Research Article
BibTex RIS Cite

EXPERIMENTAL INVESTIGATION OF EFFECTS OF NANOREFRIGERANTS ON VAPOR COMPRESSION REFRIGERATION SYSTEM USING R1234yf INSTEAD OF R134a

Year 2024, Volume: 44 Issue: 2, 280 - 293, 01.11.2024
https://doi.org/10.47480/isibted.1563896

Abstract

In this study, the usage of refrigerant R1234yf was experimentally investigated with the addition of various nanoparticles instead of R134a as a working fluid in a VCRS. Firstly, the usage of pure R1234yf instead of R134a was experimentally investigated with energy and exergy approaches without any modification in the VCRS. As a result of pure refrigerant experiments, it was determined that the compressor power input increased by around 9%, cooling capacity decreased by around 8% and EER decreased by around 17% in the system using R1234yf compared to the system using R134a. Additionally, it was determined that the second law efficiency of the VCRS reduced by around 8% in the system using R1234yf compared to the system using R134a. Then, Al2O3, graphene or CNT nanoparticles were added for compensate for performance drops to the VCRS using R1234yf via compressor oil at various mass fractions. Thus, the best enhancement in the system performance parameters was obtained with the usage of R1234yf including 0.250% graphene by mass. Accordingly, it was observed that the cooling capacity of the system with R1234yf including 0.250% graphene by mass was improved up to 24% and 14% compared to the VCRS with pure R1234yf and R134a, respectively. Consequently, the EER value of the VCRS with R1234yf including 0.250% graphene by mass was enhanced up to 32% and 13% compared to the system using pure R1234yf and R134a, respectively. Additionally, the second law efficiency of the system slightly increased with the usage of R1234yf including 0.250% graphene by mass.

