Research Article
BibTex RIS Cite

A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups

Year 2019, Volume: 1 Issue: 2, 34 - 45, 16.10.2019

Abstract

The main purpose of this paper is to investigate ordered
􀀀-semihypergroups in the general terms of ordered 􀀀-hyperideals. We intro-duce ordered (generalized) (m; n)-􀀀-hyperideals in ordered 􀀀-semihypergroups.
Then, we characterize ordered 􀀀-semihypergroup by ordered (generalized) (0; 2)-
􀀀-hyperideals, ordered (generalized) (1; 2)-􀀀{hyperideals and ordered (general-
ized) 0-minimal (0; 2)-􀀀-hyperideals. Furthermore, we investigate the notion of
ordered (generalized) (0; 2)-bi-􀀀-hyperideals, ordered 0-(0; 2) bisimple ordered
􀀀-semihypergroups and ordered 0-minimal (generalized) (0; 2)-bi-􀀀-hyperideals
in ordered 􀀀-semihyperoups. It is proved that an ordered 􀀀-semihypergroup
S with a zero 0 is 0-(0; 2)-bisimple if and only if it is left 0-simple.

References

  • [1] Abul Basar and M. Y. Abbasi, Some Properties of Q-Fuzzy Ideals in poΓ-Semigroups, 7(2)(2018), 505–511.[2] Abul Basar and M. Y. Abbasi, on generalized bi-Γ-ideals in Γ-semigroups, 23(2015), 181–186.[3] Abul Basar, M. Y. Abbasi and Sabahat Ali Khan, An introduction of theory of involutions in ordered semihypergroups and their weakly prime hyperideals, The Journal of the Indian Mathematical Society, 86(3-4)(2019), 230-240.[4] Abul Basar, A note on (m, n)-Γ-ideals of ordered LA-Γ–semigroups, Konuralp Journal of Mathematics, 7(1)(2019), 107-111.[5] Abul Basar, Application of (m, n)-Γ–Hyperideals in Characterization of LA-Γ-Semihypergroups, Discussion Mathematicae General Algebra and Applications, 39(1)(2019), 135-147.[6] Abul Basar, M. Y. Abbasi and Bhavanari Satyanarayana, On generalized G-hyperideals in ordered G-semihypergroups, Fundamental Journal of Mathematics and Applications, 2(1)(2019), 18-23.[7] Abul Basar, Shahnawaz Ali, Mohammad Yahya Abbasi, Bhavanari Satyanarayana and Poonam Kumar Sharma, On some hyperideals in ordered semihypergroups, Journal of New Theory, 29(2019).[8] B. Davvaz, Fuzzy hyperideals in semihypergroups, Ital. J. Pure Appl. Math. N, 8 (2000), 67–74.[9] Corsini, P. and V. Leoreanu-Fotea, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publisher, (2003).[10] B. Pibaljommee and B. Davvaz, Characterizations of (fuzzy) bihyperideals in ordered semihypergroups, J. Intell. Fuzzy Syst. 28 (2015). 2141–2148.[11] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malyas. Math. Sci. So., 23 (2000), 53–58.[12] B. Davvaz, Characterization of subsemihypergroups by various triangular norms, Czech. Math. J., 55(4)(2005), 923–932.[13] B. Davvaz, semihypergroup Theory, Academic Press.[14] C. Gutan, Simplifiable semihypergroups, Algebraic hyperstructures and applications (Xanthi, 1990), 103–111, World Sci. Publ., Teaneck, NJ, 1991.[15] D. Freni, Minimal order semihypergroups of type U on the right, II, J. Algebra, 340(2011), 77–80.[16] D. Heidari and B. Davvaz, On ordered hyperstructures, U. P. B. Sci. Bull. Series A, 73(2011), 85–96.[17] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-semihypergroups and their properties, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (1) (2010) 197–210.[18] D. Heidari and B. Davvaz, Γ-hypergroups and Γ-semihypergroups associated to binary relations, Iranian Journal of Science and Technology, 35 (2) (2011) 69–80.[19] D. Heidari and B. Davvaz. On ordered hyperstructures. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2)(2011), 85—96.[20] D. N. Krgovic, On 0-Minimal (0,2)-bi-ideals of semigroups, Publications De L’ Institut Mathematique, Nouvelle serie, tome., 31(45)(1982), 103-107.