Research Article
BibTex RIS Cite

A 100% Renewable Energy System: The Case of Turkey In The Year 2050

Year 2020, Volume: 1 Issue: 2, 130 - 141, 31.12.2020

Abstract

Energy demand is increasing rapidly in developing countries (Turkey is one of them) and fossil fuels play an important role in meeting this demand. In terms of pricing, it seems unlikely that energy produced by fossil fuels can compete with renewable energy sources. This paper investigates whether the possibility of converting to a 100% renewable energy system for the current energy system. A simulation tool, EnergyPLAN, was used to investigate the implementation of 100% renewable energy system. EnergyPLAN is a computer-based tool that models a country's energy system and predicts system behavior and explores future energy systems to identify trends for energy use and emissions. The study has been performed for renewable scenarios designed for 2050. Turkey is used as a case study; however, it reflects various energy systems today which use power plants for the heating, cooling, industry, electricity, and transport sectors. There are five analysis steps which are: 1) a reference model of the current Turkish energy system was constructed, 2) increase and install new renewable energy generation to replace the remaining fossil fuels, 3) introduction of district heating, 4) removal of nuclear power plants, and finally, 5) the implementation of electric vehicles (EVs). These energy-systems were compared according to carbon emission and produced energy; so that the benefits from each could be used to create an ‘optimum’ scenario. The results are very promising since they indicate that the transition to a 100% renewable energy system can begin today, without increasing the fossil fuel power plants in the short- or long-term, if the generated power based on the volatile energy sources photovoltaics (PV), wind energy (onshore) and hydropower forecasted for 2050 become a reality.

