Spatiotemporal Modeling and Simulation of DC Microplasma Glow Discharges in ZnSe-Ar/H2 System
Year 2024,
Volume: 3 Issue: 1, 1 - 8, 30.06.2024
Erhan Ongun
,
Hatice Hilal Yücel (kurt)
Abstract
With their unique electrical and optical properties, microplasmas have become the focus of great interest in the broad field of plasma science and engineering in designing advanced materials and devices, including light sources, photodetectors, and microplasma field effect transistors.
This conceptual research study was carried out for the numerical analyzes of gas discharge-semiconductor -based microplasmas (GDSµP) in the COMSOL Multiphysics program. Plasma modeling was based on electron energy distribution using Maxwell analytic function. Zinc selenide (ZnSe), a type II-VI compound semiconductor, was modeled as the cathode electrode with a micro-digitated electron emission surface, coupled to a microdischarge gap consisting of unary argon (Ar) and binary argon/hydrogen (Ar/H2) gases. Bandgap tunable ZnSe has attracted the attention of researchers for various optoelectronic applications, including high-efficiency and fast-response infrared imaging devices in the near-mid infrared spectrum. The binary gas system consisted of argon mixed with 10% molar hydrogen.
Spatiotemporal distribution patterns of the main discharge parameters were plotted across the 100 µm discharge gap length of a two-dimensional square chamber in gases media at 250 Torr subatmospheric pressure. Microscale normal glow discharges were generated under electric field fed with a constant voltage of 1300 VDC in a virtual electrical equivalent circuit (EEC). GDSµP cells were simulated to explore fast transient discharge parameters, including electron density (ED), electron current density (ECD), and electric potential (EP). It was revealed that microplasma-based infrared detectors and image converters combined with semiconductor-gas discharge systems can be specifically modeled for the intended application.
Ethical Statement
Declaration of ethical standards:
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission.
Supporting Institution
Gazi University
Project Number
BAP Project Nr: FDK-2023-8704.
Thanks
The authors would like to thank Gazi University for supporting this study within the scope of the BAP Project Nr: FDK-2023-8704.
References
- [1] Schoenbach, K.H., Becker, K. (2016). 20 years of microplasma research: A status report. Eur. Phys. J. D, 70, 29.
- [2] Chiang, W.-H., Mariotti, D., Sankaran, R.M., Eden, J.G., Ostrikov, K. (2020). Microplasmas for advanced materials and devices. Adv. Mater., 32, 1905508.
- [3] Azar, M.T., Pai, P. (2017). Microplasma field effect transistors. Micromachines, 8(4), 117.
- [4] Kurt, H.H., Koc, E., Salamov, B. (2010). Atmospheric pressure DC glow discharge in semiconductor gas discharge electronic devices. IEEE Transactions on Plasma Science, 38(2), 137.
- [5] Sadiq, Y., Kurt, H.Y., Albarzanji, A.O., Alekperov, S.D., Salamov, B.G. (2009). Transport properties in semiconductor-gas discharge electronic devices. Solid-state electronics, 53(9), 1009.
- [6] Garner, A.L., Meng, G., Fu, Y., Loveless, A.M., Brayfield II, R.S., Darr, A.M. (2020). Transitions between electron emission and gas breakdown mechanisms across length and pressure scales. J. Appl. Phys., 128, 210903.
- [7] Go, D.B., Venkattraman, A. (2014). Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve. J. Phys. D: Appl. Phys., 47, 503001.
- [8] Garner, A.L., Loveless, A.M., Dahal, J.N., Venkattraman, A. (2020). A tutorial on theoretical and computational techniques for gas breakdown in microscale gaps. IEEE Transactions on Plasma Science, 99:1-17.
- [9] Donald, D.H., Hendrik, C.S., Setumo, V.M., Lehlohonolo, F.K. (2022). Zinc selenide semiconductor: synthesis, properties and applications. Nanoscale Compound Semiconductors and their Optoelectronics Applications, Woodhead Publishing Series in Electronic and Optical Materials, 67-84. https://doi.org/10.1016/B978-0-12-824062-5.00001-4.
- [10] Morkoc, B.H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M. (1994). Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device Technologies. Journal of Applied Physics, 76(3), 1363.
- [11] Kurt, H.H., Tanrıverdi E. (2017). Electrical Properties of ZnS and ZnSe Semiconductors in a plasma-semiconductor system. Journal of Electronic Materials, 46(7), 3965.
- [12] Kurt, H.H. (2018). Exploration of gas discharges with GaAs, GaP and ZnSe electrodes under atmospheric pressure. Journal of Electronic Materials, 47, 4444.
- [13] Ongun, E., Yücel (Kurt), H.H., Utaş, S. (2024). DC-driven subatmospheric glow discharges in the infrared-stimulated. J Mater Sci: Mater Electron, 35:655, https://doi.org/10.1007/s10854-024-12382-1.
- [14] Brayfield II, R.S., Fairbanks, A.J., Loveless, A.M., Gao, S., Dhanabal, A., Li, W., Darr, C., Wu, W., Garner, A.L. (2019). The impact of cathode surface roughness and multiple breakdown events on microscale gas breakdown at atmospheric pressure. J. Appl. Phys., 125, 203302.
- [15] Fu, Y., Zhang, P., Krek, J., Verboncoeur, J.P. (2019). Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions. Appl. Phys. Lett., 114, 014102.
- [16] Kurt, H.Y., İnaloz A., Salamov, B.G. (2010). Study of non-thermal plasma discharge in semiconductor gas discharge electronic devices. Optoelectronics and Advanced Materials-Rapid Communications, 4, 205.
