Research Article
BibTex RIS Cite

ATIK ISI GERİ KAZANIM SİSTEMLERİNİN KOMBİNE TÜRBİN-PELTİER SİSTEMİ İLE VERİMLİLİĞİNİN ARTIRILMASI

Year 2025, Volume: 45 Issue: 1, 47 - 55, 07.04.2025
https://doi.org/10.47480/isibted.1443975

Abstract

Yeni bir kombine Türbin-Peltier sistemi tasarlanıp ve üretilerek bir motorun egzoz gazının hem termal hem de kinetik enerjilerini kullanarak elektrik gücüne dönüştürmesi hedeflenmiştir. Türbin-Jeneratör, turboşarj miline bağlandı ve egzoz borusuna monte edilen ısı eşanjörleri arasına Termoelektrik Jeneratörler (TEG) monte edilmiştir. Sistemin akış alanı ve ısı transferi özelliklerini analiz etmek ve optimize etmek için Hesaplamalı Akışkanlar Dinamiği (HAD) yaklaşımı ve Taguchi optimizasyon tekniği kullanılmıştır. Optimize edilen sayısal sonuçlara dayanarak bir deney düzeneği tasarlanıp üretilmiş ve deneyler farklı yük ve hız koşullarında çalışan bir motor üzerinde gerçekleştirilmiştir. Tek bir TEG için elde edilen maksimum çıkış güçü %3,6 termal verimlilikle 5,5 W ve kombine Türbin-Peltier sisteminin net çıkış gücü 3000 rpm motor devrinde 190 W olarak elde edilmiştir. kombine Türbin-Peltier sistemi yöntemiyle birleştirilen içten yanmalı motorun gücündeki maksimum artış %1,6 olarak hesaplanmıştır. Elde edilen sayısal sonuçlar deneylerle karşılaştırılmış ve maksimum %6'lık sapma ile iyi bir uyum göstermiştir.

