J Am Coll Nutr. 30,454-463.
  • Gómez-Cortés, P., Juárez, M., & Angelde la Fuente, M. (2018). Milk fatty acids and potential health benefits: An updated vision. Trends in Food Science & Technology, 81, 1-9.
  • Guo, J., Givens, D.I., Astrup, A., Bakker, S.J.L., Goossens, G.H., Kratz, M., et al. (2019). The Impact of Dairy Products in the Development of Type 2 Diabetes: Where Does the Evidence Stand in 2019? Advances in Nutrition, 10(6), 1066-1075.
  • Haag, M. (2003). Essential fatty acids and the brain. Canadian Journal of Psychiatry, 48(3), 195–203.
  • Harris, W.S., Mozaffarian, D., Rimm, E., Kris-Etherton, P., Rudel, L.L., Appel, L.J., et al. (2009). Omega-6 fatty acids and risk for cardiovascular disease. A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation, 119(6), 902–927.
  • Hodson, L., Skeaff, C.M., & Fielding, B.A. (2008). Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Progress in Lipid Research, 47(5), 348-380.
  • International Diabetes Federation. (2017). IDF diabetes atlas. Erişim sayfası: https://diabetesatlas.org/en/sections/worldwide-toll-ofdiabetes.html (28.02.2018).
  • Jenkins, B.J., Seyssel, K., Chiu, S., Pan, P.H., Lin, S.Y., Stanley, E., et al. (2017). Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynhesis and Glucose. Scientific Reports, 7, 44845
  • Jenkins, B., West, J.A., & Koulman, A. (2015). A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (C15:0) and heptadecanoic Acid (C17:0) in health and disease. Molecules, 20(2), 2425-2444.
  • Jiménez-Cepeda, A., Dávila-Said, G., Orea-Tejeda, A., González-Islas, D., Elizondo-Montes, M., Pérez-Cortes, G., et al. (2019). Dietary intake of fatty acids and its relationship with FEV1/FVC in patients with chronic obstructive pulmonary isease. Clinical Nutrition ESPEN, 29, 92-96.
  • Joshi, P., Kim, W.J., & Lee, S.A. (2015). The effect of dietary antioxidant on the COPD risk: the community-based KoGES (Ansan-Anseong) cohort. International Journal of Chronic Obstructive Pulmonary Disease, 10, 2159-68.
  • Khaw, K.T., Friesen, M.D., Riboli, E., Luben, R., & Wareham, N. (2012). Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-norfolk prospective study. PLoS Medicine, 9(7), 1001255.
  • Kornsteiner, M., Singer, I., & Elmadfa, I. (2008). Very low n-3 long-chain polyunsaturated fatty acid status in Austrian vegetarians and vegans. Annals of Nutrition and Metabolism, 52(1), 37-47.
  • Krachler, B., Norberg, M., Eriksson, J.W., Hallmans, G., Johansson, I., Vessby, B., et al. (2008). Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Nutrition Metabolism & Cardiovascular Diseases, 18(7), 503-510.
  • Kratz, M., Marcovina, S., Nelson, J.E., Yeh, M.M., Kowdley, K.V., Callahan, H.S., et al. (2014). Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. The American Journal of Clinical Nutrition, 99(6), 1385-1396.
  • Kröger, J., Zietemann, V., Enzenbach, C., Weikert, C., Jansen, E.H., Döring, F., et al. (2011). Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. The American Journal of Clinical Nutrition, 93(1), 127-142.
  • Kurotani, K., Karunapema, P., Jayaratne, K., Sato, M., Hayashi, T., Kajio, H., et al. (2018). Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan. Nutrition Research, 50, 82-93.
  • Mannaerts, G.P., Van Veldhoven, P.P., & Casteels, M. (2000). Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochemistry and Biophysics, 32, 73-87.
  • Margolis, K.L., Wei, F., de Boer, I.H., Howard, B.V., Liu, S., Manson, J.E., et al.(2011). A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J Nutr, 141, 1969-74.
  • Oizumi, J., Giudici, T.A., Ng, W.G., Shaw, K.N., & Donnell, G.N. Propionate metabolism by cultured skin fibroblasts from normal individuals and patients with methylmalonicaciduria and propionicacidemia. Biochemia Medica, 26, 28-40.
  • Pfeuffer, M., & Jaudszus, A. (2016). Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids. Advances in Nutrition, 7(4), 730-734.
  • Pranger, I.G., Muskiet, F.A.J., Kema, I.P., Singh-Povel, C., & Bakker, S.J.L. (2019). Potential Biomarkers for Fat from Dairy and Fish and Their Association with Cardiovascular Risk Factors: Cross-sectional Data from the LifeLines Biobank and Cohort Study. Nutrients, 11(5), 1099.
  • Rosell, M., Johansson, G., Berglund, L., Vessby, B., de Faire, U., & Hellenius, M.L. (2005). The relation between alcohol intake and physical activity and the fatty acids 14:0, 15:0 and 17:0 in serum phospholipids and adipose tissue used as markers for dairy fat intake. British Journal of Nutrition, 93(1), 115-121.
  • Santaren, I.D., Watkins, S.M., Liese, A.D., Wagenknecht, L.E., Rewers, M.J., Haffner, S.M., et al. (2014). Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders.The American Journal of Clinical Nutrition, 100(6), 1532-1540.
  • Slim, M., Ha, C, Vanstone, C.A., Morin, S.N., Rahme, E., & Weilera, H.A. (2019). Evaluation of plasma and erythrocyte fatty acids C15:0, t-C16:1n-7 and C17:0 as biomarkers of dairy fat consumption in adolescents. Prostaglandins, Leukotrienes and Essential Fatty Acids, 149, 24-29.
  • Smedman, A.E., Gustafsson, I.B., Berglund, L.G., & Vessby, B.O. (1999). Pentadecanoic acid in serum as a marker for intake of milk fat: Relations between intake of milk fat and metabolic risk factors. The American Journal of Clinical Nutrition, 69(1), 22-29.
  • Sperl, W., Murr, C., Skladal, D., Sass, J.O., Suormala, T., Baumgartner, R., et al. (2000). Odd-numbered long-chain fatty acids in propionic acidaemia. European Journal of Pediatrics, 159(1-2), 54-58.
  • Stefanov, I., Baeten, V., Abbas, O., Vlaeminck, B., De Baets, B., & Fievez, V. (2013). Evaluation of FT-NIR and ATRFTIR spectroscopy techniques for determination of minor oddand branched-chain saturated and trans unsaturated milk fatty acids. Journal of Agricultural and Food Chemistry, 61(14), 3403-3413.
  • Ulbricht, T.L.V., & Southgate, D.A.T. (1991). Coronary heart disease: Seven dietary factors. Lancet, 338(8773), 985-992.
  • Varraso, R., Chiuve, S.E., Fung, T.T., Barr, R.G., Hu, F.B., Willett, W.C., et al. (2015). Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. British Medical Journal, 3. 350.
  • Wang, H., Steffen, L.M., Vessby, B., Basu, S., Steinberger, J., Moran, A., et al. (2011). Obesity modifies the relations between serum markers of dairy fats and inflammation and oxidative stress among adolescents. Obesity, 19(12), 2404-2410.
  • Weitkunat, K., Schumann, S., Nickel, D., Hornemann, S., Petzke, KJ., Schulze, M.B., et al. (2017). Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. The American Journal of Clinical Nutrition, 105(6), 1544-1551.
  • Yang, X., Sun, G.Y., Eckert, G.P., & Lee, J.C. (2014). Cellular membrane fluidity in amyloid precursor protein processing. Molecular Neurobiology, 50(1), 119-129.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Ebru Koptagel 0000-0001-8238-4455