References

  • Ağbulut, Ü., & Bakir, H. (2019). The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 25-36.
  • Akella, A. K., Saini, R. P., Sharma, M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34(2), 390-396.
  • Akpinar, E. (2005). The Place of River Type Power Plants in Turkey Hydroelectric Production. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 1-25.
  • Atalay, O., Ulu, E. Y. (2018). Hydropower Capacity of Turkey and Actual Investments. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (4), 162-166.
  • Balat, M. (2010). Security of energy supply in Turkey: Challenges and solutions. Energy Conversion and Management, 51(10), 1998-2011.
  • Bemis, G. R., DoANGELIS, MICHAEL (1990). Levelized cost of electricity generation technologies. Contemporary Economic Policy, 8(3), 200-214.
  • Blok, K. (2006). Renewable energy policies in the European Union. Energy policy, 34(3), 251-255.
  • Branker, K., Pathak, M. J. M., Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and sustainable energy reviews, 15(9), 4470-4482.
  • Burch, I., Gilchrist, J. (2018). Survey of global activity to phase out internal combustion engine vehicles. Center of Climate Protection: Santa Rosa, CA, USA.
  • Chilán, J. C. H., Torres, S. G. P., Machuca, B. I. F., Cordova, A. J. T., Pérez, C. A. M., Gamez, M. R. (2018). Social impact of renewable energy sources in the province of Loja. International journal of physical sciences and engineering, 2(1), 13-25.
  • Denmark sources record 47% of power from wind in 2019. Reuters. 2020-01-02. Retrieved 2020-04-30.
  • El Bassam, N., Maegaard, P., Schlichting, M. (2013). Distributed renewable energies for off-grid communities: strategies and technologies toward achieving sustainability in energy generation and supply. Newnes.
  • Eryilmaz, T., Yesilyurt, M. K., Cesur, C., & Gokdogan, O. (2016). Biodiesel production potential from oil seeds in Turkey. Renewable and Sustainable Energy Reviews, 58, 842-851.
  • Foley, G. (1992). Renewable energy in third world development assistance Learning from experience. Energy Policy, 20(4), 355-364.
  • Frondel, M. Ritter, N. Schmidt, C. M. Vance, C. (2010). Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy, 38(8), 4048-4056.
  • González, J. S., Lacal-Arántegui, R. (2016). A review of regulatory framework for wind energy in European Union countries: Current state and expected developments. Renewable and Sustainable Energy Reviews, 56, 588-602.
  • Gyamfi, S., Derkyi, N. S., Asuamah, E. Y., Aduako, I. J. (2018). Renewable Energy and Sustainable Development. In Sustainable Hydropower in West Africa (pp. 75-94). Academic Press.
  • Hacquard, P. Simoën, M. Hache, E. (2019). Is the oil industry able to support a world that consumes 105 million barrels of oil per day in 2025? Oil Gas Science and Technology–Revue d’IFP Energies nouvelles, 74, 88.
  • Hagos, D. A., Gebremedhin, A., Zethraeus, B. (2014). Towards a flexible energy system–A case study for Inland Norway. Applied energy, 130, 41-50.
  • Hosseini, S. E., Wahid, M. A. (2012). Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renewable and sustainable energy reviews, 16(8), 5732-5740.
  • https://www.independent.co.uk/environment/germany-power-grid-pays-customers-christmas-sustainability-renewable-energy-a8141431.html
  • https://www.theguardian.com/environment/2015/jul/10/denmark-wind-windfarm-power-exceed-electricity-demand
  • International Energy Outlook 2019 with projections to 2050 September 2019.
  • Kaya, M. N., Celik, Y. Vertical Axis Wind Turbines for Turkey: Overview to Application Opportunities.
  • Kaygusuz, K., Kaygusuz, A. (2002). Renewable energy and sustainable development in Turkey. Renewable Energy, 25(3), 431-453.
  • Kemfert, C. Breyer, C. Oei, P. Y. (Eds.). (2020). 100% Renewable Energy Transition: Pathways and Implementation. MDPI.
  • Kilic, A. M. (2006). Turkey's main energy sources and importance of usage in energy sector. Energy exploration exploitation, 24(1-2), 1-17.
  • Koo, J., Park, K., Shin, D., Yoon, E. S. (2011). Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea’s renewable energy plan. Applied Energy, 88(6), 2254-2260.
  • Lazard Levelized Cost of Energy Analysis, Nov. 2019 (source: screenshot/ Lazard)
  • Leal-Arcas, R., Lasniewska, F., Proedrou, F. (2017). Smart grids in the European Union: Assessing energy security, regulation social and ethical considerations. Colum. J. Eur. L., 24, 291.
  • Lund, H. (1999). A green energy plan for Denmark. Environmental and Resource Economics, 14(3), 431-440.
  • Oguz, H., Öğüt, H., Eryilmaz, T. (2007). Investigation of biodiesel production, quality and performance in Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(16), 1529-1535.
  • Østergaard, P. A., Mathiesen, B. V., Möller, B., Lund, H. (2010). A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass. Energy, 35(12), 4892-4901.
  • Pimentel, D., Herz, M., Glickstein, M., Zimmerman, M., Allen, R., Becker, K., Seidel, T. (2002). Renewable Energy: Current and Potential IssuesRenewable energy technologies could, if developed and implemented, provide nearly 50% of US energy needs; this would require about 17% of US land resources. Bioscience, 52(12), 1111-1120
  • Ragheb, M. (2017). Economics of wind power generation. In Wind Energy Engineering (pp. 537-555). Academic Press.
  • Salih, OZER., VURAL, E. Turboşarjlı enjeksiyonlu benzinli bir motorda LPG kullanımının emisyonlar ve motor performansı açısından incelenmesi. Politeknik Dergisi.
  • Stolic, N., Pesic, B., Milosevic, B., Spasic, Z., & Lazic, M. (2018). Possibilities of applying biomass for the purposes of energy production and environmental protection. Journal of Agricultural, Food and Environmental Sciences, JAFES, 72(1), 152-156.
  • Sørensen, B. (1975). Energy and Resources: A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050. Science, 189(4199), 255-260.
  • Šúri, M., Huld, T. A., Dunlop, E. D., Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar energy, 81(10), 1295-1305.
  • The Energy Sector. November 11, 2011. (The Energy Sector. November 11, 2011.)
  • Tmmob makina mühendisleri odası peport, MMO/691 ISBN: 978-605-01-1198-9
  • Topallı, N., Alagöz, M. (2014). Energy consumption and economic growth in Turkey: An empirical analysis. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (32), 151-159.
  • Uslu, T. (2008). Turkey's foreign dependence on energy. Energy Sources, Part B, 3(2), 113-120.
  • Vera, I., Langlois, L. (2007). Energy indicators for sustainable development. Energy, 32(6), 875-882.
  • Westbrook, M. H., Westbrook, M. (2001). The Electric Car: Development and future of battery, hybrid and fuel-cell cars (No. 38). Iet.
  • Yıldız, T. (2010). Turkey’s energy economy and future energy vision. Turkish Policy Quarterly, 9 (2), 16.
  • 2019 The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis

%100 Yenilenebilir Enerji Sistemi: 2050 Türkiye Örneği

Year 2020, Volume: 1 Issue: 2, 130 - 141, 31.12.2020

Abstract

Gelişmekte olan ülkelerde (Türkiye de bunlardan biri) enerji talebi hızla artmakta ve fosil yakıtlar bu talebin karşılanmasında önemli rol oynamaktadır. Enerji fiyatları açısından, fosil yakıtlar tarafından üretilen enerjinin yenilenebilir enerji kaynakları ile rekabet etmesi pek olası görünmemektedir. Bu makalede, mevcut enerji sistemi için %100 yenilenebilir bir enerji sistemine dönüştürme olasılığının olup olmadığını araştırılmaktadır. % 100 yenilenebilir enerji sisteminin uygulanmasını araştırmak için EnergyPLAN adlı bir yazılım simülasyon aracı kullanılmıştır. EnergyPLAN, bir ülkenin enerji sistemini modelleyen ve sistem davranışını tahmin eden, enerji kullanımı ve emisyon eğilimlerini belirlemek için gelecekteki enerji sistemlerini araştıran bilgisayar tabanlı bir yazılımdır. Çalışma, 2050 için tasarlanan yenilenebilir senaryolar için gerçekleştirilmiştir. Vaka çalışmasında Türkiye örneğinde; günümüzdeki ısıtma, soğutma, sanayi, elektrik ve ulaştırma sektörleri için enerji santrallerini kullanan çeşitli enerji sistemlerini yansıtılmıştır. Beş analiz adımı uygulanmıştır: 1) mevcut Türk enerji sistemi referans modeli olarak alınmış, 2) fosil yakıtların yerine yenilenebilir enerji üretiminin artırılması ve yeni santrallerin kurulması hedeflenmiş, 3) bölgesel ısıtmanın sistemlerinin hayata geçirilmesi amaçlanmış, 4) nükleer enerji santralleri kaldırılmış ve son olarak, 5) elektrikli araçlar uygulanmıştır. Her bir enerji sistemi için karbon salınımına ve üretilen enerjiye göre karşılaştırılmıştır; böylece her birinden elde edilen sonuçlar "optimum" bir senaryo oluşturmak için kullanılmıştır. Sonuçlar, fosil yakıt santrallerini kısa veya uzun vadede arttırmadan; 2050 için öngörülen yenilenebilir enerji kaynakları fotovoltaik, rüzgar ve hidroelektrik enerjisine dayalı olarak üretilen güç gerçeğe dönüştürüldüğünde % 100 yenilenebilir enerji sistemine geçişin bugün umut verici olarak başlayabileceğini göstermektedir.

