Research Article
BibTex RIS Cite

Effect of COVID-19 mRNA vaccination on prostate specific antigen levels in prostate cancer patients

Year 2025, Volume: 16 Issue: 54, 45 - 49, 12.04.2025
https://doi.org/10.17944/interdiscip.1575878

Abstract

Objective: The effect of COVID-19 mRNA vaccines on prostate specific antigen (PSA) levels in prostate cancer patients remains unclear. In this study, we aimed to evaluate the effects of COVID-19 mRNA vaccination on PSA levels in patients with prostate cancer.
Method: Retrospective data were collected from patients diagnosed with prostate cancer (ICD-10 code C61). Inclusion criteria encompassed patients with pre-vaccination PSA levels of ≤2 ng/mL, no metastases, no active urinary tract infection and no history of urinary catheterization.
Results: Of the 333 patients initially screened, 176 were excluded due to missing data. Sixty-eight patients with PSA level > 2 ng/mL and 10 patients who developed urinary tract infection during follow-up were also excluded. The study included 89 patients (mean age: 70.77±5.88 years). Fifteen of these patients were between the ages of 55-65 years and the remaining 64 patients were between the ages of 65-83 years. There was no significant difference in PSA measurements between the first, second, and third doses of COVID-19 mRNA vaccine.
Conclusion: Invaluable information about the effect of COVID-19 mRNA vaccination on PSA levels in prostate cancer patients was provided. The findings suggest that COVID-19 mRNA vaccination has no significant effect on PSA levels in prostate cancer patients admitted to our urology and oncology clinics. However, further studies with larger sample size and longer follow-up period are needed to confirm these findings and better understand the relationship between COVID-19 vaccination and PSA levels in prostate cancer patients.

References

  • Beyerstedt S, Casaro EB, Rangel EB, Covid -19 angiotensin converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40:905-919. doi:10.1007/s10096-020-04138-6
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS CoV-2 Cell entry depends on ACE2 and TMPRSS2 and blocked by a clinically proven protease inhibitor. Cell.2020;181:271-280. doi:10.1016/j.cell.2020.02.052
  • Mauvais-Jarvis F. Do anti androgeneshave potential as therapeutics for COVİD – 19? Endocrinology.2021;162(8);bqab114. doi:10.1210/endocr/bqab114
  • Djomkam ALZ, Olwal CO, Sala TB, Paemka L. Commentary: SARS CoV -2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Front Oncol.2020;10:1448. doi:10.3389/fonc.2020.01448
  • Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA.2020;323(18):1843-1844. doi:10.1001/jama.2020.3786
  • Elsaqa M, Rao A, Liu L, Hua Y, Volz M, Morris R, Risinger J, Tayeb MME. Molecular detection of the COVID-19 genome in prostatic tissue of patients with previous infection. Proc (Bayl Univ Med Cent). 2022 Jul 19;35(6):759-761. doi: 10.1080/08998280.2022.2101178.
  • Cinislioglu AE, Demirdogen SO, Cinislioglu N, et al. Variation of serum PSA levels in COVİD-19 infected male patients with benign prostatic hyperplasia (BPH): a prospective cohort study. Urology.2022;159:16-21. doi:10.1016/j.urology.2021.09.016
  • Han HJ, Nwagwu C, Anyim O, Ekweremadu, Kim S. Covid-19 and cancer: from basic mechanisms to vaccine development using nanotechnology. IntImmunopharmacol.2021;90:107247. doi:10.1016/j.intimp.2020.107247
  • Andresciani F, Ricci M, Grasso RF, Zobel BB, Quattrocchi CC. COVID-19 vaccination simulating lymph node progression in a patient with prostate cancer. Radiol Case Rep. 2022 Jun 17;17(9):2996-2999. doi: 10.1016/j.radcr.2022.05.072.
  • Kuriyama, M. et al. Use of human prostate-specific antigen in monitoring prostate cancer. Cancer Res.41, 3874–3876 (1981)
  • Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987). doi:10.1056/NEJM198710083171501
  • Van Poppel, H., Albreht, T., Basu, P. et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat Rev Urol; 19:562–572 (2022). https://doi.org/10.1038/s41585-022-00638-6
  • Umakanthan S, Sahu P, Ranada AV, Bukelo MM, Rao JS, Abrahao-Machado LF et al. Rigin transmission, diagnosis and management of coronavirus disease 2019 (COVİD-19) Postgrad Med J.2020;96(1142):753-8. doi:10.1136/postgradmedj-2020-138234
  • Johnson BD, Zhu Z, Lequio M, Powers CGD, Bai Q, Xiao H, Fajardo E, Wakefield MR, Fang Y. SARS-CoV-2 spike protein inhibits growth of prostate cancer: a potential role of the COVID-19 vaccine killing two birds with one stone. Med Oncol. 2022 Jan 20;39(3):32. doi: 10.1007/s12032-021-01628-1.
  • Hwang JK, Zhang T, Wang AZ, Li Z. COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. J Hematol Oncol. 2021 Feb 27;14(1):38. doi: 10.1186/s13045-021-01046-w.
  • Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022 Jul;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007. Epub 2022 Apr 21.
Year 2025, Volume: 16 Issue: 54, 45 - 49, 12.04.2025
https://doi.org/10.17944/interdiscip.1575878