Supporting Institution

Gaziantep University

Project Number

MF.YLT.19.09

References

  • Borcuch, M., Musiał, M., Gumuła, S., Sztekler, K., & Wojciechowski, K. (2017). Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Applied Thermal Engineering, 127, 1355–1363. https://doi.org/10.1016/j.applthermaleng.2017.08.147
  • Champier, D. (2017). Thermoelectric generators: A review of applications. In Energy Conversion and Management (Vol. 140, pp. 167–181). https://doi.org/10.1016/j.enconman.2017.02.070
  • Espinosa, N., Lazard, M., Aixala, L., & Scherrer, H. (2010). Modeling a thermoelectric generator applied to diesel automotive heat recovery. Journal of Electronic Materials, 39(9), 1446–1455. https://doi.org/10.1007/s11664-010-1305-2
  • Harun, M. H., Azmi, M. W. N., Aras, M. S. M., Azlan, U. A. A., Azahar, A. H., Annuar, K. A. M., Halim, M. F. M. A., Yaakub, M. F., & Abidin, A. F. Z. (2018). A study on the potential of peltier in generating electricity using heat loss at engine and exhaust vehicle. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 49(1), 77–84.
  • Hewawasam, L. S., Jayasena, A. S., Afnan, M. M. M., Ranasinghe, R. A. C. P., & Wijewardane, M. A. (2020). Waste heat recovery from thermo-electric generators (TEGs). Energy Reports, 6, 474–479. https://doi.org/10.1016/j.egyr.2019.11.105
  • Hsiao, Y. Y., Chang, W. C., & Chen, S. L. (2010). A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35(3), 1447–1454. https://doi.org/10.1016/j.energy.2009.11.030
  • Huang, B., & Shen, Z. G. (2022). Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery. Energy, 246. https://doi.org/10.1016/j.energy.2022.123375
  • Huang, K., Yan, Y., Wang, G., & Li, B. (2021). Improving transient performance of thermoelectric generator by integrating phase change material. Energy, 219. https://doi.org/10.1016/j.energy.2020.119648
  • Ikoma, K., Munekiyo, M., Furuya, K., Kobayashi, M., Izumi, T., & Shinohara, K. (1998). Thermoelectric module and generator for gasoline engine vehicles. In International Conference on Thermoelectrics, ICT, Proceedings. https://doi.org/10.1109/ict.1998.740419
  • Kara, E., Tekİn, O., & Söylemez, M. S. (2019). Experimental Analysis of the Automotive Waste Heat Recovery Using a Novel Turbine-Peltier Design YenİBi̇rTürbi̇n -Pelti̇er Tasarimi KullanaraGerçekleşti̇ri̇len. In Prof. Dr. İlhan Tekin ÖZTÜRK (Ed.), Experimental Analysis of the Automotive Waste Heat Recovery Using a Novel Turbine-Peltier Design (pp. 1–5). ULIBTK’19 22th Congress of Thermal Sciences and Technology. http://ctst2019.kocaeli.edu.tr/
  • Karri, M. A., Thacher, E. F., & Helenbrook, B. T. (2011a). Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Conversion and Management, 52(3), 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013
  • Karri, M. A., Thacher, E. F., & Helenbrook, B. T. (2011b). Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Conversion and Management, 52(3), 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013
  • Kempf, N., & Zhang, Y. (2016). Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement. Energy Conversion and Management, 121, 224–231. https://doi.org/10.1016/j.enconman.2016.05.035
  • Kutt, L., & Lehtonen, M. (2015). Automotive waste heat harvesting for electricity generation using thermoelectric systems-An overview. International Conference on Power Engineering, Energy and Electrical Drives, 2015-Sept., 55–62. https://doi.org/10.1109/PowerEng.2015.7266296
  • Liu, X., Yu, C. G., Chen, S., Wang, Y. P., & Su, C. Q. (2014). Experiments and simulations on a heat exchanger of an automotive exhaust thermoelectric generation system under coupling conditions. Journal of Electronic Materials, 43(6), 2218–2223. https://doi.org/10.1007/s11664-014-3015-7
  • Mastbergen, D., Willson, B., & Joshi, S. (2005). Producing Light from Stoves using a Thermoelectric Generator. ETHOS International Stove Research Conference.
  • Moon, M. A., & Kim, K. Y. (2014). Analysis and optimization of fan-shaped pin-fin in a rectangular cooling channel. International Journal of Heat and Mass Transfer, 72, 148–162. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.085
  • Orr, B., Akbarzadeh, A., Mochizuki, M., & Singh, R. (2016). A review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes. Applied Thermal Engineering, 101, 490–495. https://doi.org/10.1016/j.applthermaleng.2015.10.081
  • Patil, D. S., Arakerimath, R. R., & Walke, P. V. (2018). Thermoelectric materials and heat exchangers for power generation – A review. In Renewable and Sustainable Energy Reviews (Vol. 95, pp. 1–22). https://doi.org/10.1016/j.rser.2018.07.003
  • Patowary, R., & Baruah, D. C. (2018). Thermoelectric conversion of waste heat from IC engine-driven vehicles: A review of its application, issues, and solutions. In International Journal of Energy Research (Vol. 42, Issue 8, pp. 2595–2614). John Wiley and Sons Ltd. https://doi.org/10.1002/er.4021
  • Shen, Z. G., Tian, L. L., & Liu, X. (2019). Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. In Energy Conversion and Management (Vol. 195, pp. 1138–1173). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2019.05.087
  • Snyder, G. J., & Ursell, T. S. (2003). Thermoelectric efficiency and compatibility. Physical Review Letters, 91(14), 148301/1-148301/4. https://doi.org/10.1103/PhysRevLett.91.148301
  • Söylemez, M. S. (2003). On the thermoeconomical optimization of fin sizing for waste heat recovery. Energy Conversion and Management, 44(6), 859–866. https://doi.org/10.1016/S0196-8904(02)00091-2
  • Stobart, R., Wijewardane, M. A., & Yang, Z. (2017). Comprehensive analysis of thermoelectric generation systems for automotive applications. Applied Thermal Engineering, 112, 1433–1444. https://doi.org/10.1016/j.applthermaleng.2016.09.121
  • Tekin, O., Kara, E., & Soylemez, M. S. (2019). CFD Analysis and Optimal Sizing of Finned Surface on a Novel Combined Turbine-Peltier System. In Prof. Dr. H. Serdar Yücesu (Ed.), CFD Analysis and Optimal Sizing of Finned Surface on a Novel Combined Turbine-Peltier System (Issue September, pp. 1–13). International Symposium on Automotive Science and Technology. www.isastech.org
  • Wang, W. S., & Liu, X. (2014a). Experiments and analysis on thermoelectric generators of automotive exhaust under the multi-field coupling. Advanced Materials Research, 850–851, 217–220. https://doi.org/10.4028/www.scientific.net/AMR.850-851.217
  • Wang, W. S., & Liu, X. (2014b). Experiments and analysis on thermoelectric generators of automotive exhaust under the multi-field coupling. Advanced Materials Research, 850–851(1), 217–220. https://doi.org/10.4028/www.scientific.net/AMR.850-851.217
  • Yang, J. (2005). Potential applications of thermoelectric waste heat recovery in the automotive industry. International Conference on Thermoelectrics, ICT, Proceedings, 2005, 170–174. https://doi.org/10.1109/ICT.2005.1519911
  • Zhou, M., He, Y., & Chen, Y. (2014). A heat transfer numerical model for thermoelectric generator with cylindrical shell and straight fins under steady-state conditions. Applied Thermal Engineering, 68(1–2), 80–91. https://doi.org/10.1016/j.applthermaleng.2014.04.018