ZnSe-Ar/H2 sisteminde DC mikroplazma glow deşarjlarının uzay-zamansal modelleme ve simülasyonu
Year 2024,
Volume: 3 Issue: 1, 1 - 8, 30.06.2024
Erhan Ongun
,
Hatice Hilal Yücel (kurt)
Abstract
Sahip oldukları elektro-optik özellikleri nedeniyle mikro plazmalar; ışık kaynakları, foto detektörler ve mikro plazma temelli alan etkili transistörler dahil olmak üzere plazma bilimi ve teknolojisi alanında mevcut çeşitli uygulamalar için geliştirilen ileri malzeme ve aygıtların tasarımında büyük ilgi odağı haline gelmiştir.
Bu makalede, sonlu elemanlar yöntemine (FEM) dayalı olarak çalışan COMSOL Multiphysics programını kullanarak yarıiletken-gaz deşarj mikro plazma sisteminin sayısal modelleme ve analiz çalışması gerçekleştirildi. Mikro plazma sisteminde, tip II-VI bileşik yarıiletken çinko selenit (ZnSe) malzemeye akuple argon (Ar) ve argon/hidrojen (Ar/H2) gaz deşarj hücresi modellendi. ZnSe, ışık yayan diyot ve diyot lazer aygıtlar dahil olmak üzere çeşitli optoelektronik uygulamalarda kullanılmaktadır. İkili gaz sisteminde, 10% molar H2 içeren Ar gaz karışımı deşarj ortamı olarak modellendi.
Elektron yoğunluğu, elektron akım yoğunluğu ve elektrik potansiyeli parametrelerinin 2 ve 3 -boyutlu uzay-zamansal değişimlerinin sayısal analizleri; 100 µm aralıklı mikro plazma hücresinde, 250 Torr basınçtaki Ar ve Ar/H2 gaz ortamlarda, 1300 VDC elektrotlararası gerilim altında, normal glow deşarj rejiminde gerçekleştirildi. Hibrit ZnSe-Ar/H2 yarıiletken-gaz deşarj sisteminin mikro plazma temelli kızılötesi sensör ve görüntü çevirici aygıt uygulamaları için tasarlanabileceği, sayısal modelleme ve simülasyon çalışmaları neticesinde elde edilen verilerden anlaşılmaktadır.
Project Number
BAP Project Nr: FDK-2023-8704.
References
- [1] Schoenbach, K.H., Becker, K. (2016). 20 years of microplasma research: A status report. Eur. Phys. J. D, 70, 29.
- [2] Chiang, W.-H., Mariotti, D., Sankaran, R.M., Eden, J.G., Ostrikov, K. (2020). Microplasmas for advanced materials and devices. Adv. Mater., 32, 1905508.
- [3] Azar, M.T., Pai, P. (2017). Microplasma field effect transistors. Micromachines, 8(4), 117.
- [4] Kurt, H.H., Koc, E., Salamov, B. (2010). Atmospheric pressure DC glow discharge in semiconductor gas discharge electronic devices. IEEE Transactions on Plasma Science, 38(2), 137.
- [5] Sadiq, Y., Kurt, H.Y., Albarzanji, A.O., Alekperov, S.D., Salamov, B.G. (2009). Transport properties in semiconductor-gas discharge electronic devices. Solid-state electronics, 53(9), 1009.
- [6] Garner, A.L., Meng, G., Fu, Y., Loveless, A.M., Brayfield II, R.S., Darr, A.M. (2020). Transitions between electron emission and gas breakdown mechanisms across length and pressure scales. J. Appl. Phys., 128, 210903.
- [7] Go, D.B., Venkattraman, A. (2014). Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve. J. Phys. D: Appl. Phys., 47, 503001.
- [8] Garner, A.L., Loveless, A.M., Dahal, J.N., Venkattraman, A. (2020). A tutorial on theoretical and computational techniques for gas breakdown in microscale gaps. IEEE Transactions on Plasma Science, 99:1-17.
- [9] Donald, D.H., Hendrik, C.S., Setumo, V.M., Lehlohonolo, F.K. (2022). Zinc selenide semiconductor: synthesis, properties and applications. Nanoscale Compound Semiconductors and their Optoelectronics Applications, Woodhead Publishing Series in Electronic and Optical Materials, 67-84. https://doi.org/10.1016/B978-0-12-824062-5.00001-4.
- [10] Morkoc, B.H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M. (1994). Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device Technologies. Journal of Applied Physics, 76(3), 1363.
- [11] Kurt, H.H., Tanrıverdi E. (2017). Electrical Properties of ZnS and ZnSe Semiconductors in a plasma-semiconductor system. Journal of Electronic Materials, 46(7), 3965.
- [12] Kurt, H.H. (2018). Exploration of gas discharges with GaAs, GaP and ZnSe electrodes under atmospheric pressure. Journal of Electronic Materials, 47, 4444.
- [13] Ongun, E., Yücel (Kurt), H.H., Utaş, S. (2024). DC-driven subatmospheric glow discharges in the infrared-stimulated. J Mater Sci: Mater Electron, 35:655, https://doi.org/10.1007/s10854-024-12382-1.
- [14] Brayfield II, R.S., Fairbanks, A.J., Loveless, A.M., Gao, S., Dhanabal, A., Li, W., Darr, C., Wu, W., Garner, A.L. (2019). The impact of cathode surface roughness and multiple breakdown events on microscale gas breakdown at atmospheric pressure. J. Appl. Phys., 125, 203302.
- [15] Fu, Y., Zhang, P., Krek, J., Verboncoeur, J.P. (2019). Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions. Appl. Phys. Lett., 114, 014102.
- [16] Kurt, H.Y., İnaloz A., Salamov, B.G. (2010). Study of non-thermal plasma discharge in semiconductor gas discharge electronic devices. Optoelectronics and Advanced Materials-Rapid Communications, 4, 205.