References

  • Ağbulut, Ü., & Bakir, H. (2019). The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 25-36.
  • Akella, A. K., Saini, R. P., Sharma, M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34(2), 390-396.
  • Akpinar, E. (2005). The Place of River Type Power Plants in Turkey Hydroelectric Production. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 1-25.
  • Atalay, O., Ulu, E. Y. (2018). Hydropower Capacity of Turkey and Actual Investments. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (4), 162-166.
  • Balat, M. (2010). Security of energy supply in Turkey: Challenges and solutions. Energy Conversion and Management, 51(10), 1998-2011.
  • Bemis, G. R., DoANGELIS, MICHAEL (1990). Levelized cost of electricity generation technologies. Contemporary Economic Policy, 8(3), 200-214.
  • Blok, K. (2006). Renewable energy policies in the European Union. Energy policy, 34(3), 251-255.
  • Branker, K., Pathak, M. J. M., Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and sustainable energy reviews, 15(9), 4470-4482.
  • Burch, I., Gilchrist, J. (2018). Survey of global activity to phase out internal combustion engine vehicles. Center of Climate Protection: Santa Rosa, CA, USA.
  • Chilán, J. C. H., Torres, S. G. P., Machuca, B. I. F., Cordova, A. J. T., Pérez, C. A. M., Gamez, M. R. (2018). Social impact of renewable energy sources in the province of Loja. International journal of physical sciences and engineering, 2(1), 13-25.
  • Denmark sources record 47% of power from wind in 2019. Reuters. 2020-01-02. Retrieved 2020-04-30.
  • El Bassam, N., Maegaard, P., Schlichting, M. (2013). Distributed renewable energies for off-grid communities: strategies and technologies toward achieving sustainability in energy generation and supply. Newnes.
  • Eryilmaz, T., Yesilyurt, M. K., Cesur, C., & Gokdogan, O. (2016). Biodiesel production potential from oil seeds in Turkey. Renewable and Sustainable Energy Reviews, 58, 842-851.
  • Foley, G. (1992). Renewable energy in third world development assistance Learning from experience. Energy Policy, 20(4), 355-364.
  • Frondel, M. Ritter, N. Schmidt, C. M. Vance, C. (2010). Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy, 38(8), 4048-4056.
  • González, J. S., Lacal-Arántegui, R. (2016). A review of regulatory framework for wind energy in European Union countries: Current state and expected developments. Renewable and Sustainable Energy Reviews, 56, 588-602.
  • Gyamfi, S., Derkyi, N. S., Asuamah, E. Y., Aduako, I. J. (2018). Renewable Energy and Sustainable Development. In Sustainable Hydropower in West Africa (pp. 75-94). Academic Press.
  • Hacquard, P. Simoën, M. Hache, E. (2019). Is the oil industry able to support a world that consumes 105 million barrels of oil per day in 2025? Oil Gas Science and Technology–Revue d’IFP Energies nouvelles, 74, 88.
  • Hagos, D. A., Gebremedhin, A., Zethraeus, B. (2014). Towards a flexible energy system–A case study for Inland Norway. Applied energy, 130, 41-50.
  • Hosseini, S. E., Wahid, M. A. (2012). Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renewable and sustainable energy reviews, 16(8), 5732-5740.
  • https://www.independent.co.uk/environment/germany-power-grid-pays-customers-christmas-sustainability-renewable-energy-a8141431.html
  • https://www.theguardian.com/environment/2015/jul/10/denmark-wind-windfarm-power-exceed-electricity-demand
  • International Energy Outlook 2019 with projections to 2050 September 2019.
  • Kaya, M. N., Celik, Y. Vertical Axis Wind Turbines for Turkey: Overview to Application Opportunities.
  • Kaygusuz, K., Kaygusuz, A. (2002). Renewable energy and sustainable development in Turkey. Renewable Energy, 25(3), 431-453.
  • Kemfert, C. Breyer, C. Oei, P. Y. (Eds.). (2020). 100% Renewable Energy Transition: Pathways and Implementation. MDPI.
  • Kilic, A. M. (2006). Turkey's main energy sources and importance of usage in energy sector. Energy exploration exploitation, 24(1-2), 1-17.
  • Koo, J., Park, K., Shin, D., Yoon, E. S. (2011). Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea’s renewable energy plan. Applied Energy, 88(6), 2254-2260.
  • Lazard Levelized Cost of Energy Analysis, Nov. 2019 (source: screenshot/ Lazard)
  • Leal-Arcas, R., Lasniewska, F., Proedrou, F. (2017). Smart grids in the European Union: Assessing energy security, regulation social and ethical considerations. Colum. J. Eur. L., 24, 291.
  • Lund, H. (1999). A green energy plan for Denmark. Environmental and Resource Economics, 14(3), 431-440.
  • Oguz, H., Öğüt, H., Eryilmaz, T. (2007). Investigation of biodiesel production, quality and performance in Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(16), 1529-1535.
  • Østergaard, P. A., Mathiesen, B. V., Möller, B., Lund, H. (2010). A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass. Energy, 35(12), 4892-4901.
  • Pimentel, D., Herz, M., Glickstein, M., Zimmerman, M., Allen, R., Becker, K., Seidel, T. (2002). Renewable Energy: Current and Potential IssuesRenewable energy technologies could, if developed and implemented, provide nearly 50% of US energy needs; this would require about 17% of US land resources. Bioscience, 52(12), 1111-1120
  • Ragheb, M. (2017). Economics of wind power generation. In Wind Energy Engineering (pp. 537-555). Academic Press.
  • Salih, OZER., VURAL, E. Turboşarjlı enjeksiyonlu benzinli bir motorda LPG kullanımının emisyonlar ve motor performansı açısından incelenmesi. Politeknik Dergisi.
  • Stolic, N., Pesic, B., Milosevic, B., Spasic, Z., & Lazic, M. (2018). Possibilities of applying biomass for the purposes of energy production and environmental protection. Journal of Agricultural, Food and Environmental Sciences, JAFES, 72(1), 152-156.
  • Sørensen, B. (1975). Energy and Resources: A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050. Science, 189(4199), 255-260.
  • Šúri, M., Huld, T. A., Dunlop, E. D., Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar energy, 81(10), 1295-1305.
  • The Energy Sector. November 11, 2011. (The Energy Sector. November 11, 2011.)
  • Tmmob makina mühendisleri odası peport, MMO/691 ISBN: 978-605-01-1198-9
  • Topallı, N., Alagöz, M. (2014). Energy consumption and economic growth in Turkey: An empirical analysis. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (32), 151-159.
  • Uslu, T. (2008). Turkey's foreign dependence on energy. Energy Sources, Part B, 3(2), 113-120.
  • Vera, I., Langlois, L. (2007). Energy indicators for sustainable development. Energy, 32(6), 875-882.
  • Westbrook, M. H., Westbrook, M. (2001). The Electric Car: Development and future of battery, hybrid and fuel-cell cars (No. 38). Iet.
  • Yıldız, T. (2010). Turkey’s energy economy and future energy vision. Turkish Policy Quarterly, 9 (2), 16.
  • 2019 The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hasan Huseyin Coban 0000-0002-5284-0568