IMPROVING THE EFFICIENCY OF WASTE HEAT RECOVERY SYSTEMS BY MEANS OF A COMBINED TURBINE-PELTIER SYSTEM

Year 2025, Volume: 45 Issue: 1, 47 - 55, 07.04.2025
https://doi.org/10.47480/isibted.1443975

Abstract

A novel Combined Turbine-Peltier System (CTPS) was designed and built to harness both thermal and kinetic energies of the exhaust gas of an engine and convert it to electrical power. The Turbine-Generator was connected to the turbocharger shaft and the Thermoelectric Generators (TEG) were assembled between the heat exchangers mounted on the exhaust pipe. The Computational Fluid Dynamics (CFD) approach and Taguchi optimization technique were employed in order to analyze and optimize the flow field and heat transfer characteristics of the system. Based on the optimized numerical results, an experimental setup was designed and manufactured, and the experiments were conducted on an engine operating at different load and speed conditions. The harvested maximum power output for a single TEG was 5.5 W with the thermal efficiency of 3.6% and the net output power of the CTPS was 190 W obtained at the engine speed of 3000 rpm. The maximum increase in the power of the ICE combined with CTPS method was calculated as 1.6%. The obtained numerical results were compared with the experiments and showed a good accordance with the maximum deviation of 6%.