[21] F. Marty, Sur uni generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, (1934), 45–49.[22] J. Chvalina, Commutative hypergroups in the sense of Marty and ordered sets, in: Proc. Summer School, Gen. Algebra ordered Sets, Olomouc (Czech Republic), (1994), 19-30.[23] J. Tang., A. Khan and Y. F. Luo, Characterization of semisimple ordered semihypergroups in terms of fuzzy hyperideals, J. Intell. Fuzzy Syst., 30 (2016), 1735-1753.[24] K. Hilla, B. Davvaz and K. Naka, On quasi-hyperideals in semihypergroups, Commun. Algebra, 39 (2011), 41–83.[25] K. Hila and J. Dine, On hyperideals on left almost semihypergroups, ISRN Algebra, (2011) Article ID 953124 8Pages.[26] M. Akram, N. Yaqoob and M. Khan, On (m,n)-hyperideals in LAsemihypergroups, Applied mathematical Sciences, 7, (2013), 2187 – 2191.[27] M. Kondo and N. Lekkoksung, On intra-regular ordered Γsemihypergroups, Int. J. Math. Anal., 7(28)(2013) 1379–1386.[28] M. Y. Abbasi and Abul Basar, A note on ordered bi-Γ-ideals in intraregular ordered Γ-semigroups, Afrika Mathematica, (27)(7-8) (2016), 1403– 1407.[29] M. Y. Abbasi and Abul Basar, On Generalizations of ideals in LA-Γsemigroups, Southeast Asian Bulletin of Mathematics, (39) (2015), 1-12.[30] M. Y. Abbasi and A. Basar, Some properties of ordered 0-minimal (0, 2)-bi-Γ-ideals in po-Γ-semigroups, Hacettepe Journal of Mathematics and Statistics, 2(44)(2015), 247–254.[31] M. Y. Abbasi and Abul Basar, Weakly prime ideals in involution po-Γsemigroups, Kyungpook Mathematical Journal, 54(2014), 629-638.
  • [32] M. Y. Abbasi and Abul Basar, On Ordered Quasi-Gamma-Ideals of Regular Ordered Gamma-Semigroups, Algebra, 2013, Article ID 565848,(2013). doi:10.1155/2013/565848.
  • [33] M. D. Salvo, D. Freni and G. Lo Faro, Fully simple semihypergroups, J. Algebra, 399 (2014), 358–377.
  • [34] M. Bakhshi and R.A. Borzooei, Ordered polygroups, Ratio Math, 24(2013), 31-40.
  • [35] M. Novak, EL-hyperstructures, Ratio Math., 23 (2012), 65–80.
  • [36] P. Bonansinga and P. Corsini, On semihypergroup and hypergroup homomorphisms, Boll. Un. Mat. Ital. B., 1(2)(1982), 717–727.
  • [37] P. Conrad, Ordered semigroups, Nagoya Math. J. 16 (1960), 51—64.
  • [38] P. Corsini, Sur les semi-hypergroupes, Atti Soc. Pelorit. Sci. Fis. Math. Nat. 26(4) (1980), 363—372.
  • [39] P. Corsini, Prolegomena of Hypergroup Theory, second ed., Aviani Editore, Tricesimo, 1993.
  • [40] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, (1993).
  • [41] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, (2003).
  • [42] S. Hoskova, Upper order hypergroups as a reflective subcategory of subquasiorder hypergroups, Ital. J. Pure Appl. Math., 20(2006) 2015–222.
  • [43] S. Lajos, Notes on generalized bi-ideals in semigroups, Soochow J. Math.,10 (1984), 55–59.
  • [44] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math.,2 (1961), 217– 222.
  • [45] S. Mirvakili, S.M. Anvariyeh, B. Davvaz, Γ-semihypergroups and regular relations, J. Math. 2013 (2013), 7 pages.
  • [46] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, On Γ-hyperideals in Γsemihypergroups, Carpathian J. Math. 26 (1) (2010) 11-–23.
  • [47] T. Changphas and B. Davvaz, Bi-hyperideals and Quasi-hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math.-N, 35 (2015), 493–508.
  • [48] T. Changphas and B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math.-N, 33 (2014), 425–432.
  • [49] V. Leoreanu, About the simplifiable cyclic semihypergroups, Italian J. Pure Appl. Math., 7(2000), 69–76.
Year 2019, Volume: 1 Issue: 2, 34 - 45, 16.10.2019

