Review
BibTex RIS Cite

Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements

Year 2022, Volume: 7 Issue: 2, 403 - 407, 31.05.2022

Abstract

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme in the pentose phosphate pathway involved in the production of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH). One of the most common inherited enzyme abnormalities is G6PD deficiency. G6PD enzyme deficiency facilitates human coronavirus infection due to glutathione (GSH) depletion. Depletion of glutathione due to blockage of the pentose phosphate pathway can hardly preserve the oxidative and anti-oxidative balance. GSH protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. Levels of GSH, the key antioxidant protector in all tissues, could be critical in quenching the exacerbated inflammation that triggers organ failure in the new coronavirus disease (COVID-19). Since several amino acids intersect with the GSH pathway, changing the concentrations of these amino acids directly or indirectly can alter cellular GSH homeostasis. Supplementation of amino acids and as well as the implementation of diet strategies offer safe and non-invasive strategies for improving GSH status and protect the body from oxidative stress in various diseases and conditions. The purpose of this review is to examine the biochemical relationship between G6PD deficiency and COVID-19 and the effect of GSH on this disease.

References

  • World Health Organization. World Health Organization Coronavirus disease (COVID-2019) situation report-69. Available from: https://www.who.int/docs/ default-source/coronaviruse/situation-reports/20200329-sitrep-69-covid-19. pdf?sfvrsn=8d6620fa_8 (Accessed October 19, 2020).
  • Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. NEJM. 2020;382(18):1708-20.
  • Vardavas CI, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob Induc dis. 2020,18:20.
  • Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit care. 2020;24(1):1-4.
  • Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET 14 States, March 1–30, 2020. Morbidity and mortality weekly report. 2020;69(15):458-64.
  • Ulusu NN. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer’s disease: Partners in crime?. The hypothesis. Med Hypotheses. 2015;85(2):219-23.
  • Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DTY. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis. 2008;197(6):812-6.
  • Stanton RC. Glucose‐6‐phosphate dehydrogenase, NADPH, and cell survival. IUBMB. 2012; 64(5):362-9.
  • Zhang H, Forman HJ. Glutathione synthesis and its role in redox signaling. In Seminars in cell & developmental biology, Academic Press. 2012;23(7):722–8.
  • Rahman M, Hasan MR. Pentose phosphate pathway in disease and therapy. In Advanced Materials Research: Trans Tech Publications Ltd; 2014. p.1-27.
  • Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. The lancet. 2008;371(9606):64-74.
  • Vick DJ. Glucose-6-phosphate dehydrogenase deficiency and COVID-19 infection. In Mayo Clinic Proceedings, Elsevier. 2020;95:1803–4.
  • Aydemir D, Hashemkhani M, Acar HY, Ulusu NN. In vitro interaction of glutathione S-transferase-pi enzyme with glutathione-coated silver sulfide quantum dots: a novel method for biodetection of glutathione S-transferase enzyme. Chem. Biol Drug Des. 2019;94(6):2094-102.
  • Parsanathan R, Jain SK. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch Biochem Biophys. 2019;663:11-21.
  • Parsanathan R, Jain SK. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids. 2018;50(7):909-21.
  • Bubp J, Jen M, Matuszewski K. Caring for glucose-6-phosphate dehydrogenase (G6PD)–deficient patients: implications for pharmacy. P & T. 2015;40(9):572-4.
  • Smits SL, van den Brand JM, de Lang A, Leijten LM, van IJcken WF, van Amerongen G, et al. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol. 2011; 85(9):4234-45.
  • Van Den Brand JMA, Haagmans BL, van Riel D, Osterhaus ADME, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 201;151(1):83- 112.
  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16-32.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1-12.
  • Pizzorno J. Glutathione!. Integrative Medicine: A Clinician’s Journal. 2012;13(1):8-12.
  • Jain SK, Parsanathan R, Achari AE, Kanikarla-Marie P, Bocchini Jr JA. Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood: a novel approach to treat 25-hydroxyvitamin D deficiency. Antioxid Redox Signal. 2018;29(17):1792-807.
  • Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 2017;113(4-5):234-58.
  • Morris D, Guerra C, Donohue C, Oh H, Khurasany M, Venketarama V. Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin Dev Immunol. 2012, 2012: 734125.
  • Jones DP, Coates RJ, Flagg EW, Eley JW, Block G, Greenberg RS, et al. Glutathione in foods listed in the National Cancer Institute’s health habits and history food frequency questionnaire. Nutr Cancer. 1992;17(1):57-75.
  • Kim SH, Park KY, Suh MJ, Chung HY. Effect of garlic (allium sativum) on glutathione S-transfer activity and the level of glutathione in the mouse liver. Journal of the Korean Society of Food Science and Nutrition. 1994;23(3):436- 42.
  • Gebhardt R. Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol. 1997;144(2):279-86.
  • Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, et al. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci. 2014;101(18):7094-9.
  • Gould RL, Pazdro R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients. 2019;11(5):1056.
  • Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020:101063.
  • Capettini LSA, Montecucco F, Mach F, Stergiopulos N, Santos RAS, da Silva RF. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des. 2012;18:963–70.
  • Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55:2000607.
  • Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem. 2008;283:8984–94.
  • Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schäfer A, Matzke MM, Webb-Robertson BJM, Chang J, Luna ML, Long CE et al. Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol. 2013;87:3885–902.
  • Cengiz M, Uysal BB, Ikitimur H, Ozcan E, Islamoğlu MS, Aktepe E, et al. Effect of oral L-Glutamine supplementation on Covid-19 treatment. Clin Nutr Exp. 2020;33:24-31.
  • Lagranha CJ, Hirabara SM, Curi R, Pithon-Curi TC. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Cell Biochem Funct: Cell Biochemistry and its modulation by active agents or disease. 2007;25(5):563-9.
  • Jorge-Aarón RM, Rosa-Ester MP. N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol. 2020;15(11):959-62.
  • Sadegh Soltan-Sharifi M, Mojtahedzadeh M, Najafi A, Reza Khajavi M, Reza Rouini M, Moradi M, et al. Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. Hum Exp Toxicol 2007;26(9):697–703.
  • Liu Y, Yao W, Xu J, Qiu Y, Cao F, Li S, et al. The anti-inflammatory effects of acetaminophen and N-acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun. 2015;21:587–97.
  • Lee SI, Kang KS. N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction. Sci Rep. 2019;9:1004.
  • Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-L-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol. 2011;82:548–55.
  • Poe FL, Corn J. N-Acetylcysteine: a potential therapeutic agent for SARS-CoV-2. Med Hypotheses. 2020;143:109862.
  • De Flora S, Balansky R, La Maestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J. 2020;34(10):13185-93.
  • Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020;219:108544.
  • Zhang Q, Ju Y, Ma Y, Wang T, N-acetylcysteine improves oxidative stress and inflammatory response in patients with community acquired pneumonia, Medicine (Baltim.). 2018;97(45):13087.
  • Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, et al. l‐Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016;60(1):134-46.
  • Patriarca S, Furfaro AL, Domenicotti C, Odetti P, Cottalasso D, Marinari UM, et al. Supplementation with N-acetylcysteine and taurine failed to restore glutathione content in liver of streptozotocin-induced diabetics rats but protected from oxidative stress. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2005;1741(1-2):48-54.
  • Yildirim Z, Kilic N, Ozer C, Babul A, Take G, Erdogan D. Effects of taurine in cellular responses to oxidative stress in young and middle‐aged rat liver. Ann N Y Acad Sci. 2007; 1100(1):553-61.
  • Lu SC. S-adenosylmethionine. Int J Biochem Cell B. 2000; 32(4):391-5.
  • Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16(10):650-62.
  • Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572-83.
  • Sim WC, Yin HQ, Choi HS, Choi YJ, Kwak HC, Kim SK, et al. L-serine supplementation attenuates alcoholic fatty liver by enhancing homocysteine metabolism in mice and rats. J Nutr. 2015;145(2):260-7.

Glukoz-6-Fosfat Dehidrojenaz Yetersizliği ile COVID-19 Arasındaki Biyokimyasal İlişki ve Glutatyonun Etkileri

