Review
BibTex RIS Cite

Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar

Year 2022, Volume: 7 Issue: 1, 173 - 178, 31.01.2022

Abstract

Beta glukanlar, uzun yıllar boyunca bilimsel çalışmalara konu olmuş, sağlık alanında katma değere sahip yan ürünlerdir. Yapılan çalışmalar, beta glukanların antioksidan, antiinflamatuvar, antiviral özelliklerine ışık tutmuştur. Çok sayıda ülke beta glukanları sağlıklı yaşam için besin takviyesi olarak onaylamıştır. Son yıllarda sürekli gündemde olan COVID-19’a karşı da beta glukanların koruyucu ve tedavi edici özelliklere sahip olduğunu gösteren çalışmalar bulunmaktadır. Koruyucu ve tedavi edici özelliklerini hangi moleküler yolaklar üzerinden ortaya koydukları tam anlamıyla kesinleşmemiş olsa da beta glukanların bağışıklık sistemi üzerindeki etkilerine yönelik araştırmalar devam etmektedir. Bu derlemenin amacı, beta glukanların bağışıklık sistemi üzerindeki ve özellikle de viral hastalıklara karşı olan etkinliklerini güncel literatür ışığında sunmaktır. Çalışma kapsamında özellikle güncel ve konunun önemini yansıtan, 60 adet İngilizce bilimsel kaynak taranarak derlenmiştir. Sonuç olarak, beta glukanların immünmodulasyon, edinsel bağışıklık, antioksidan ve anti-inflamatuvar özelliklerinin olduğu, sağlık üzerine olumlu etkiler gösterdikleri belirlenmiştir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Holtekjølen AK, Uhlen AK, Brathen E, Sahlstrøm S, Knutsen SH. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 2006; 94: 348–358.
  • Bacic A, Fincher GB, Stone BA. Chemistry, Biochemistry, and Biology of (1-3)- beta-Glucans and Related Polysaccharides, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2009.
  • Auinger A, Riede L, Bothe G, Busch R, Gruenwald J. Yeast (1,3)-(1,6) beta glucan helps to maintain the body’s defence against pathogens: A double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur J Nutr. 2013; 52: 1913–1918.
  • Volman, JJ, Ramakers D, Plat J. Dietary Modulation of Immune Function by BetaGlucans. Physiol Behav. 2008; 94:276-284
  • G, Toklu HZ, Çetinel Ş, Beta-Glucan Protects Against Chronic Nicotine- Induced Oxidative Damage in Kidney and Bladder. Environ Toxicol Pharmacol. 2007; 23: 25-32.
  • Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, et al. Oral Delivery and Gastrointestinal Absorption of Soluble Glucans Stimulate Increased Resistance to Infectious Challenge. J Pharmacol Exp Ther. 2005; 314: 1079–1086.
  • Tang XY, Gao JS, Yuan F, Zhang WX, Shao,YJ, Sakurai F, et al. Effects of Sophy b-glucan on growth performance, carcass traits, meat composition, and immunological responses of Peking ducks. Poult Sci. 2011; 90:737– 45.
  • Vetvicka V, Vetvickova J. Physiological effects of different types of beta glucan. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2007; 151: 225–231.
  • Kim SY, Song HJ, Lee YY, Cho K-H, Roh YK. Biomedical issues of dietary fiber beta-Glucan. J. Korean Med. Sci. 2006; 21: 781–789.
  • Chen, J. Recent advances in the studies of beta-glucans for cancer therapy. Anti-Cancer Agents Med Chem. 2013; 13: 679–680.
  • Ina K, Kataoka T, Ando T. The use of lentinan for treating gastric cancer. Anti-Cancer Agents Med Chem. 2013; 13: 681–688.
  • Kogan G, Pajtinka M, Babincova M, Miadokova E, Rauko P, Slamenova D, et al. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma. 2008; 55: 387–393.
  • Liatis S, Tsapogas P, Chala E, Dimosthenopoulos C, Kyriakopoulos K, Kapantais E, et al. The consumption of bread enriched with beta-glucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes Metab. 2009; 35: 115–120.