Abstract

References

  • Beyerstedt S, Casaro EB, Rangel EB, Covid -19 angiotensin converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40:905-919. doi:10.1007/s10096-020-04138-6
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS CoV-2 Cell entry depends on ACE2 and TMPRSS2 and blocked by a clinically proven protease inhibitor. Cell.2020;181:271-280. doi:10.1016/j.cell.2020.02.052
  • Mauvais-Jarvis F. Do anti androgeneshave potential as therapeutics for COVİD – 19? Endocrinology.2021;162(8);bqab114. doi:10.1210/endocr/bqab114
  • Djomkam ALZ, Olwal CO, Sala TB, Paemka L. Commentary: SARS CoV -2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Front Oncol.2020;10:1448. doi:10.3389/fonc.2020.01448
  • Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA.2020;323(18):1843-1844. doi:10.1001/jama.2020.3786
  • Elsaqa M, Rao A, Liu L, Hua Y, Volz M, Morris R, Risinger J, Tayeb MME. Molecular detection of the COVID-19 genome in prostatic tissue of patients with previous infection. Proc (Bayl Univ Med Cent). 2022 Jul 19;35(6):759-761. doi: 10.1080/08998280.2022.2101178.
  • Cinislioglu AE, Demirdogen SO, Cinislioglu N, et al. Variation of serum PSA levels in COVİD-19 infected male patients with benign prostatic hyperplasia (BPH): a prospective cohort study. Urology.2022;159:16-21. doi:10.1016/j.urology.2021.09.016
  • Han HJ, Nwagwu C, Anyim O, Ekweremadu, Kim S. Covid-19 and cancer: from basic mechanisms to vaccine development using nanotechnology. IntImmunopharmacol.2021;90:107247. doi:10.1016/j.intimp.2020.107247
  • Andresciani F, Ricci M, Grasso RF, Zobel BB, Quattrocchi CC. COVID-19 vaccination simulating lymph node progression in a patient with prostate cancer. Radiol Case Rep. 2022 Jun 17;17(9):2996-2999. doi: 10.1016/j.radcr.2022.05.072.
  • Kuriyama, M. et al. Use of human prostate-specific antigen in monitoring prostate cancer. Cancer Res.41, 3874–3876 (1981)
  • Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987). doi:10.1056/NEJM198710083171501
  • Van Poppel, H., Albreht, T., Basu, P. et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat Rev Urol; 19:562–572 (2022). https://doi.org/10.1038/s41585-022-00638-6
  • Umakanthan S, Sahu P, Ranada AV, Bukelo MM, Rao JS, Abrahao-Machado LF et al. Rigin transmission, diagnosis and management of coronavirus disease 2019 (COVİD-19) Postgrad Med J.2020;96(1142):753-8. doi:10.1136/postgradmedj-2020-138234
  • Johnson BD, Zhu Z, Lequio M, Powers CGD, Bai Q, Xiao H, Fajardo E, Wakefield MR, Fang Y. SARS-CoV-2 spike protein inhibits growth of prostate cancer: a potential role of the COVID-19 vaccine killing two birds with one stone. Med Oncol. 2022 Jan 20;39(3):32. doi: 10.1007/s12032-021-01628-1.
  • Hwang JK, Zhang T, Wang AZ, Li Z. COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. J Hematol Oncol. 2021 Feb 27;14(1):38. doi: 10.1186/s13045-021-01046-w.
  • Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022 Jul;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007. Epub 2022 Apr 21.
There are 16 citations in total.

Details

Primary Language English
Subjects Clinical Oncology
Journal Section Research Articles
Authors

Ali Borekoglu 0000-0001-8279-688X

Barış Saylam 0000-0003-3256-8752

Nebil Akdogan 0000-0001-9756-8775

Tunahan Ateş 0000-0001-9087-290X

Ali İnal 0000-0002-0690-2529

Fatih Gokalp 0000-0003-3099-3317

Publication Date April 12, 2025
Submission Date October 30, 2024
Acceptance Date March 16, 2025
Published in Issue Year 2025 Volume: 16 Issue: 54

Cite

Vancouver Borekoglu A, Saylam B, Akdogan N, Ateş T, İnal A, Gokalp F. Effect of COVID-19 mRNA vaccination on prostate specific antigen levels in prostate cancer patients. Interdiscip Med J. 2025;16(54):45-9.