Year 2022, Volume: 7 Issue: 2, 403 - 407, 31.05.2022

Abstract

Glikoz-6-fosfat dehidrojenaz (G6PD), indirgenmiş nikotinamid adenin dinükleotid fosfat (NADPH) formunun üretiminde yer alan pentoz fosfat yolağındaki enzimdir. G6PD eksikliği, en yaygın kalıtsal enzim anormalliklerinden biridir. G6PD enzim eksikliği, glutatyon tükenmesine bağlı insan koronavirüs enfeksiyonunu kolaylaştırır. Pentoz fosfat yolunun blokajı nedeniyle glutatyonun (GSH) tükenmesi, oksidatif ve anti-oksidatif dengeyi zorlukla koruyabilir. GSH, vücudu aşırı reaktif oksijen radikallerinden kaynaklanan oksidatif hasarın zararlı etkilerinden korur. Tüm dokulardaki temel antioksidan koruyucu olan GSH seviyeleri, yeni koronavirüs hastalığında (COVID-19) organ yetmezliğini tetikleyen alevlenen inflamasyonu söndürmede kritik olabilir. Birkaç amino asit GSH yolağı ile kesiştiğinden, bu amino asitlerin konsantrasyonlarını doğrudan veya dolaylı olarak değiştirmek hücresel GSH homeostazını değiştirebilir. Amino asitlerin takviyesi ve diyet stratejilerinin uygulanması, çeşitli hastalık ve koşullarda GSH durumunu iyileştirmek ve vücudu oksidatif stresten korumak için güvenli ve invazif olmayan stratejiler sunar. Bu derlemenin amacı, G6PD eksikliği ile COVID-19 arasındaki biyokimyasal ilişkiyi ve GSH’ın bu hastalık üzerindeki etkisini incelemektir.

References

  • World Health Organization. World Health Organization Coronavirus disease (COVID-2019) situation report-69. Available from: https://www.who.int/docs/ default-source/coronaviruse/situation-reports/20200329-sitrep-69-covid-19. pdf?sfvrsn=8d6620fa_8 (Accessed October 19, 2020).
  • Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. NEJM. 2020;382(18):1708-20.
  • Vardavas CI, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob Induc dis. 2020,18:20.
  • Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit care. 2020;24(1):1-4.
  • Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET 14 States, March 1–30, 2020. Morbidity and mortality weekly report. 2020;69(15):458-64.
  • Ulusu NN. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer’s disease: Partners in crime?. The hypothesis. Med Hypotheses. 2015;85(2):219-23.
  • Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DTY. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis. 2008;197(6):812-6.
  • Stanton RC. Glucose‐6‐phosphate dehydrogenase, NADPH, and cell survival. IUBMB. 2012; 64(5):362-9.
  • Zhang H, Forman HJ. Glutathione synthesis and its role in redox signaling. In Seminars in cell & developmental biology, Academic Press. 2012;23(7):722–8.
  • Rahman M, Hasan MR. Pentose phosphate pathway in disease and therapy. In Advanced Materials Research: Trans Tech Publications Ltd; 2014. p.1-27.
  • Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. The lancet. 2008;371(9606):64-74.
  • Vick DJ. Glucose-6-phosphate dehydrogenase deficiency and COVID-19 infection. In Mayo Clinic Proceedings, Elsevier. 2020;95:1803–4.
  • Aydemir D, Hashemkhani M, Acar HY, Ulusu NN. In vitro interaction of glutathione S-transferase-pi enzyme with glutathione-coated silver sulfide quantum dots: a novel method for biodetection of glutathione S-transferase enzyme. Chem. Biol Drug Des. 2019;94(6):2094-102.
  • Parsanathan R, Jain SK. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch Biochem Biophys. 2019;663:11-21.
  • Parsanathan R, Jain SK. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids. 2018;50(7):909-21.
  • Bubp J, Jen M, Matuszewski K. Caring for glucose-6-phosphate dehydrogenase (G6PD)–deficient patients: implications for pharmacy. P & T. 2015;40(9):572-4.
  • Smits SL, van den Brand JM, de Lang A, Leijten LM, van IJcken WF, van Amerongen G, et al. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol. 2011; 85(9):4234-45.
  • Van Den Brand JMA, Haagmans BL, van Riel D, Osterhaus ADME, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 201;151(1):83- 112.
  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16-32.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1-12.
  • Pizzorno J. Glutathione!. Integrative Medicine: A Clinician’s Journal. 2012;13(1):8-12.
  • Jain SK, Parsanathan R, Achari AE, Kanikarla-Marie P, Bocchini Jr JA. Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood: a novel approach to treat 25-hydroxyvitamin D deficiency. Antioxid Redox Signal. 2018;29(17):1792-807.
  • Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 2017;113(4-5):234-58.
  • Morris D, Guerra C, Donohue C, Oh H, Khurasany M, Venketarama V. Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin Dev Immunol. 2012, 2012: 734125.
  • Jones DP, Coates RJ, Flagg EW, Eley JW, Block G, Greenberg RS, et al. Glutathione in foods listed in the National Cancer Institute’s health habits and history food frequency questionnaire. Nutr Cancer. 1992;17(1):57-75.
  • Kim SH, Park KY, Suh MJ, Chung HY. Effect of garlic (allium sativum) on glutathione S-transfer activity and the level of glutathione in the mouse liver. Journal of the Korean Society of Food Science and Nutrition. 1994;23(3):436- 42.