Project Number

119M074

References

  • Afolalu S. A., Ikumapayi O. M., Ogundipe A. T., Yusuf O. O., and Oloyede O. R., 2021. Development of nanolubricant using Aloe Vera plant to enhance the thermal performance of a domestic refrigeration system. International Journal of Heat and Technology, 39(6), 1904-1908. doi: 10.18280/ijht.390626.
  • Akkaya M., Menlik T., and Sozen A., 2021. Performance enhancement of a vapor compression cooling system: An application of POE/Al2O3. Journal of Polytechnic-Politeknik Dergisi, 24(3), 755-761. doi: 10.2339/politeknik.679563.
  • Akkaya M., Sarilmaz A., Balci S., and Ozel F., 2023. Numerical and experimental analysis of refrigerating performance for hybrid nanolubricants with sepiolite additives. Thermal Science and Engineering Progress, 37, 101576. doi: 10.1016/j.tsep.2022.101576.
  • Alkan A., Kolip A., and Hosoz M., 2021. Energetic and exergetic performance comparison of an experimental automotive air conditioning system using refrigerants R1234yf and R134a. Journal of Thermal Engineering, 7, 1163-1173. doi: 10.18186/thermal.978014.
  • Al-Sayyab A. K. S., Navarro-Esbri J., Barragan-Cervera A., Kim S., and Mota-Babiloni A., 2022. Comprehensive experimental evaluation of R1234yf-based low GWP working fluids for refrigeration and heat pumps. Energy Conversion and Management, 258, 115378. doi: 10.1016/j.enconman.2022.115378.
  • Arora P., Seshadri G., and Tyagi A. K., 2018. Fourth-generation refrigerant: HFO 1234yf. Current Science, 115(8), 1497-1503. doi: 10.18520/cs/v115/i8/1497-1503.
  • Arumuganainar K., Edwin M., and Raj J. B., 2022. Investigation on the performance improvement of household refrigeration system using R-134a refrigerant blended with ceria nano additives. Applied Nanoscience, 12(5), 1753-1761. doi: 10.1007/s13204-022-02365-1.
  • Bhattad A., Sarkar J., and Ghosh P., 2018. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3656-3669. doi: 10.1016/j.rser.2017.10.097.
  • Bilen K., Dağidir K., and Arcaklioğlu E., 2022. The effect of nanorefrigerants on performance of the vapor compression refrigeration system: A comprehensive review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 3178-3204. doi: 10.1080/15567036.2022.2062071.
  • Bilen K., Dağıdır K., Arcaklıoğlu E., and Cansevdi B., 2023. Energy and exergy analysis of R1234yf using instead of R134a in a vapour compression refrigeration system: An experimental study. International Journal of Exergy, 42(3), 315-336. doi: 10.1504/IJEX.2023.135517.
  • Bilen K., Işık B., Dağıdır K., and Arcaklıoğlu E., 2024. Thermodynamic analysis of usage of R134a, R1234yf, R450A, R513A, and R515B in the mechanical vapor compression refrigeration system. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(1), 161-175. doi: 10.17341/gazimmfd.1203826.
  • Chauhan S. S., Kumar R., and Rajput S. P. S., 2019. Performance investigation of ice plant working with R134a and different concentrations of POE/TiO2 nanolubricant using experimental method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 163. doi: 10.1007/s40430-019-1657-3.
  • Chen X., Liang K., Li Z., Zhao Y., Xu J., and Jiang H., 2020. Experimental assessment of alternative low global warming potential refrigerants for automotive air conditioners application. Case Studies in Thermal Engineering, 22, 100800. doi: 10.1016/j.csite.2020.100800.
  • Choi T. J., Kim D. J., Jang S. P., Park S., and Ko S., 2021. Effect of polyolester oil-based multiwalled carbon-nanotube nanolubricant on the coefficient of performance of refrigeration systems. Applied Thermal Engineering, 192, 116941. doi: 10.1016/j.applthermaleng.2021.116941.
  • Colombo L. P. M., Lucchini A., and Molinaroli L., 2020. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump. International Journal of Refrigeration, 115, 18-27. doi: 10.1016/j.ijrefrig.2020.03.004.
  • Dağıdır K. and Bilen K., 2023a. Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor. Beilstein Journal of Nanotechnology, 14(1), 1041-1058. doi: 10.3762/bjnano.14.86.
  • Dağıdır K. and Bilen K., 2023b. Principles of using nanorefrigerant in a VCRS: An experimental application. International Journal of Advanced Natural Sciences and Engineering Researches, 7(3), 38-43. https://as-proceeding.com/index.php/ijanser.
  • Dağıdır K. and Bilen K., 2024. Usage of R513A as an alternative to R134a in a refrigeration system: An experimental investigation based on the Kigali amendment. International Journal of Thermofluids, 21, 100582. doi: 10.1016/j.ijft.2024.100582.
  • Dang M. N., Nguyen T. H., Nguyen V., Thu T. V., Le H., Akabori M., Ito N., Nguyen H. Y., Le T. L., and Nguyen T. H., 2020. One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors. Nanotechnology, 31, 345401. doi: 10.1088/1361-6528/ab8fe5.