Nilgün Seremet Kürklü 0000-0003-1394-0037

Publication Date September 30, 2020
Submission Date June 12, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Koptagel, E., & Seremet Kürklü, N. (2020). Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 5(3), 307-312.
AMA Koptagel E, Seremet Kürklü N. Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi. İKÇÜSBFD. September 2020;5(3):307-312.
Chicago Koptagel, Ebru, and Nilgün Seremet Kürklü. “Tek Zincirli Doymuş Yağ Asitleri Ve Sağlık İlişkisi”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 5, no. 3 (September 2020): 307-12.
EndNote Koptagel E, Seremet Kürklü N (September 1, 2020) Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 5 3 307–312.
IEEE E. Koptagel and N. Seremet Kürklü, “Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi”, İKÇÜSBFD, vol. 5, no. 3, pp. 307–312, 2020.
ISNAD Koptagel, Ebru - Seremet Kürklü, Nilgün. “Tek Zincirli Doymuş Yağ Asitleri Ve Sağlık İlişkisi”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 5/3 (September 2020), 307-312.
JAMA Koptagel E, Seremet Kürklü N. Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi. İKÇÜSBFD. 2020;5:307–312.
MLA Koptagel, Ebru and Nilgün Seremet Kürklü. “Tek Zincirli Doymuş Yağ Asitleri Ve Sağlık İlişkisi”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 5, no. 3, 2020, pp. 307-12.
Vancouver Koptagel E, Seremet Kürklü N. Tek Zincirli Doymuş Yağ Asitleri ve Sağlık İlişkisi. İKÇÜSBFD. 2020;5(3):307-12.



Licensed under a Creative Commons Attribution 4.0 International License.