Project Number

MF.YLT.19.09

References

  • Borcuch, M., Musiał, M., Gumuła, S., Sztekler, K., & Wojciechowski, K. (2017). Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Applied Thermal Engineering, 127, 1355–1363. https://doi.org/10.1016/j.applthermaleng.2017.08.147
  • Champier, D. (2017). Thermoelectric generators: A review of applications. In Energy Conversion and Management (Vol. 140, pp. 167–181). https://doi.org/10.1016/j.enconman.2017.02.070
  • Espinosa, N., Lazard, M., Aixala, L., & Scherrer, H. (2010). Modeling a thermoelectric generator applied to diesel automotive heat recovery. Journal of Electronic Materials, 39(9), 1446–1455. https://doi.org/10.1007/s11664-010-1305-2
  • Harun, M. H., Azmi, M. W. N., Aras, M. S. M., Azlan, U. A. A., Azahar, A. H., Annuar, K. A. M., Halim, M. F. M. A., Yaakub, M. F., & Abidin, A. F. Z. (2018). A study on the potential of peltier in generating electricity using heat loss at engine and exhaust vehicle. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 49(1), 77–84.
  • Hewawasam, L. S., Jayasena, A. S., Afnan, M. M. M., Ranasinghe, R. A. C. P., & Wijewardane, M. A. (2020). Waste heat recovery from thermo-electric generators (TEGs). Energy Reports, 6, 474–479. https://doi.org/10.1016/j.egyr.2019.11.105
  • Hsiao, Y. Y., Chang, W. C., & Chen, S. L. (2010). A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35(3), 1447–1454. https://doi.org/10.1016/j.energy.2009.11.030
  • Huang, B., & Shen, Z. G. (2022). Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery. Energy, 246. https://doi.org/10.1016/j.energy.2022.123375
  • Huang, K., Yan, Y., Wang, G., & Li, B. (2021). Improving transient performance of thermoelectric generator by integrating phase change material. Energy, 219. https://doi.org/10.1016/j.energy.2020.119648
  • Ikoma, K., Munekiyo, M., Furuya, K., Kobayashi, M., Izumi, T., & Shinohara, K. (1998). Thermoelectric module and generator for gasoline engine vehicles. In International Conference on Thermoelectrics, ICT, Proceedings. https://doi.org/10.1109/ict.1998.740419
  • Kara, E., Tekİn, O., & Söylemez, M. S. (2019). Experimental Analysis of the Automotive Waste Heat Recovery Using a Novel Turbine-Peltier Design YenİBi̇rTürbi̇n -Pelti̇er Tasarimi KullanaraGerçekleşti̇ri̇len. In Prof. Dr. İlhan Tekin ÖZTÜRK (Ed.), Experimental Analysis of the Automotive Waste Heat Recovery Using a Novel Turbine-Peltier Design (pp. 1–5). ULIBTK’19 22th Congress of Thermal Sciences and Technology. http://ctst2019.kocaeli.edu.tr/
  • Karri, M. A., Thacher, E. F., & Helenbrook, B. T. (2011a). Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Conversion and Management, 52(3), 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013
  • Karri, M. A., Thacher, E. F., & Helenbrook, B. T. (2011b). Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Conversion and Management, 52(3), 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013
  • Kempf, N., & Zhang, Y. (2016). Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement. Energy Conversion and Management, 121, 224–231. https://doi.org/10.1016/j.enconman.2016.05.035
  • Kutt, L., & Lehtonen, M. (2015). Automotive waste heat harvesting for electricity generation using thermoelectric systems-An overview. International Conference on Power Engineering, Energy and Electrical Drives, 2015-Sept., 55–62. https://doi.org/10.1109/PowerEng.2015.7266296
  • Liu, X., Yu, C. G., Chen, S., Wang, Y. P., & Su, C. Q. (2014). Experiments and simulations on a heat exchanger of an automotive exhaust thermoelectric generation system under coupling conditions. Journal of Electronic Materials, 43(6), 2218–2223. https://doi.org/10.1007/s11664-014-3015-7
  • Mastbergen, D., Willson, B., & Joshi, S. (2005). Producing Light from Stoves using a Thermoelectric Generator. ETHOS International Stove Research Conference.