  • De Paula C. H., Duarte W. M., Rocha T. T. M., De Oliveira R. N., and Maia A. A. T., 2020. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. International Journal of Refrigeration, 113, 10-20. doi: 10.1016/j.ijrefrig.2020.01.012.
  • Emkarate RL 32H Typical Properties Data Sheet, The Lubrizol Corporation, USA, 2015.
  • Erdinc M. T., 2023. Performance simulation of expander-compressor boosted subcooling refrigeration system. International Journal of Refrigeration, 149, 237-247. doi: 10.1016/j.ijrefrig.2022.12.013.
  • Farahani S. D., Farahani M., and Ghanbari D., 2022. Experimental study of the effect of spiral-star fins and nano-oil-refrigerant mixture on refrigeration cycle characteristics. Journal of Thermal Analysis and Calorimetry, 147(11), 6469-6480. doi: 10.1007/s10973-021-10921-0.
  • Global Environmental Change Report GCRP. A Brief Analysis Kyoto Protocol, vol. IX, p. 24, 1997.
  • He X., Xu X., Bo G., and Yan Y., 2020. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. The Royal Society of Chemistry Advances, 10, 2180-2190. doi: 10.1039/c9ra08695a.
  • Intergovernmental Panel on Climate Change (IPCC), The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T. F., Qin D., Plattner G.-K., Tignor M. M. B., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P. M., Eds., Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535 p., 2013. Doi:10.1017/CBO9781107415324
  • Ismail M. F., Azmi W. H., Mamat R., Sharma K. V., and Zawawi N. N. M., 2023. Stability assessment of polyvinyl-ether-based TiO2, SiO2, and their hybrid nanolubricants. Lubricants, 11, 23. doi: 10.3390/lubricants11010023.
  • Kaushik R., Kundan L., and Sharma R. K., 2021. Investigating the performance of nanorefrigerant (R134a+CuO)-based vapor compression cycle: A new scope. Heat Transfer Research, 52(13), 33-53. doi: 10.1615/HeatTransRes.2021036516.
  • Khatoon S. and Karimi M. N., 2023. Thermodynamic analysis of two evaporator vapor compression refrigeration system with low GWP refrigerants in automobiles. International Journal of Air-Conditioning and Refrigeration, 31(1), 2. doi: 10.1007/s44189-022-00017-1.
  • Li H. and Tang K., 2022. A comprehensive study of drop-in alternative mixtures for R134a in a mobile air-conditioning system. Applied Thermal Engineering, 203, 117914. doi: 10.1016/j.applthermaleng.2021.117914.
  • Li H. S., Cao F., Bu X. B., Wang L. B., and Wang X. L., 2014. Performance characteristics of R1234yf ejector-expansion refrigeration cycle. Applied Energy, 121, 96-103. doi: 10.1016/j.apenergy.2014.01.079.
  • Li Z. H., Liang K., and Jiang H. Y., 2019. Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system. Applied Thermal Engineering, 153, 646-654. doi: 10.1016/j.applthermaleng.2019.03.050.
  • Malwe P. D., Shaikh J., and Gawali B. S., 2022. Exergy assessment of a multistage multi-evaporator vapor compression refrigeration system using eighteen refrigerants. Energy Reports, 8, 153-162. doi: 10.1016/j.egyr.2021.11.072.
  • Mishra S. and Sarkar J., 2016. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system. Archives of Thermodynamics, 37(4), 55-72. doi: 10.1515/aoter-2016-0027.
  • Mohamed H. A., Camdali U., Biyikoglu A., and Aktas M., 2022. Performance analysis of R134a vapor compression refrigeration system based on CuO/CeO2 mixture nanorefrigerant. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(5), 220. doi: 10.1007/s40430-022-03522-x.
  • Moles F., Navarro-Esbri J., Peris B., Mota-Babiloni A., and Barragan-Cervera A., 2014. Theoretical energy performance evaluation of different single stage vapour compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids. International Journal of Refrigeration-Revue Internationale Du Froid, 44, 141-150. doi: 10.1016/j.ijrefrig.2014.04.025.
  • Morales-Fuentes A., Ramirez-Hernandez H. G., Mendez-Diaz S., Martinez-Martinez S., Sanchez-Cruz F. A., Silva-Romero J. C., and Garcia-Lara H. D., 2021. Experimental study on the operating characteristics of a display refrigerator phasing out R134a to R1234yf. International Journal of Refrigeration, 130, 317-329. doi: 10.1016/j.ijrefrig.2021.05.032.
  • Mota-Babiloni A. and Makhnatch P., 2021. Predictions of European refrigerants place on the market following F-gas regulation restrictions. International Journal of Refrigeration, 127, 101-110. doi: 10.1016/j.ijrefrig.2021.03.005.
  • Nair V., Parekh A. D., and Tailor P. R., 2020. Experimental investigation of a vapour compression refrigeration system using R134a/nano-oil mixture. International Journal of Refrigeration, 112, 21-36. doi: 10.1016/j.ijrefrig.2019.12.009.