Publication Date December 31, 2020
Submission Date October 29, 2020
Acceptance Date November 23, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Coban, H. H. (2020). A 100% Renewable Energy System: The Case of Turkey In The Year 2050. İleri Mühendislik Çalışmaları Ve Teknolojileri Dergisi, 1(2), 130-141.
AMA Coban HH. A 100% Renewable Energy System: The Case of Turkey In The Year 2050. imctd. December 2020;1(2):130-141.
Chicago Coban, Hasan Huseyin. “A 100% Renewable Energy System: The Case of Turkey In The Year 2050”. İleri Mühendislik Çalışmaları Ve Teknolojileri Dergisi 1, no. 2 (December 2020): 130-41.
EndNote Coban HH (December 1, 2020) A 100% Renewable Energy System: The Case of Turkey In The Year 2050. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi 1 2 130–141.
IEEE H. H. Coban, “A 100% Renewable Energy System: The Case of Turkey In The Year 2050”, imctd, vol. 1, no. 2, pp. 130–141, 2020.
ISNAD Coban, Hasan Huseyin. “A 100% Renewable Energy System: The Case of Turkey In The Year 2050”. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi 1/2 (December 2020), 130-141.
JAMA Coban HH. A 100% Renewable Energy System: The Case of Turkey In The Year 2050. imctd. 2020;1:130–141.
MLA Coban, Hasan Huseyin. “A 100% Renewable Energy System: The Case of Turkey In The Year 2050”. İleri Mühendislik Çalışmaları Ve Teknolojileri Dergisi, vol. 1, no. 2, 2020, pp. 130-41.
Vancouver Coban HH. A 100% Renewable Energy System: The Case of Turkey In The Year 2050. imctd. 2020;1(2):130-41.