  • Moon, M. A., & Kim, K. Y. (2014). Analysis and optimization of fan-shaped pin-fin in a rectangular cooling channel. International Journal of Heat and Mass Transfer, 72, 148–162. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.085
  • Orr, B., Akbarzadeh, A., Mochizuki, M., & Singh, R. (2016). A review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes. Applied Thermal Engineering, 101, 490–495. https://doi.org/10.1016/j.applthermaleng.2015.10.081
  • Patil, D. S., Arakerimath, R. R., & Walke, P. V. (2018). Thermoelectric materials and heat exchangers for power generation – A review. In Renewable and Sustainable Energy Reviews (Vol. 95, pp. 1–22). https://doi.org/10.1016/j.rser.2018.07.003
  • Patowary, R., & Baruah, D. C. (2018). Thermoelectric conversion of waste heat from IC engine-driven vehicles: A review of its application, issues, and solutions. In International Journal of Energy Research (Vol. 42, Issue 8, pp. 2595–2614). John Wiley and Sons Ltd. https://doi.org/10.1002/er.4021
  • Shen, Z. G., Tian, L. L., & Liu, X. (2019). Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. In Energy Conversion and Management (Vol. 195, pp. 1138–1173). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2019.05.087
  • Snyder, G. J., & Ursell, T. S. (2003). Thermoelectric efficiency and compatibility. Physical Review Letters, 91(14), 148301/1-148301/4. https://doi.org/10.1103/PhysRevLett.91.148301
  • Söylemez, M. S. (2003). On the thermoeconomical optimization of fin sizing for waste heat recovery. Energy Conversion and Management, 44(6), 859–866. https://doi.org/10.1016/S0196-8904(02)00091-2
  • Stobart, R., Wijewardane, M. A., & Yang, Z. (2017). Comprehensive analysis of thermoelectric generation systems for automotive applications. Applied Thermal Engineering, 112, 1433–1444. https://doi.org/10.1016/j.applthermaleng.2016.09.121
  • Tekin, O., Kara, E., & Soylemez, M. S. (2019). CFD Analysis and Optimal Sizing of Finned Surface on a Novel Combined Turbine-Peltier System. In Prof. Dr. H. Serdar Yücesu (Ed.), CFD Analysis and Optimal Sizing of Finned Surface on a Novel Combined Turbine-Peltier System (Issue September, pp. 1–13). International Symposium on Automotive Science and Technology. www.isastech.org
  • Wang, W. S., & Liu, X. (2014a). Experiments and analysis on thermoelectric generators of automotive exhaust under the multi-field coupling. Advanced Materials Research, 850–851, 217–220. https://doi.org/10.4028/www.scientific.net/AMR.850-851.217
  • Wang, W. S., & Liu, X. (2014b). Experiments and analysis on thermoelectric generators of automotive exhaust under the multi-field coupling. Advanced Materials Research, 850–851(1), 217–220. https://doi.org/10.4028/www.scientific.net/AMR.850-851.217
  • Yang, J. (2005). Potential applications of thermoelectric waste heat recovery in the automotive industry. International Conference on Thermoelectrics, ICT, Proceedings, 2005, 170–174. https://doi.org/10.1109/ICT.2005.1519911
  • Zhou, M., He, Y., & Chen, Y. (2014). A heat transfer numerical model for thermoelectric generator with cylindrical shell and straight fins under steady-state conditions. Applied Thermal Engineering, 68(1–2), 80–91. https://doi.org/10.1016/j.applthermaleng.2014.04.018
There are 29 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Internal Combustion Engines
Journal Section Articles
Authors

Ozan Tekin 0000-0001-9812-7752

Ramin Barzegar 0000-0003-2796-7126

M. Sait Söylemez 0000-0001-8570-1321

Project Number MF.YLT.19.09
Publication Date April 7, 2025
Submission Date July 3, 2024
Acceptance Date November 6, 2024
Published in Issue Year 2025 Volume: 45 Issue: 1

Cite

APA Tekin, O., Barzegar, R., & Söylemez, M. S. (2025). IMPROVING THE EFFICIENCY OF WASTE HEAT RECOVERY SYSTEMS BY MEANS OF A COMBINED TURBINE-PELTIER SYSTEM. Isı Bilimi Ve Tekniği Dergisi, 45(1), 47-55. https://doi.org/10.47480/isibted.1443975