Research Article
BibTex RIS Cite

VADELİ PAMUK EMTİASI GETİRİSİ İLE PAMUK REEL PİYASA DİNAMİKLERİNİN ETKİLEŞİMİ

Year 2020, Volume: 19 Issue: 37, 733 - 767, 01.06.2020

Abstract

Emtia vadeli işlem piyasaları hem koruma hem de portföy çeşitlemesi sağladığı için yakın tarihimizde piyasa katılımcılarının ciddi ilgi kaynağı olmuştur. Bu süreçte vadeli işlem piyasalarına birçok katılımcı dahil olmuş ve onların arz talepleri fiyatları yönlendirmiştir. Bu çalışmada, 2009-2018 yılları arası vadeli pamuk emtiası getirilerinin, temel arz talep kanunları çerçevesinde Amerika Tarım Bakanlığının aylık yayınladığı WASDE beklenen pamuk üretim, tüketim, stok gibi miktar verileri ile nasıl etkilendiği anlaşılmaya çalışılmıştır. Bir zaman serisi olan getiri verisinin ARCH etkisi göstermesi sebebiyle koşullu değişen varyans modelleri kullanılarak oluşturulan ortalama ve varyans denklemlerinde getiri ile reel piyasa dinamik verilerinin etkileşimde olduğu, oynaklığın etkilendiği görülmüştür.

References

  • Atukeren, E. (2011). Granger-Nedensellik Sınamalarına Yeni Yaklaşımlar. Atatürk Ü. İİBF Dergisi, 137-153.
  • Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Jounal of Econometrics, 31, 307-327.
  • Brooks, C. (2008). Introductory Econemetrics for Finance. Cambridge.
  • Butler, C. (1999). Matering Value at Risk. GB: Financial Times Prentice Hall.
  • CFTC. (2018). Agency Financial Report.
  • Chris, B., & Gita, P. (2003). Volatility Forecasting for Risk Management. Journal of Forecasting, 2.
  • Chua, H. W., & Tomek, W. G. (2010). On the Relationship of Expected Supply and Demand to Futures Prices. Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management. St. Louis.
  • Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1008.
  • Giannapoulos, K., & Eales, B. (1996). Educated Estimates. Futures and Options, April, 25.
  • Goreux, L. (2007). COTTON : Review of the World Situation. International Cotton Advisoty Committee (ICAC) Volume 60 - Number 6.
  • Gökbulut, R. İ., & Pekkaya, M. (2014). Estimating and Forecasting Volatility of Financial Markets Using Asymmetric GARCH Models: An Application on Turkish Financial Markets. International Journal of Economics and Finance; Vol. 6, No. 4;.
  • Granger , C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438.
  • Güriş, S., & Çağlayan, E. (2000). Ekonometri Temel Kavramlar. Der Yayınları.
  • Hull, J. (2012). Options, Futures and Other Derivatives. Peardon.
  • Jacks, D. S., & Stuermer, M. (2016). What Drives Commodity Price Booms and Busts? Federal Reserve Bank of Dallas Research Department.
  • James, A. T. (2015). An Investigation of Commodity Spot and Futures Prices.
  • Janzen, J. P. (2013). Three Essays on Price Discovery in the Cotton Futures Market.
  • Jorion, P. (2005). Financial Risk Manager-Handbook. Wiley Finance.
  • Kayahan, C., Aydemir, O., & Akçay, B. (2008). Döviz Piyasalarında Ewma Modeli Kullanılarak Hesaplanan Volatilite Tahminlerinin Test Edilmesi. SÜ İİBF Sosyal ve Ekonomik Araştırmalar Dergisi, 503-522.
  • Macdonald, S. (2009). U.S. Cotton prices and the world cotton market: Forecasting and structural change. USDA Economic Research Report Number 80.
  • Mapa, D. S. (2004). A Forecast Comparison of Financial Volatility Models: GARCH (1,1) is not Enough. The Philippine Statistician, 1-10.
  • NASS. (2019). Understanding USDA Crop Forecast. Washington, D.C.: USDA National Agricultural Statistics Service.
  • Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 59(2), 347-70.
  • Özden, Ü. H. (2008). İMKB Bileşik 100 Endeksi Getiri Volatilitesinin Analizi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 339-350.
  • Sevüktekin, M., & Nargeleçekenler, M. (2006). İstanbul Menkul Kıymetler Borsasında Getiri Volatilitesinin Modellenmesi ve Önraporlanmas. Ankar Üniversitesi SVF Dergisi, 243-265.
  • Sevütekin, M., & Nargeleçekenler, M. (2010). Ekonometrik Zaman Serileri Analizi. Ankara: Nobel.
  • Sinclair, E. (2008). Volatility Trading. New Jersey: John Wiley & Sons Inc.
  • Telçeken, N. (2014). Volatilite Endeksleri, Önemi ve Türkiye Volatilite Endeksi. İstanbul.
  • USDA. (2019). PSD Online. Şubat 22, 2019 tarihinde https://apps.fas.usda.gov/psdonline/app/index.html#/app/about#C1 adresinden alındı