  • Novak M, Vetvicka V. β-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol. 2008; 5:47–57.
  • Hunter KW, JR Dupre’s, Redelman D. Microparticulate beta-glucan upregulates the expression of B7.1, B7.2, B7-H1, but not B7-DC on cultured murine peritoneal macrophages. Immunol Lett. 2004; 93(1): 71-8.
  • Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014; 13:38.
  • Brown GD, Gordon S. Fungal beta-glucans and mammalian immunity. Immunity. 2003; 19:311–315.
  • Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B, et al. Betaglucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood. 2006; 107:835–840.
  • Ikewaki N, Fujii N, Onaka T, Ikewaki S, Inoko H. Immunological actions of Sophy beta-glucan (beta-1,3-1,6 glucan), currently available commercially as a health food supplement. Microbiol Immunol. 2007; 51:861–73.
  • Vetvicka V, Vetvickova J. Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann Transl Med. 2015; 3:22.
  • Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, et al. Should we stimulate or suppress immune responses in COVID- 19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19:102567.
  • Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020; 20:277.
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8:e21.
  • Rao KS, Suryaprakash V, Senthilkumar R, Preethy S, Katoh S, Ikewaki N, et al. Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements. Front Immunol. 2020; 11:1548.
  • Raa J. Immune modulation by non-digestible and nonabsorbable beta-1,3/1,6-glucan. Microb Ecol Health Dis. 2015; 26:27824.
  • Tzianabos AO, Gibson FC, Cisneros RL, Kasper DL. Protection against experimental intraabdominal sepsis by two polysaccharide immunomodulators. J Infect Dis. 1998; 178:200-206.
  • Bedirli A, Kerem M, Pasaoglu H, Akyurek N, Tezcaner T, Elbeg S, et al. Beta-glucan attenuates inflammatory cytokine release and prevents acute lung injury in an experimental model of sepsis. Shock. 2007; 27(4): 397-401.
  • Choudhury S, Wilson MR, Goddard ME, O’Dea KP, Takata M: Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2004; 287:902-910.
  • Fara MG, Stein LK, Skliut M, Morgello S, Fifi JT, Dhamoon MS. Macrothrombosis and stroke in patients with mild Covid-19 infection. J Thromb Haemost. 2020; 18(8):2031-2033.
  • Steinack C, Hage R, Benden C, Schuurmans MM. SARS-CoV-2 and norovirus co-infection after lung transplantation. Transplantology. 2020; 1:16–23.
  • Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016; 8:959– 70.
  • Van der Meer JW, Joosten LA, Riksen N, Netea MG. Trained immunity: a smart way to enhance innate immune defence. Mol Immunol. 2015; 68:40–44.
  • Keating ST, Groh L, van der Heijden C, Rodriguez H, Dos Santos JC, Fanucchi S, et al. The set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by b-glucan. Cell Rep. 2020; 31:107548.
  • Quintin J, Saeed S,Martens JHA, Giamarellos-Bourboulis EJ, IfrimDC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012; 12:223–232.
  • Yun CH, Estrada A, Van Kessel A, Park BC, Laarveld B. Betaglucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol. 2003; 35:67–75.
  • Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, Cirovic B, de Bree LCJ, Damen M, et al. b-Glucan-induced trained immunity protects against leishmania braziliensis infection: a crucial role for IL-32. Cell Rep. 2019; 28:2659–72.e6.
  • Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today. 2005; 10:1145– 1157.
  • Jung K, Ha Y, Ha SK, Han DU, Kim DW, MoonWK, et al. Antiviral effect of saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J Vet Med B Infect Dis Vet Public Health. 2004; 51:72–76.
  • Chan GC, ChanWK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009; 2:25.