Abstract

References

  • [1] Abul Basar and M. Y. Abbasi, Some Properties of Q-Fuzzy Ideals in poΓ-Semigroups, 7(2)(2018), 505–511.[2] Abul Basar and M. Y. Abbasi, on generalized bi-Γ-ideals in Γ-semigroups, 23(2015), 181–186.[3] Abul Basar, M. Y. Abbasi and Sabahat Ali Khan, An introduction of theory of involutions in ordered semihypergroups and their weakly prime hyperideals, The Journal of the Indian Mathematical Society, 86(3-4)(2019), 230-240.[4] Abul Basar, A note on (m, n)-Γ-ideals of ordered LA-Γ–semigroups, Konuralp Journal of Mathematics, 7(1)(2019), 107-111.[5] Abul Basar, Application of (m, n)-Γ–Hyperideals in Characterization of LA-Γ-Semihypergroups, Discussion Mathematicae General Algebra and Applications, 39(1)(2019), 135-147.[6] Abul Basar, M. Y. Abbasi and Bhavanari Satyanarayana, On generalized G-hyperideals in ordered G-semihypergroups, Fundamental Journal of Mathematics and Applications, 2(1)(2019), 18-23.[7] Abul Basar, Shahnawaz Ali, Mohammad Yahya Abbasi, Bhavanari Satyanarayana and Poonam Kumar Sharma, On some hyperideals in ordered semihypergroups, Journal of New Theory, 29(2019).[8] B. Davvaz, Fuzzy hyperideals in semihypergroups, Ital. J. Pure Appl. Math. N, 8 (2000), 67–74.[9] Corsini, P. and V. Leoreanu-Fotea, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publisher, (2003).[10] B. Pibaljommee and B. Davvaz, Characterizations of (fuzzy) bihyperideals in ordered semihypergroups, J. Intell. Fuzzy Syst. 28 (2015). 2141–2148.[11] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malyas. Math. Sci. So., 23 (2000), 53–58.[12] B. Davvaz, Characterization of subsemihypergroups by various triangular norms, Czech. Math. J., 55(4)(2005), 923–932.[13] B. Davvaz, semihypergroup Theory, Academic Press.[14] C. Gutan, Simplifiable semihypergroups, Algebraic hyperstructures and applications (Xanthi, 1990), 103–111, World Sci. Publ., Teaneck, NJ, 1991.[15] D. Freni, Minimal order semihypergroups of type U on the right, II, J. Algebra, 340(2011), 77–80.[16] D. Heidari and B. Davvaz, On ordered hyperstructures, U. P. B. Sci. Bull. Series A, 73(2011), 85–96.[17] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-semihypergroups and their properties, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (1) (2010) 197–210.[18] D. Heidari and B. Davvaz, Γ-hypergroups and Γ-semihypergroups associated to binary relations, Iranian Journal of Science and Technology, 35 (2) (2011) 69–80.[19] D. Heidari and B. Davvaz. On ordered hyperstructures. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2)(2011), 85—96.[20] D. N. Krgovic, On 0-Minimal (0,2)-bi-ideals of semigroups, Publications De L’ Institut Mathematique, Nouvelle serie, tome., 31(45)(1982), 103-107.[21] F. Marty, Sur uni generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, (1934), 45–49.[22] J. Chvalina, Commutative hypergroups in the sense of Marty and ordered sets, in: Proc. Summer School, Gen. Algebra ordered Sets, Olomouc (Czech Republic), (1994), 19-30.[23] J. Tang., A. Khan and Y. F. Luo, Characterization of semisimple ordered semihypergroups in terms of fuzzy hyperideals, J. Intell. Fuzzy Syst., 30 (2016), 1735-1753.[24] K. Hilla, B. Davvaz and K. Naka, On quasi-hyperideals in semihypergroups, Commun. Algebra, 39 (2011), 41–83.[25] K. Hila and J. Dine, On hyperideals on left almost semihypergroups, ISRN Algebra, (2011) Article ID 953124 8Pages.[26] M. Akram, N. Yaqoob and M. Khan, On (m,n)-hyperideals in LAsemihypergroups, Applied mathematical Sciences, 7, (2013), 2187 – 2191.[27] M. Kondo and N. Lekkoksung, On intra-regular ordered Γsemihypergroups, Int. J. Math. Anal., 7(28)(2013) 1379–1386.[28] M. Y. Abbasi and Abul Basar, A note on ordered bi-Γ-ideals in intraregular ordered Γ-semigroups, Afrika Mathematica, (27)(7-8) (2016), 1403– 1407.[29] M. Y. Abbasi and Abul Basar, On Generalizations of ideals in LA-Γsemigroups, Southeast Asian Bulletin of Mathematics, (39) (2015), 1-12.[30] M. Y. Abbasi and A. Basar, Some properties of ordered 0-minimal (0, 2)-bi-Γ-ideals in po-Γ-semigroups, Hacettepe Journal of Mathematics and Statistics, 2(44)(2015), 247–254.[31] M. Y. Abbasi and Abul Basar, Weakly prime ideals in involution po-Γsemigroups, Kyungpook Mathematical Journal, 54(2014), 629-638.
  • [32] M. Y. Abbasi and Abul Basar, On Ordered Quasi-Gamma-Ideals of Regular Ordered Gamma-Semigroups, Algebra, 2013, Article ID 565848,(2013). doi:10.1155/2013/565848.
  • [33] M. D. Salvo, D. Freni and G. Lo Faro, Fully simple semihypergroups, J. Algebra, 399 (2014), 358–377.
  • [34] M. Bakhshi and R.A. Borzooei, Ordered polygroups, Ratio Math, 24(2013), 31-40.
  • [35] M. Novak, EL-hyperstructures, Ratio Math., 23 (2012), 65–80.
  • [36] P. Bonansinga and P. Corsini, On semihypergroup and hypergroup homomorphisms, Boll. Un. Mat. Ital. B., 1(2)(1982), 717–727.
  • [37] P. Conrad, Ordered semigroups, Nagoya Math. J. 16 (1960), 51—64.
  • [38] P. Corsini, Sur les semi-hypergroupes, Atti Soc. Pelorit. Sci. Fis. Math. Nat. 26(4) (1980), 363—372.
  • [39] P. Corsini, Prolegomena of Hypergroup Theory, second ed., Aviani Editore, Tricesimo, 1993.
  • [40] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, (1993).
  • [41] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, (2003).
  • [42] S. Hoskova, Upper order hypergroups as a reflective subcategory of subquasiorder hypergroups, Ital. J. Pure Appl. Math., 20(2006) 2015–222.
  • [43] S. Lajos, Notes on generalized bi-ideals in semigroups, Soochow J. Math.,10 (1984), 55–59.
  • [44] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math.,2 (1961), 217– 222.
  • [45] S. Mirvakili, S.M. Anvariyeh, B. Davvaz, Γ-semihypergroups and regular relations, J. Math. 2013 (2013), 7 pages.
  • [46] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, On Γ-hyperideals in Γsemihypergroups, Carpathian J. Math. 26 (1) (2010) 11-–23.
  • [47] T. Changphas and B. Davvaz, Bi-hyperideals and Quasi-hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math.-N, 35 (2015), 493–508.
  • [48] T. Changphas and B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math.-N, 33 (2014), 425–432.
  • [49] V. Leoreanu, About the simplifiable cyclic semihypergroups, Italian J. Pure Appl. Math., 7(2000), 69–76.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Kabul edilmiş makaleler
Authors