COTTON COMMODITY FUTURES RETURN AND REAL COTTON COMMODITY MARKET DYNAMICS INTERACTION

Year 2020, Volume: 19 Issue: 37, 733 - 767, 01.06.2020

Abstract

Commodity futures have been a major source of interest for market participants in our recent history as they provide both protection and portfolio diversification. In this process, many participants joined the futures markets and supply and demands led the prices in new balance. In this study, it is tried to understand how the yields of cotton commodities between 2009 and 2018 are affected by the quantity data such as cotton production, consumption and stock expected by WASDE which is published monthly by the US Department of Agriculture within the framework of basic supply and demand laws. It is observed that yield and real market dynamic data are interacted and volatility is influenced in the equations of variance created using autoregressive conditional heteroskedasticity models due to the ARCH effect of return data.

References

  • Atukeren, E. (2011). Granger-Nedensellik Sınamalarına Yeni Yaklaşımlar. Atatürk Ü. İİBF Dergisi, 137-153.
  • Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Jounal of Econometrics, 31, 307-327.
  • Brooks, C. (2008). Introductory Econemetrics for Finance. Cambridge.
  • Butler, C. (1999). Matering Value at Risk. GB: Financial Times Prentice Hall.
  • CFTC. (2018). Agency Financial Report.
  • Chris, B., & Gita, P. (2003). Volatility Forecasting for Risk Management. Journal of Forecasting, 2.
  • Chua, H. W., & Tomek, W. G. (2010). On the Relationship of Expected Supply and Demand to Futures Prices. Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management. St. Louis.
  • Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1008.
  • Giannapoulos, K., & Eales, B. (1996). Educated Estimates. Futures and Options, April, 25.
  • Goreux, L. (2007). COTTON : Review of the World Situation. International Cotton Advisoty Committee (ICAC) Volume 60 - Number 6.
  • Gökbulut, R. İ., & Pekkaya, M. (2014). Estimating and Forecasting Volatility of Financial Markets Using Asymmetric GARCH Models: An Application on Turkish Financial Markets. International Journal of Economics and Finance; Vol. 6, No. 4;.
  • Granger , C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438.
  • Güriş, S., & Çağlayan, E. (2000). Ekonometri Temel Kavramlar. Der Yayınları.
  • Hull, J. (2012). Options, Futures and Other Derivatives. Peardon.
  • Jacks, D. S., & Stuermer, M. (2016). What Drives Commodity Price Booms and Busts? Federal Reserve Bank of Dallas Research Department.
  • James, A. T. (2015). An Investigation of Commodity Spot and Futures Prices.
  • Janzen, J. P. (2013). Three Essays on Price Discovery in the Cotton Futures Market.
  • Jorion, P. (2005). Financial Risk Manager-Handbook. Wiley Finance.
  • Kayahan, C., Aydemir, O., & Akçay, B. (2008). Döviz Piyasalarında Ewma Modeli Kullanılarak Hesaplanan Volatilite Tahminlerinin Test Edilmesi. SÜ İİBF Sosyal ve Ekonomik Araştırmalar Dergisi, 503-522.
  • Macdonald, S. (2009). U.S. Cotton prices and the world cotton market: Forecasting and structural change. USDA Economic Research Report Number 80.
  • Mapa, D. S. (2004). A Forecast Comparison of Financial Volatility Models: GARCH (1,1) is not Enough. The Philippine Statistician, 1-10.
  • NASS. (2019). Understanding USDA Crop Forecast. Washington, D.C.: USDA National Agricultural Statistics Service.
  • Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 59(2), 347-70.
  • Özden, Ü. H. (2008). İMKB Bileşik 100 Endeksi Getiri Volatilitesinin Analizi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 339-350.
  • Sevüktekin, M., & Nargeleçekenler, M. (2006). İstanbul Menkul Kıymetler Borsasında Getiri Volatilitesinin Modellenmesi ve Önraporlanmas. Ankar Üniversitesi SVF Dergisi, 243-265.
  • Sevütekin, M., & Nargeleçekenler, M. (2010). Ekonometrik Zaman Serileri Analizi. Ankara: Nobel.
  • Sinclair, E. (2008). Volatility Trading. New Jersey: John Wiley & Sons Inc.
  • Telçeken, N. (2014). Volatilite Endeksleri, Önemi ve Türkiye Volatilite Endeksi. İstanbul.
  • USDA. (2019). PSD Online. Şubat 22, 2019 tarihinde https://apps.fas.usda.gov/psdonline/app/index.html#/app/about#C1 adresinden alındı
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Orhan Özaydın 0000-0003-2585-1437

Serkan Çankaya 0000-0003-3010-0697

Publication Date June 1, 2020
Submission Date October 4, 2019
Acceptance Date October 30, 2019
Published in Issue Year 2020 Volume: 19 Issue: 37

Cite

APA Özaydın, O., & Çankaya, S. (2020). VADELİ PAMUK EMTİASI GETİRİSİ İLE PAMUK REEL PİYASA DİNAMİKLERİNİN ETKİLEŞİMİ. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 19(37), 733-767.