  • Batbayar S, Lee DH, Kim HW. Immunomodulation of fungal betaglucan in host defense signaling by dectin-1. Biomol Ther. 2012; 20:433–445.
  • Li B, Cai Y, Qi C, Hansen R, Ding C, Mitchell TC, et al. Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res. 2010; 16:5153–5164.
  • Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latge JP. Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J Biol Chem. 2009; 28420:13401– 13412.
  • Jawhara S. How fungal glycans modulate platelet activation via toll-like receptors contributing to the escape of Candida albicans from the immune rResponse. Antibiotics. 2020; 97:385.
  • Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, et al. Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352(6284):aaf1098.
  • Masuda Y, Inoue H, Ohta H, Miyake A, Konishi M, Nanba H. Oral administration of soluble beta-glucans extracted from Grifola frondosa induces systemic antitumor immune response and decreases immunosuppression in tumor-bearing mice. Int J Cancer. 2013; 1331:108– 119.
  • Horst G, Levine R, Chick R, Hofacre C. Effects of beta-1,3-glucan (AletaTM) on vaccination response in broiler chickens. Poult Sci. 2019; 984:1643–1647.
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 185:1094–1099.
  • Vancraeyneste H, Charlet R, Guerardel Y, Choteau L, Bauters A, Tardivel M, et al. Short fungal fractions of beta-1,3 glucans affect platelet activation. Am J Physiol Heart Circ Physiol. 2016; 3113:H725–34.
  • McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020; 63(3): 383-385.
  • Murphy EJ, Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, et al. β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects—Implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 2020; 732: 139330.
  • Talbott SM, Talbott JA. Baker's yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. J Am Coll Nutr. 2012; 31(4): 295-300.
  • Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van Rooijen N, et al. Benefits of oat β-glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physio. 2008; 294(5): R1593-R1599.
  • Ishikawa H, Fukui T, Ino S, Sasaki H, Awano N, Kohda C, et al. Influenza virus infection causes neutrophil dysfunction through reduced G-CSF production and an increased risk of secondary bacteria infection in the lung. Virology. 2016; 499:23–29.
  • Sakurai T, Hashimoto K, Suzuki I, Ohno N, Oikawa S, Masuda A, et al. Enhancement of murine alveolar macrophage functions by orally administered beta-glucan. Int J Immunopharmacol. 1992; 14:821-30.
  • Dharsono T, Rudnicka K,Wilhelm M, Schoen C. Effects of yeast (1,3)-(1,6)- beta-glucan on severity of upper respiratory tract infections: a double-blind, randomized, placebo-controlled study in healthy subjects. J Am Coll Nutr. 2019; 38:40–50.
  • Babayigit H, Kucuk C, Sozuer E, Yazici C, Kose K, Akgun H. Protective effect of β-glucan on lung injury after cecal ligation and puncture in rats. Intensive Care Med. 2005; 31(6): 865-870.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506.
  • Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M. Immunomodulatory effect of pleuran (b-glucan from pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol. 2013; 15:395–399.
  • Fuller R, Moore MV, Lewith G, Stuart BL, Ormiston RV, Fisk HL, et al. Yeast-derived beta-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition. 2017; 39(40):30–35.
  • Graubaum HJ, Busch R, Stier H, Gruenwald J. A double-blind, randomized, placebo-controlled nutritional study using an insoluble yeast beta-glucan to improve the immune defense system. Food Nutr Sci. 2012; 3:738–746.