  • Navarro-Esbri J., Mendoza-Miranda J. M., Mota-Babiloni A., Barragan-Cervera A., and Belman-Flores J. M., 2013. Experimental analysis of R1234yf as a drop-in replacement for R134a in a vapor compression system. International Journal of Refrigeration-Revue Internationale Du Froid, 36(3), 870-880. doi: 10.1016/j.ijrefrig.2012.12.014.
  • Ogbonnaya M., Ajayi O. O., and Waheed M. A., 2023. Influence of refrigerant type, nanoparticles concentration and size on the performance and exergy efficiency of the vapour compression refrigeration system using Al2O3 based nanolubricant. Journal of Nanofluids, 12(3), 712-722. doi: 10.1166/jon.2023.1953.
  • Pawale K. T., Dhumal A. H., and Kerkal G. M., 2017. Performance analysis of VCRS with nano-refrigerant. International Research Journal of Engineering and Technology, 4(4), 1031-1037. https://www.irjet.net/archives/V4/i5/IRJET-V4I5201.pdf
  • Prins R., 2020. Mini-review on the structure of γ-Al2O3. Journal of Catalysis, 392, 336-346. doi: 10.1016/j.jcat.2020.10.010.
  • Raghavulu K. V. and Rasu N. G., 2021. An experimental study on the improvement of coefficient of performance in vapor compression refrigeration system using graphene lubricant additives. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2021.1909186.
  • Redhwan A. A. M., Azmi W. H., Sharif M. Z., Mamat R., Samykano M., and Najafi G., 2019. Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant. Journal of Thermal Analysis and Calorimetry, 135, 1299-1310. doi: 10.1007/s10973-018-7656-2.
  • Salem M. R., 2020. Performance enhancement of a vapor compression refrigeration system using R134a/MWCNT-oil mixture and liquid-suction heat exchanger equipped with twisted tape turbulator. International Journal of Refrigeration, 120, 357-369. doi: 10.1016/j.ijrefrig.2020.09.009.
  • Sanchez D., Cabello R., Llopis R., Arauzo I., Catalan-Gil J., and Torrella E., 2017. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 74, 269-282. doi: 10.1016/j.ijrefrig.2016.09.020.
  • Sanukrishna S. S., Murukan M., and Jose P. M., 2018. An overview of experimental studies on nanorefrigerants: Recent research, development and applications. International Journal of Refrigeration, 88, 552-577. doi: 10.1016/j.ijrefrig.2018.03.013.
  • Saravanan K. and Vijayan R., 2018. First law and second law analysis of Al2O3/TiO2 nano composite lubricant in domestic refrigerator at different evaporator temperature. Materials Research Express, 5, 095015. doi: 10.1088/2053-1591/aad72d.
  • Sharif M. Z., Azmi W. H., Zawawi N. N. M., and Ghazali M. F., 2022. Comparative air conditioning performance using SiO2 and Al2O3 nanolubricants operating with Hydrofluoroolefin-1234yf refrigerant. Applied Thermal Engineering, 205, 118053. doi: 10.1016/j.applthermaleng.2022.118053.
  • Singh D. K., Kumar S., Kumar S., and Kumar R., 2021. Potential of MWCNT/R134a nanorefrigerant on performance and energy consumption of vapor compression cycle: A domestic application. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(12), 540. doi: 10.1007/s40430-021-03240-w.
  • Soliman A. M. A., Rahman A. K. A., and Ookawara S., 2019. Enhancement of vapor compression cycle performance using nanofluids: Experimental results. Journal of Thermal Analysis and Calorimetry, 135(2), 1507-1520. doi: 10.1007/s10973-018-7623-y.
  • Subhedar D. G., Patel J. Z., and Ramani B. M., 2022. Experimental studies on vapour compression refrigeration system using Al2O3/mineral oil nano-lubricant. Australian Journal of Mechanical Engineering, 20(4), 1136-1141. doi: 10.1080/14484846.2020.1784558.
  • United Nations Environment Programme (UNEP). Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act, United Nations, New York, 1987.
  • United Nations Environment Programme (UNEP). Twenty-eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, Decision XXVIII/Further Amendment of the Montreal Protocol, 2016:1-9.
  • Yadav S., Liu J., and Kim S. C., 2022. A comprehensive study on 21st century refrigerants - R290 and R1234yf: A review. International Journal of Heat and Mass Transfer, 182, 121947. doi: 10.1016/j.ijheatmasstransfer.2021.121947.
  • Yang Z., Feng B., Ma H., Zhang L., Duan C., Liu B., Zhang Y., Chen S., and Yang Z., 2021. Analysis of lower GWP and flammable alternative refrigerants. International Journal of Refrigeration, 126, 12-22. doi: 10.1016/j.ijrefrig.2021.01.022.
  • Yilmaz A. C., 2020. Performance evaluation of a refrigeration system using nanolubricant. Applied Nanoscience, 10(5), 1667-1678. doi: 10.1007/s13204-020-01258-5.
  • Zawawi N. N. M., Azmi W. H., Redhwan A. A. M., Ramadhan A. I., and Ali H. M., 2022. Optimization of air conditioning performance with Al2O3-SiO2/PAG composite nanolubricants using the response surface method. Lubricants, 10, 243. doi: 10.3390/lubricants10100243.

