In this study, a numerical simulation is performed to study natural convection of water based nanofluid in an inclined square side wavy walls cavity. The the top and bottom walls of the cavity are assumed to be adiabatic and the side walls are at different constant temperatures. Three different nanoparticles, Cu, CuO and Al2O3 are used in the study. The computations are conducted for solid volume fractions of 0%, 5% and 10% and for Rayleigh number of 104, 105 and 106. The analyses were conducted for 0, 450 and 90o inclination angle for enclosed cavity, 0.05, 0.075, and 0.1 amplitude and 1 and 3 undulation numbers. The results show that heat transfer rate increases with the increase in nanoparticle volume fraction and Rayleigh number. Additionally, it is observed that increasing undulation number increases heat transfer rate significantly.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | October 31, 2017 |
Published in Issue | Year 2017 Volume: 37 Issue: 2 |