Effects of Beta Glucans on Immune System: Current Approaches

Year 2022, Volume: 7 Issue: 1, 173 - 178, 31.01.2022

Abstract

Beta glucans are by-products that have added-value in the field of health which have been the subject of scientific studies for many years. Studies have shed light on the antioxidant, anti-inflammatory and antiviral properties of beta glucans. Many countries have approved beta glucans as nutritional supplements for healthy living. There are studies showing that beta glucans have protective and therapeutic properties against COVID-19, which has been on the agenda in recent years. Although the molecular pathways through which they reveal their protective and therapeutic properties have not been fully determined, the studies on effects of beta glucan on immune system continue. The aim of this review is to present the activities of beta glucans on the immune system and especially against viral diseases in the light of current literature. Within the scope of the study, 60 current English scientific references which reflect the importance of the subject, were screened and reviewed. Consequently, it has been determined that beta glucans have properties of immunomodulation, adaptive immunity, and antioxidant, anti-inflammatory and positive effects on health.

Project Number

-

References

  • Holtekjølen AK, Uhlen AK, Brathen E, Sahlstrøm S, Knutsen SH. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 2006; 94: 348–358.
  • Bacic A, Fincher GB, Stone BA. Chemistry, Biochemistry, and Biology of (1-3)- beta-Glucans and Related Polysaccharides, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2009.
  • Auinger A, Riede L, Bothe G, Busch R, Gruenwald J. Yeast (1,3)-(1,6) beta glucan helps to maintain the body’s defence against pathogens: A double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur J Nutr. 2013; 52: 1913–1918.
  • Volman, JJ, Ramakers D, Plat J. Dietary Modulation of Immune Function by BetaGlucans. Physiol Behav. 2008; 94:276-284
  • G, Toklu HZ, Çetinel Ş, Beta-Glucan Protects Against Chronic Nicotine- Induced Oxidative Damage in Kidney and Bladder. Environ Toxicol Pharmacol. 2007; 23: 25-32.
  • Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, et al. Oral Delivery and Gastrointestinal Absorption of Soluble Glucans Stimulate Increased Resistance to Infectious Challenge. J Pharmacol Exp Ther. 2005; 314: 1079–1086.
  • Tang XY, Gao JS, Yuan F, Zhang WX, Shao,YJ, Sakurai F, et al. Effects of Sophy b-glucan on growth performance, carcass traits, meat composition, and immunological responses of Peking ducks. Poult Sci. 2011; 90:737– 45.
  • Vetvicka V, Vetvickova J. Physiological effects of different types of beta glucan. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2007; 151: 225–231.
  • Kim SY, Song HJ, Lee YY, Cho K-H, Roh YK. Biomedical issues of dietary fiber beta-Glucan. J. Korean Med. Sci. 2006; 21: 781–789.
  • Chen, J. Recent advances in the studies of beta-glucans for cancer therapy. Anti-Cancer Agents Med Chem. 2013; 13: 679–680.
  • Ina K, Kataoka T, Ando T. The use of lentinan for treating gastric cancer. Anti-Cancer Agents Med Chem. 2013; 13: 681–688.
  • Kogan G, Pajtinka M, Babincova M, Miadokova E, Rauko P, Slamenova D, et al. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma. 2008; 55: 387–393.
  • Liatis S, Tsapogas P, Chala E, Dimosthenopoulos C, Kyriakopoulos K, Kapantais E, et al. The consumption of bread enriched with beta-glucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes Metab. 2009; 35: 115–120.
  • Novak M, Vetvicka V. β-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol. 2008; 5:47–57.
  • Hunter KW, JR Dupre’s, Redelman D. Microparticulate beta-glucan upregulates the expression of B7.1, B7.2, B7-H1, but not B7-DC on cultured murine peritoneal macrophages. Immunol Lett. 2004; 93(1): 71-8.
  • Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014; 13:38.
  • Brown GD, Gordon S. Fungal beta-glucans and mammalian immunity. Immunity. 2003; 19:311–315.
  • Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B, et al. Betaglucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood. 2006; 107:835–840.
  • Ikewaki N, Fujii N, Onaka T, Ikewaki S, Inoko H. Immunological actions of Sophy beta-glucan (beta-1,3-1,6 glucan), currently available commercially as a health food supplement. Microbiol Immunol. 2007; 51:861–73.
  • Vetvicka V, Vetvickova J. Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann Transl Med. 2015; 3:22.
  • Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, et al. Should we stimulate or suppress immune responses in COVID- 19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19:102567.
  • Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020; 20:277.
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8:e21.
  • Rao KS, Suryaprakash V, Senthilkumar R, Preethy S, Katoh S, Ikewaki N, et al. Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements. Front Immunol. 2020; 11:1548.
  • Raa J. Immune modulation by non-digestible and nonabsorbable beta-1,3/1,6-glucan. Microb Ecol Health Dis. 2015; 26:27824.
  • Tzianabos AO, Gibson FC, Cisneros RL, Kasper DL. Protection against experimental intraabdominal sepsis by two polysaccharide immunomodulators. J Infect Dis. 1998; 178:200-206.
  • Bedirli A, Kerem M, Pasaoglu H, Akyurek N, Tezcaner T, Elbeg S, et al. Beta-glucan attenuates inflammatory cytokine release and prevents acute lung injury in an experimental model of sepsis. Shock. 2007; 27(4): 397-401.