R134a YERİNE R1234yf KULLANILAN BUHAR SIKIŞTIRMALI SOĞUTMA SİSTEMİNDE NANOSOĞUTUCU AKIŞKANLARIN ETKİLERİNİN DENEYSEL OLARAK İNCELENMESİ

Year 2024, Volume: 44 Issue: 2, 280 - 293, 01.11.2024
https://doi.org/10.47480/isibted.1563896

Abstract

Bu çalışmada; R1234yf soğutucu akışkanının, içerisine çeşitli nanoparçacıklar eklenerek bir BSSS’de R134a yerine iş akışkanı olarak kullanımı deneysel olarak incelenmiştir. İlk olarak; R134a yerine saf R1234yf kullanımı, bir BSSS’de herhangi bir değişiklik yapılmadan enerjetik ve ekserjetik yaklaşımlarla deneysel olarak incelenmiştir. Saf soğutucu akışkan deneyleri sonucunda; R1234yf kullanılan sistemde R134a kullanımına kıyasla kompresör güç girişinin yaklaşık %9 arttığı, soğutma kapasitesinin yaklaşık %8 azaldığı ve EER değerinin yaklaşık %17 azaldığı tespit edilmiştir. Ayrıca, BSSS’nin ikinci yasa veriminin, R1234yf kullanılan sistemde R134a kullanımına kıyasla %8 civarında azaldığı tespit edilmiştir. Daha sonra, R1234yf kullanan BSSS’ye performans düşüşlerini telafi etmek için Al2O3, grafen veya CNT nanopartikülleri çeşitli kütlesel oranlarda kompresör yağı aracılığıyla eklenmiştir. Böylece, sistem performans parametrelerindeki en iyi artış kütlece %0,250 grafen içeren R1234yf kullanımı ile elde edilmiştir. Buna göre, kütlece %0,250 grafen içeren R1234yf’li sistemdeki soğutma kapasitesinin, saf R1234yf ve R134a’lı sistemlere kıyasla sırasıyla %24 ve %14’e kadar iyileştirildiği gözlemlenmiştir. Sonuç olarak, kütlece %0,250 grafen içeren R1234yf’li BSSS’nin EER değeri, saf R1234yf ve R134a kullanılan durumlara kıyasla sırasıyla %32 ve %13’e kadar artırılmıştır. Ayrıca, kütlece %0,250 grafen içeren R1234yf kullanımı ile sistemin ikinci yasa verimliliğinde de az miktarda bir artış olmuştur.

Supporting Institution

TUBITAK

Project Number

119M074

Thanks

The authors are grateful to TUBITAK (The Scientific and Technological Research Council of Turkey) for supporting this research with project 1001, numbered 119M074. They also express their gratitude to ÜNTES Heating Air Conditioning Incorporation for their support.

