Elementary School Students’ Errors in Solving Problems Related to Pressure Subjects
Year 2007,
Volume: 6 Issue: 1, 11 - 23, 26.06.2007
Çiğdem Kılıç
Nilüfer Yavuzsoy Köse
,
Dilek Tanışlı
,
Aynur Özdaş
Abstract
This research has been conducted to determine fifth grade students’ van Hiele geometric
thinking levels in tessellation. The research was conducted in a primary school in Eskiehir. 9 fifth grade
students were chosen as participants. Data were collected through clinical interviews. In data analysis
descriptor code key, which is similar to a key code, developed by Callingham (2004) were used. As a result,
it was obtained that the fifth grade students’ van Hiele geometric thinking levels in tessellation are visual
and analytic. Besides, it was determined that there is a relation between students’ mathematical achievement
and van Hiele geometric thinking levels in tessellation.
References
- Billstein, R., Libeskind, S. & Lott, J. W. (2004). A problem solving approach to mathematics for elementary school teachers (8th Ed.). New York: Addison-Wesley.
- Callingham, R.(2004). “Primary students’ understanding of tessellation: An initial exploration.” Proceedings of the 28th conference of theInternational Group for the Psychlogy of Mathematics Education. Vol: 2. Bergen, Norway
- Clement, J. (2000). Analysis of clinical interview: Foundations and model viability. In A. E. Kelly&R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 547-589). London: Lawrence Erlbaum Associates Publishers.
- Goldin,G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly&R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517-545). London: Lawrence Erlbaum Associates Publishers.
- Goldin, G. A. (1998). Observing mathematical problem solving through task based interviews.
- In A. Teppo (Eds.), Qualitative research methods in mathematics education (pp. 40- 62). NCTM.
- Furner, J. M., Goodman B. & Meeks, S. (2004). “Creating tessellations with pavement chalk”. Australian Mathematics Teacher. 60(2) , 25-28.
- Johnson, C.D. & Kashef, A. E. (1996) “Tessellations in the technology education classroom”, The Technology Teacher, 56(3), 3-7
- MEB. (2005). lkö retim Matematik Dersi (1-5. Sınıflar) Ö retim Programı. Ankara: Devlet Kitapları Müdürlü ü Basımevi.
- MEB. (2005). lkö retim Matematik Dersi (6-8. Sınıflar) Ö retim Programı. Ankara: Devlet Kitapları Müdürlü ü Basımevi.
- Miles M. & Huberman, M. (1994). An expanded sourcebook qualitative data analysis (2 th Ed.). California: Sage Publications.
- Pumfrey, E. & Beardon, T. (2002). “Art and mathematics-mutual enrichment”. Micromath. 18(2), 21-26.
- Van De Walle, J. A. (2004). Elementary and middle school mathematics (5th Ed.). America: Person Education.
- Van Hiele, P. M. (1986) Structure and insight. A theory of mathematics education. Orlando, Florida: Academic Press.
- Yıldırım, A.& im ek, H. (2004). Sosyal Bilimlerde Nitel Ara tırma Yöntemleri. (4. Baskı). Ankara: Seçkin Yayıncılık.
İllköğretim 5. Sınıf Öğrencilerinin Süsleme Etkinliklerindeki van Hiele Geometrik Düşünce Düzeylerinin Belirlenmesi
Year 2007,
Volume: 6 Issue: 1, 11 - 23, 26.06.2007
Çiğdem Kılıç
Nilüfer Yavuzsoy Köse
,
Dilek Tanışlı
,
Aynur Özdaş
Abstract
Bu araştırma, ilköğretim 5. sınıf öğrencilerinin süsleme konusundaki van Hiele geometrik düşünce düzeylerini belirlemek için yapılmıştır. Araştırma Eskişehir il merkezi bir ilköğretim okulunun 5. sınıfına devam eden toplam 9 öğrenci üzerinde gerçekleştirilmiştir. Araştırma verileri nitel araştırma yöntemleri biri olan klinik görüşme tekniğiyle toplanmıştır. Verilerin analizinde, Callingham (2004) tarafından geliştirilmiş olan betimleyici kodlama anahtarıyla benzer bir kodlama anahtarı kullanılmıştır. Araştırma sonucunda, ilköğretim 5. sınıf öğrencilerinin süsleme konusunda van Hiele geometrik düşünce düzeylerinde görsel ve analitik seviy yer aldıkları. Ayrıca, Hiele geometrik düşünce ile etkinliklerindeki öğrencilerin başarı düzeylerini ölçmek düzeyleri arasında bir ilişki olduğu da belirlenmiştir.
References
- Billstein, R., Libeskind, S. & Lott, J. W. (2004). A problem solving approach to mathematics for elementary school teachers (8th Ed.). New York: Addison-Wesley.
- Callingham, R.(2004). “Primary students’ understanding of tessellation: An initial exploration.” Proceedings of the 28th conference of theInternational Group for the Psychlogy of Mathematics Education. Vol: 2. Bergen, Norway
- Clement, J. (2000). Analysis of clinical interview: Foundations and model viability. In A. E. Kelly&R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 547-589). London: Lawrence Erlbaum Associates Publishers.
- Goldin,G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly&R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517-545). London: Lawrence Erlbaum Associates Publishers.
- Goldin, G. A. (1998). Observing mathematical problem solving through task based interviews.
- In A. Teppo (Eds.), Qualitative research methods in mathematics education (pp. 40- 62). NCTM.
- Furner, J. M., Goodman B. & Meeks, S. (2004). “Creating tessellations with pavement chalk”. Australian Mathematics Teacher. 60(2) , 25-28.
- Johnson, C.D. & Kashef, A. E. (1996) “Tessellations in the technology education classroom”, The Technology Teacher, 56(3), 3-7
- MEB. (2005). lkö retim Matematik Dersi (1-5. Sınıflar) Ö retim Programı. Ankara: Devlet Kitapları Müdürlü ü Basımevi.
- MEB. (2005). lkö retim Matematik Dersi (6-8. Sınıflar) Ö retim Programı. Ankara: Devlet Kitapları Müdürlü ü Basımevi.
- Miles M. & Huberman, M. (1994). An expanded sourcebook qualitative data analysis (2 th Ed.). California: Sage Publications.
- Pumfrey, E. & Beardon, T. (2002). “Art and mathematics-mutual enrichment”. Micromath. 18(2), 21-26.
- Van De Walle, J. A. (2004). Elementary and middle school mathematics (5th Ed.). America: Person Education.
- Van Hiele, P. M. (1986) Structure and insight. A theory of mathematics education. Orlando, Florida: Academic Press.
- Yıldırım, A.& im ek, H. (2004). Sosyal Bilimlerde Nitel Ara tırma Yöntemleri. (4. Baskı). Ankara: Seçkin Yayıncılık.