  • Choudhury S, Wilson MR, Goddard ME, O’Dea KP, Takata M: Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2004; 287:902-910.
  • Fara MG, Stein LK, Skliut M, Morgello S, Fifi JT, Dhamoon MS. Macrothrombosis and stroke in patients with mild Covid-19 infection. J Thromb Haemost. 2020; 18(8):2031-2033.
  • Steinack C, Hage R, Benden C, Schuurmans MM. SARS-CoV-2 and norovirus co-infection after lung transplantation. Transplantology. 2020; 1:16–23.
  • Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016; 8:959– 70.
  • Van der Meer JW, Joosten LA, Riksen N, Netea MG. Trained immunity: a smart way to enhance innate immune defence. Mol Immunol. 2015; 68:40–44.
  • Keating ST, Groh L, van der Heijden C, Rodriguez H, Dos Santos JC, Fanucchi S, et al. The set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by b-glucan. Cell Rep. 2020; 31:107548.
  • Quintin J, Saeed S,Martens JHA, Giamarellos-Bourboulis EJ, IfrimDC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012; 12:223–232.
  • Yun CH, Estrada A, Van Kessel A, Park BC, Laarveld B. Betaglucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol. 2003; 35:67–75.
  • Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, Cirovic B, de Bree LCJ, Damen M, et al. b-Glucan-induced trained immunity protects against leishmania braziliensis infection: a crucial role for IL-32. Cell Rep. 2019; 28:2659–72.e6.
  • Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today. 2005; 10:1145– 1157.
  • Jung K, Ha Y, Ha SK, Han DU, Kim DW, MoonWK, et al. Antiviral effect of saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J Vet Med B Infect Dis Vet Public Health. 2004; 51:72–76.
  • Chan GC, ChanWK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009; 2:25.
  • Batbayar S, Lee DH, Kim HW. Immunomodulation of fungal betaglucan in host defense signaling by dectin-1. Biomol Ther. 2012; 20:433–445.
  • Li B, Cai Y, Qi C, Hansen R, Ding C, Mitchell TC, et al. Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res. 2010; 16:5153–5164.
  • Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latge JP. Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J Biol Chem. 2009; 28420:13401– 13412.
  • Jawhara S. How fungal glycans modulate platelet activation via toll-like receptors contributing to the escape of Candida albicans from the immune rResponse. Antibiotics. 2020; 97:385.
  • Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, et al. Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352(6284):aaf1098.
  • Masuda Y, Inoue H, Ohta H, Miyake A, Konishi M, Nanba H. Oral administration of soluble beta-glucans extracted from Grifola frondosa induces systemic antitumor immune response and decreases immunosuppression in tumor-bearing mice. Int J Cancer. 2013; 1331:108– 119.
  • Horst G, Levine R, Chick R, Hofacre C. Effects of beta-1,3-glucan (AletaTM) on vaccination response in broiler chickens. Poult Sci. 2019; 984:1643–1647.
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 185:1094–1099.
  • Vancraeyneste H, Charlet R, Guerardel Y, Choteau L, Bauters A, Tardivel M, et al. Short fungal fractions of beta-1,3 glucans affect platelet activation. Am J Physiol Heart Circ Physiol. 2016; 3113:H725–34.
  • McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020; 63(3): 383-385.
  • Murphy EJ, Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, et al. β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects—Implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 2020; 732: 139330.
  • Talbott SM, Talbott JA. Baker's yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. J Am Coll Nutr. 2012; 31(4): 295-300.
  • Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van Rooijen N, et al. Benefits of oat β-glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physio. 2008; 294(5): R1593-R1599.
  • Ishikawa H, Fukui T, Ino S, Sasaki H, Awano N, Kohda C, et al. Influenza virus infection causes neutrophil dysfunction through reduced G-CSF production and an increased risk of secondary bacteria infection in the lung. Virology. 2016; 499:23–29.
  • Sakurai T, Hashimoto K, Suzuki I, Ohno N, Oikawa S, Masuda A, et al. Enhancement of murine alveolar macrophage functions by orally administered beta-glucan. Int J Immunopharmacol. 1992; 14:821-30.
  • Dharsono T, Rudnicka K,Wilhelm M, Schoen C. Effects of yeast (1,3)-(1,6)- beta-glucan on severity of upper respiratory tract infections: a double-blind, randomized, placebo-controlled study in healthy subjects. J Am Coll Nutr. 2019; 38:40–50.
  • Babayigit H, Kucuk C, Sozuer E, Yazici C, Kose K, Akgun H. Protective effect of β-glucan on lung injury after cecal ligation and puncture in rats. Intensive Care Med. 2005; 31(6): 865-870.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506.
  • Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M. Immunomodulatory effect of pleuran (b-glucan from pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol. 2013; 15:395–399.
  • Fuller R, Moore MV, Lewith G, Stuart BL, Ormiston RV, Fisk HL, et al. Yeast-derived beta-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition. 2017; 39(40):30–35.
  • Graubaum HJ, Busch R, Stier H, Gruenwald J. A double-blind, randomized, placebo-controlled nutritional study using an insoluble yeast beta-glucan to improve the immune defense system. Food Nutr Sci. 2012; 3:738–746.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Ferhat Şirinyıldız 0000-0001-8800-9787