References

  • Afolalu S. A., Ikumapayi O. M., Ogundipe A. T., Yusuf O. O., and Oloyede O. R., 2021. Development of nanolubricant using Aloe Vera plant to enhance the thermal performance of a domestic refrigeration system. International Journal of Heat and Technology, 39(6), 1904-1908. doi: 10.18280/ijht.390626.
  • Akkaya M., Menlik T., and Sozen A., 2021. Performance enhancement of a vapor compression cooling system: An application of POE/Al2O3. Journal of Polytechnic-Politeknik Dergisi, 24(3), 755-761. doi: 10.2339/politeknik.679563.
  • Akkaya M., Sarilmaz A., Balci S., and Ozel F., 2023. Numerical and experimental analysis of refrigerating performance for hybrid nanolubricants with sepiolite additives. Thermal Science and Engineering Progress, 37, 101576. doi: 10.1016/j.tsep.2022.101576.
  • Alkan A., Kolip A., and Hosoz M., 2021. Energetic and exergetic performance comparison of an experimental automotive air conditioning system using refrigerants R1234yf and R134a. Journal of Thermal Engineering, 7, 1163-1173. doi: 10.18186/thermal.978014.
  • Al-Sayyab A. K. S., Navarro-Esbri J., Barragan-Cervera A., Kim S., and Mota-Babiloni A., 2022. Comprehensive experimental evaluation of R1234yf-based low GWP working fluids for refrigeration and heat pumps. Energy Conversion and Management, 258, 115378. doi: 10.1016/j.enconman.2022.115378.
  • Arora P., Seshadri G., and Tyagi A. K., 2018. Fourth-generation refrigerant: HFO 1234yf. Current Science, 115(8), 1497-1503. doi: 10.18520/cs/v115/i8/1497-1503.
  • Arumuganainar K., Edwin M., and Raj J. B., 2022. Investigation on the performance improvement of household refrigeration system using R-134a refrigerant blended with ceria nano additives. Applied Nanoscience, 12(5), 1753-1761. doi: 10.1007/s13204-022-02365-1.
  • Bhattad A., Sarkar J., and Ghosh P., 2018. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3656-3669. doi: 10.1016/j.rser.2017.10.097.
  • Bilen K., Dağidir K., and Arcaklioğlu E., 2022. The effect of nanorefrigerants on performance of the vapor compression refrigeration system: A comprehensive review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 3178-3204. doi: 10.1080/15567036.2022.2062071.
  • Bilen K., Dağıdır K., Arcaklıoğlu E., and Cansevdi B., 2023. Energy and exergy analysis of R1234yf using instead of R134a in a vapour compression refrigeration system: An experimental study. International Journal of Exergy, 42(3), 315-336. doi: 10.1504/IJEX.2023.135517.
  • Bilen K., Işık B., Dağıdır K., and Arcaklıoğlu E., 2024. Thermodynamic analysis of usage of R134a, R1234yf, R450A, R513A, and R515B in the mechanical vapor compression refrigeration system. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(1), 161-175. doi: 10.17341/gazimmfd.1203826.
  • Chauhan S. S., Kumar R., and Rajput S. P. S., 2019. Performance investigation of ice plant working with R134a and different concentrations of POE/TiO2 nanolubricant using experimental method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 163. doi: 10.1007/s40430-019-1657-3.
  • Chen X., Liang K., Li Z., Zhao Y., Xu J., and Jiang H., 2020. Experimental assessment of alternative low global warming potential refrigerants for automotive air conditioners application. Case Studies in Thermal Engineering, 22, 100800. doi: 10.1016/j.csite.2020.100800.
  • Choi T. J., Kim D. J., Jang S. P., Park S., and Ko S., 2021. Effect of polyolester oil-based multiwalled carbon-nanotube nanolubricant on the coefficient of performance of refrigeration systems. Applied Thermal Engineering, 192, 116941. doi: 10.1016/j.applthermaleng.2021.116941.
  • Colombo L. P. M., Lucchini A., and Molinaroli L., 2020. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump. International Journal of Refrigeration, 115, 18-27. doi: 10.1016/j.ijrefrig.2020.03.004.
  • Dağıdır K. and Bilen K., 2023a. Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor. Beilstein Journal of Nanotechnology, 14(1), 1041-1058. doi: 10.3762/bjnano.14.86.
  • Dağıdır K. and Bilen K., 2023b. Principles of using nanorefrigerant in a VCRS: An experimental application. International Journal of Advanced Natural Sciences and Engineering Researches, 7(3), 38-43. https://as-proceeding.com/index.php/ijanser.
  • Dağıdır K. and Bilen K., 2024. Usage of R513A as an alternative to R134a in a refrigeration system: An experimental investigation based on the Kigali amendment. International Journal of Thermofluids, 21, 100582. doi: 10.1016/j.ijft.2024.100582.
  • Dang M. N., Nguyen T. H., Nguyen V., Thu T. V., Le H., Akabori M., Ito N., Nguyen H. Y., Le T. L., and Nguyen T. H., 2020. One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors. Nanotechnology, 31, 345401. doi: 10.1088/1361-6528/ab8fe5.
  • De Paula C. H., Duarte W. M., Rocha T. T. M., De Oliveira R. N., and Maia A. A. T., 2020. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. International Journal of Refrigeration, 113, 10-20. doi: 10.1016/j.ijrefrig.2020.01.012.