Abul Basar

Shahnawaz Ali This is me

Poonam Kumar Sharma

Bhavanari Satyanarayana This is me

Mohammad Yahya Abbasi

Publication Date October 16, 2019
Acceptance Date December 17, 2019
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

APA Basar, A., Ali, S., Sharma, P. K., Satyanarayana, B., et al. (2019). A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups. Ikonion Journal of Mathematics, 1(2), 34-45.
AMA Basar A, Ali S, Sharma PK, Satyanarayana B, Abbasi MY. A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups. ikjm. October 2019;1(2):34-45.
Chicago Basar, Abul, Shahnawaz Ali, Poonam Kumar Sharma, Bhavanari Satyanarayana, and Mohammad Yahya Abbasi. “A Study of Ordered Bi-Gamma-Hyperideals in Ordered Gamma-Semihypergroups”. Ikonion Journal of Mathematics 1, no. 2 (October 2019): 34-45.
EndNote Basar A, Ali S, Sharma PK, Satyanarayana B, Abbasi MY (October 1, 2019) A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups. Ikonion Journal of Mathematics 1 2 34–45.
IEEE A. Basar, S. Ali, P. K. Sharma, B. Satyanarayana, and M. Y. Abbasi, “A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups”, ikjm, vol. 1, no. 2, pp. 34–45, 2019.
ISNAD Basar, Abul et al. “A Study of Ordered Bi-Gamma-Hyperideals in Ordered Gamma-Semihypergroups”. Ikonion Journal of Mathematics 1/2 (October 2019), 34-45.
JAMA Basar A, Ali S, Sharma PK, Satyanarayana B, Abbasi MY. A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups. ikjm. 2019;1:34–45.
MLA Basar, Abul et al. “A Study of Ordered Bi-Gamma-Hyperideals in Ordered Gamma-Semihypergroups”. Ikonion Journal of Mathematics, vol. 1, no. 2, 2019, pp. 34-45.
Vancouver Basar A, Ali S, Sharma PK, Satyanarayana B, Abbasi MY. A study of ordered bi-Gamma-hyperideals in ordered Gamma-semihypergroups. ikjm. 2019;1(2):34-45.