Ayşegül Mavi Bulut 0000-0001-8657-1856

Project Number -
Early Pub Date January 30, 2022
Publication Date January 31, 2022
Submission Date August 18, 2021
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Şirinyıldız, F., & Mavi Bulut, A. (2022). Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 7(1), 173-178.
AMA Şirinyıldız F, Mavi Bulut A. Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar. İKÇÜSBFD. January 2022;7(1):173-178.
Chicago Şirinyıldız, Ferhat, and Ayşegül Mavi Bulut. “Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 7, no. 1 (January 2022): 173-78.
EndNote Şirinyıldız F, Mavi Bulut A (January 1, 2022) Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 7 1 173–178.
IEEE F. Şirinyıldız and A. Mavi Bulut, “Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar”, İKÇÜSBFD, vol. 7, no. 1, pp. 173–178, 2022.
ISNAD Şirinyıldız, Ferhat - Mavi Bulut, Ayşegül. “Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 7/1 (January 2022), 173-178.
JAMA Şirinyıldız F, Mavi Bulut A. Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar. İKÇÜSBFD. 2022;7:173–178.
MLA Şirinyıldız, Ferhat and Ayşegül Mavi Bulut. “Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 7, no. 1, 2022, pp. 173-8.
Vancouver Şirinyıldız F, Mavi Bulut A. Beta Glukanların Bağışıklık Üzerine Etkileri: Güncel Yaklaşımlar. İKÇÜSBFD. 2022;7(1):173-8.



Licensed under a Creative Commons Attribution 4.0 International License.