  • Emkarate RL 32H Typical Properties Data Sheet, The Lubrizol Corporation, USA, 2015.
  • Erdinc M. T., 2023. Performance simulation of expander-compressor boosted subcooling refrigeration system. International Journal of Refrigeration, 149, 237-247. doi: 10.1016/j.ijrefrig.2022.12.013.
  • Farahani S. D., Farahani M., and Ghanbari D., 2022. Experimental study of the effect of spiral-star fins and nano-oil-refrigerant mixture on refrigeration cycle characteristics. Journal of Thermal Analysis and Calorimetry, 147(11), 6469-6480. doi: 10.1007/s10973-021-10921-0.
  • Global Environmental Change Report GCRP. A Brief Analysis Kyoto Protocol, vol. IX, p. 24, 1997.
  • He X., Xu X., Bo G., and Yan Y., 2020. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. The Royal Society of Chemistry Advances, 10, 2180-2190. doi: 10.1039/c9ra08695a.
  • Intergovernmental Panel on Climate Change (IPCC), The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T. F., Qin D., Plattner G.-K., Tignor M. M. B., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P. M., Eds., Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535 p., 2013. Doi:10.1017/CBO9781107415324
  • Ismail M. F., Azmi W. H., Mamat R., Sharma K. V., and Zawawi N. N. M., 2023. Stability assessment of polyvinyl-ether-based TiO2, SiO2, and their hybrid nanolubricants. Lubricants, 11, 23. doi: 10.3390/lubricants11010023.
  • Kaushik R., Kundan L., and Sharma R. K., 2021. Investigating the performance of nanorefrigerant (R134a+CuO)-based vapor compression cycle: A new scope. Heat Transfer Research, 52(13), 33-53. doi: 10.1615/HeatTransRes.2021036516.
  • Khatoon S. and Karimi M. N., 2023. Thermodynamic analysis of two evaporator vapor compression refrigeration system with low GWP refrigerants in automobiles. International Journal of Air-Conditioning and Refrigeration, 31(1), 2. doi: 10.1007/s44189-022-00017-1.
  • Li H. and Tang K., 2022. A comprehensive study of drop-in alternative mixtures for R134a in a mobile air-conditioning system. Applied Thermal Engineering, 203, 117914. doi: 10.1016/j.applthermaleng.2021.117914.
  • Li H. S., Cao F., Bu X. B., Wang L. B., and Wang X. L., 2014. Performance characteristics of R1234yf ejector-expansion refrigeration cycle. Applied Energy, 121, 96-103. doi: 10.1016/j.apenergy.2014.01.079.
  • Li Z. H., Liang K., and Jiang H. Y., 2019. Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system. Applied Thermal Engineering, 153, 646-654. doi: 10.1016/j.applthermaleng.2019.03.050.
  • Malwe P. D., Shaikh J., and Gawali B. S., 2022. Exergy assessment of a multistage multi-evaporator vapor compression refrigeration system using eighteen refrigerants. Energy Reports, 8, 153-162. doi: 10.1016/j.egyr.2021.11.072.
  • Mishra S. and Sarkar J., 2016. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system. Archives of Thermodynamics, 37(4), 55-72. doi: 10.1515/aoter-2016-0027.
  • Mohamed H. A., Camdali U., Biyikoglu A., and Aktas M., 2022. Performance analysis of R134a vapor compression refrigeration system based on CuO/CeO2 mixture nanorefrigerant. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(5), 220. doi: 10.1007/s40430-022-03522-x.
  • Moles F., Navarro-Esbri J., Peris B., Mota-Babiloni A., and Barragan-Cervera A., 2014. Theoretical energy performance evaluation of different single stage vapour compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids. International Journal of Refrigeration-Revue Internationale Du Froid, 44, 141-150. doi: 10.1016/j.ijrefrig.2014.04.025.
  • Morales-Fuentes A., Ramirez-Hernandez H. G., Mendez-Diaz S., Martinez-Martinez S., Sanchez-Cruz F. A., Silva-Romero J. C., and Garcia-Lara H. D., 2021. Experimental study on the operating characteristics of a display refrigerator phasing out R134a to R1234yf. International Journal of Refrigeration, 130, 317-329. doi: 10.1016/j.ijrefrig.2021.05.032.
  • Mota-Babiloni A. and Makhnatch P., 2021. Predictions of European refrigerants place on the market following F-gas regulation restrictions. International Journal of Refrigeration, 127, 101-110. doi: 10.1016/j.ijrefrig.2021.03.005.
  • Nair V., Parekh A. D., and Tailor P. R., 2020. Experimental investigation of a vapour compression refrigeration system using R134a/nano-oil mixture. International Journal of Refrigeration, 112, 21-36. doi: 10.1016/j.ijrefrig.2019.12.009.
  • Navarro-Esbri J., Mendoza-Miranda J. M., Mota-Babiloni A., Barragan-Cervera A., and Belman-Flores J. M., 2013. Experimental analysis of R1234yf as a drop-in replacement for R134a in a vapor compression system. International Journal of Refrigeration-Revue Internationale Du Froid, 36(3), 870-880. doi: 10.1016/j.ijrefrig.2012.12.014.
  • Ogbonnaya M., Ajayi O. O., and Waheed M. A., 2023. Influence of refrigerant type, nanoparticles concentration and size on the performance and exergy efficiency of the vapour compression refrigeration system using Al2O3 based nanolubricant. Journal of Nanofluids, 12(3), 712-722. doi: 10.1166/jon.2023.1953.