  • Gebhardt R. Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol. 1997;144(2):279-86.
  • Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, et al. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci. 2014;101(18):7094-9.
  • Gould RL, Pazdro R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients. 2019;11(5):1056.
  • Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020:101063.
  • Capettini LSA, Montecucco F, Mach F, Stergiopulos N, Santos RAS, da Silva RF. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des. 2012;18:963–70.
  • Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55:2000607.
  • Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem. 2008;283:8984–94.
  • Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schäfer A, Matzke MM, Webb-Robertson BJM, Chang J, Luna ML, Long CE et al. Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol. 2013;87:3885–902.
  • Cengiz M, Uysal BB, Ikitimur H, Ozcan E, Islamoğlu MS, Aktepe E, et al. Effect of oral L-Glutamine supplementation on Covid-19 treatment. Clin Nutr Exp. 2020;33:24-31.
  • Lagranha CJ, Hirabara SM, Curi R, Pithon-Curi TC. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Cell Biochem Funct: Cell Biochemistry and its modulation by active agents or disease. 2007;25(5):563-9.
  • Jorge-Aarón RM, Rosa-Ester MP. N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol. 2020;15(11):959-62.
  • Sadegh Soltan-Sharifi M, Mojtahedzadeh M, Najafi A, Reza Khajavi M, Reza Rouini M, Moradi M, et al. Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. Hum Exp Toxicol 2007;26(9):697–703.
  • Liu Y, Yao W, Xu J, Qiu Y, Cao F, Li S, et al. The anti-inflammatory effects of acetaminophen and N-acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun. 2015;21:587–97.
  • Lee SI, Kang KS. N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction. Sci Rep. 2019;9:1004.
  • Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-L-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol. 2011;82:548–55.
  • Poe FL, Corn J. N-Acetylcysteine: a potential therapeutic agent for SARS-CoV-2. Med Hypotheses. 2020;143:109862.
  • De Flora S, Balansky R, La Maestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J. 2020;34(10):13185-93.
  • Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020;219:108544.
  • Zhang Q, Ju Y, Ma Y, Wang T, N-acetylcysteine improves oxidative stress and inflammatory response in patients with community acquired pneumonia, Medicine (Baltim.). 2018;97(45):13087.
  • Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, et al. l‐Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016;60(1):134-46.
  • Patriarca S, Furfaro AL, Domenicotti C, Odetti P, Cottalasso D, Marinari UM, et al. Supplementation with N-acetylcysteine and taurine failed to restore glutathione content in liver of streptozotocin-induced diabetics rats but protected from oxidative stress. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2005;1741(1-2):48-54.
  • Yildirim Z, Kilic N, Ozer C, Babul A, Take G, Erdogan D. Effects of taurine in cellular responses to oxidative stress in young and middle‐aged rat liver. Ann N Y Acad Sci. 2007; 1100(1):553-61.
  • Lu SC. S-adenosylmethionine. Int J Biochem Cell B. 2000; 32(4):391-5.
  • Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16(10):650-62.
  • Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572-83.
  • Sim WC, Yin HQ, Choi HS, Choi YJ, Kwak HC, Kim SK, et al. L-serine supplementation attenuates alcoholic fatty liver by enhancing homocysteine metabolism in mice and rats. J Nutr. 2015;145(2):260-7.
There are 52 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Esma Oguz 0000-0002-9733-8774

Aybike Cebeci 0000-0002-5740-7376

Early Pub Date May 30, 2022
Publication Date May 31, 2022
Submission Date March 25, 2021
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Oguz, E., & Cebeci, A. (2022). Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 7(2), 403-407.
AMA Oguz E, Cebeci A. Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements. İKÇÜSBFD. May 2022;7(2):403-407.
Chicago Oguz, Esma, and Aybike Cebeci. “Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 7, no. 2 (May 2022): 403-7.
EndNote Oguz E, Cebeci A (May 1, 2022) Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 7 2 403–407.
IEEE E. Oguz and A. Cebeci, “Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements”, İKÇÜSBFD, vol. 7, no. 2, pp. 403–407, 2022.
ISNAD Oguz, Esma - Cebeci, Aybike. “Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 7/2 (May 2022), 403-407.
JAMA Oguz E, Cebeci A. Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements. İKÇÜSBFD. 2022;7:403–407.
MLA Oguz, Esma and Aybike Cebeci. “Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 7, no. 2, 2022, pp. 403-7.
Vancouver Oguz E, Cebeci A. Biochemical Relationship Between Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 And Effects Of Glutathione Supplements. İKÇÜSBFD. 2022;7(2):403-7.



Licensed under a Creative Commons Attribution 4.0 International License.