  • Pawale K. T., Dhumal A. H., and Kerkal G. M., 2017. Performance analysis of VCRS with nano-refrigerant. International Research Journal of Engineering and Technology, 4(4), 1031-1037. https://www.irjet.net/archives/V4/i5/IRJET-V4I5201.pdf
  • Prins R., 2020. Mini-review on the structure of γ-Al2O3. Journal of Catalysis, 392, 336-346. doi: 10.1016/j.jcat.2020.10.010.
  • Raghavulu K. V. and Rasu N. G., 2021. An experimental study on the improvement of coefficient of performance in vapor compression refrigeration system using graphene lubricant additives. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2021.1909186.
  • Redhwan A. A. M., Azmi W. H., Sharif M. Z., Mamat R., Samykano M., and Najafi G., 2019. Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant. Journal of Thermal Analysis and Calorimetry, 135, 1299-1310. doi: 10.1007/s10973-018-7656-2.
  • Salem M. R., 2020. Performance enhancement of a vapor compression refrigeration system using R134a/MWCNT-oil mixture and liquid-suction heat exchanger equipped with twisted tape turbulator. International Journal of Refrigeration, 120, 357-369. doi: 10.1016/j.ijrefrig.2020.09.009.
  • Sanchez D., Cabello R., Llopis R., Arauzo I., Catalan-Gil J., and Torrella E., 2017. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 74, 269-282. doi: 10.1016/j.ijrefrig.2016.09.020.
  • Sanukrishna S. S., Murukan M., and Jose P. M., 2018. An overview of experimental studies on nanorefrigerants: Recent research, development and applications. International Journal of Refrigeration, 88, 552-577. doi: 10.1016/j.ijrefrig.2018.03.013.
  • Saravanan K. and Vijayan R., 2018. First law and second law analysis of Al2O3/TiO2 nano composite lubricant in domestic refrigerator at different evaporator temperature. Materials Research Express, 5, 095015. doi: 10.1088/2053-1591/aad72d.
  • Sharif M. Z., Azmi W. H., Zawawi N. N. M., and Ghazali M. F., 2022. Comparative air conditioning performance using SiO2 and Al2O3 nanolubricants operating with Hydrofluoroolefin-1234yf refrigerant. Applied Thermal Engineering, 205, 118053. doi: 10.1016/j.applthermaleng.2022.118053.
  • Singh D. K., Kumar S., Kumar S., and Kumar R., 2021. Potential of MWCNT/R134a nanorefrigerant on performance and energy consumption of vapor compression cycle: A domestic application. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(12), 540. doi: 10.1007/s40430-021-03240-w.
  • Soliman A. M. A., Rahman A. K. A., and Ookawara S., 2019. Enhancement of vapor compression cycle performance using nanofluids: Experimental results. Journal of Thermal Analysis and Calorimetry, 135(2), 1507-1520. doi: 10.1007/s10973-018-7623-y.
  • Subhedar D. G., Patel J. Z., and Ramani B. M., 2022. Experimental studies on vapour compression refrigeration system using Al2O3/mineral oil nano-lubricant. Australian Journal of Mechanical Engineering, 20(4), 1136-1141. doi: 10.1080/14484846.2020.1784558.
  • United Nations Environment Programme (UNEP). Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act, United Nations, New York, 1987.
  • United Nations Environment Programme (UNEP). Twenty-eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, Decision XXVIII/Further Amendment of the Montreal Protocol, 2016:1-9.
  • Yadav S., Liu J., and Kim S. C., 2022. A comprehensive study on 21st century refrigerants - R290 and R1234yf: A review. International Journal of Heat and Mass Transfer, 182, 121947. doi: 10.1016/j.ijheatmasstransfer.2021.121947.
  • Yang Z., Feng B., Ma H., Zhang L., Duan C., Liu B., Zhang Y., Chen S., and Yang Z., 2021. Analysis of lower GWP and flammable alternative refrigerants. International Journal of Refrigeration, 126, 12-22. doi: 10.1016/j.ijrefrig.2021.01.022.
  • Yilmaz A. C., 2020. Performance evaluation of a refrigeration system using nanolubricant. Applied Nanoscience, 10(5), 1667-1678. doi: 10.1007/s13204-020-01258-5.
  • Zawawi N. N. M., Azmi W. H., Redhwan A. A. M., Ramadhan A. I., and Ali H. M., 2022. Optimization of air conditioning performance with Al2O3-SiO2/PAG composite nanolubricants using the response surface method. Lubricants, 10, 243. doi: 10.3390/lubricants10100243.
There are 59 citations in total.

Details

Primary Language English
Subjects Microfluidics and Nanofluidics
Journal Section Research Article
Authors

Kemal Bilen 0000-0003-1775-7977

Kayhan Dağıdır 0000-0003-0499-1764

Erol Arcaklıoğlu 0000-0001-8073-5207

Project Number 119M074
Publication Date November 1, 2024
Published in Issue Year 2024 Volume: 44 Issue: 2

Cite

APA Bilen, K., Dağıdır, K., & Arcaklıoğlu, E. (2024). EXPERIMENTAL INVESTIGATION OF EFFECTS OF NANOREFRIGERANTS ON VAPOR COMPRESSION REFRIGERATION SYSTEM USING R1234yf INSTEAD OF R134a. Isı Bilimi Ve Tekniği Dergisi, 44(2), 280-293. https://doi.org/10.47480/isibted.1563896