İstanbul Boğazı’nda Petrol Kirliliği Yayılımının Modellenmesi
Yıl 2023,
Cilt: 24 Sayı: 1, 17 - 24, 02.06.2023
Şehriban Saçu
,
Olgay Şen
,
Tarkan Erdik
,
İzzet Öztürk
Öz
İstanbul Boğazı, Karadeniz ve Marmara Denizi’ni birbirine bağlayan doğal bir su yoludur. Boğaz, Karadeniz ülkelerinin açık denizlere erişimini sağlayan tek deniz yoludur. Bu nedenle, Boğaz’da oldukça yoğun bir gemi trafiği söz konusudur. Yılda ortalama 50.000 araç Boğaz’dan geçmekte olup bunun beşte birini tehlikeli yük taşıyan kargo gemileri oluşturmaktadır. Yakın geçmişte Boğaz’da birkaç gemi kazası meydana gelmiş ve dökülen petrol deniz ekosistemleri, kıyı yapıları ve sosyo-ekonomik hayatta olumsuz etkilere yol açmıştır. Tanker kazalarından meydana gelebilecek zararları minimize etmek için, acil müdahale planlarının hazırlanması ve etkin bir şekilde uygulanması önem taşımaktadır. Bu çalışmamızda 3-boyutlu hidrodinamik model ve taşınım modeli kullanılarak, İstanbul Boğazı kuzey girişinden denize verilen petrol hidrokarbonu kirleticisinin Boğaz’daki yayılımı simüle edilmiştir. Bu kapsamda hafif ham petrol (API 35) ve ağır petrol (API 12) olmak üzere farklı özellikteki iki petrol ürününün modellemesi gerçekleştirilmiştir. Modelleme sonuçları, İstanbul Boğazı kuzey girişinden ani noktasal kaynak olarak deşarj edilen petrol hidrokarbonlarının her iki kıyı boyunca Boğaz’daki ekosistem, su kalitesi ve kıyı yapılarını önemli derecede etkileme potansiyeli olduğunu göstermektedir.
Teşekkür
Makale araştırma ve yayın etiğine uygun olarak hazırlanmıştır. Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır.
Kaynakça
- Abascal, A. J., Castanedo, S., Medina, R., & Liste, M. (2010). Analysis of the reliability of a statistical oil spill response model. Marine Pollution Bulletin, 60(11), 2099-2110.
- Akten, N. (2004). The Bosphorus: Growth of oil shipping and marine casualties. Journal of the Black Sea/Mediterranean Environment, 10(3), 209-232.
- Al Shami, A., Harik, G., Alameddine, I., Bruschi, D., Garcia, D. A., & El-Fadel, M. (2017). Risk assessment of oil spills along the Mediterranean coast: A sensitivity analysis of the choice of hazard quantification. Science of the Total Environment, 574, 234-245.
- Amir-Heidari, P., & Raie, M. (2018). Probabilistic risk assessment of oil spill from offshore oil wells in Persian Gulf. Marine pollution bulletin, 136, 291-299.
- Amir-Heidari, P., Arneborg, L., Lindgren, J. F., Lindhe, A., Rosén, L., Raie, M., ... & Hassellöv, I. M. (2019). A state-of-the-art model for spatial and stochastic oil spill risk assessment: A case study of oil spill from a shipwreck. Environment international, 126, 309-320.
- Birpınar, M. E., Talu, G. F., & Gönençgil, B. (2009). Environmental effects of maritime traffic on the Istanbul Strait. Environmental monitoring and assessment, 152(1), 13-23.
- Chiri, H., Abascal, A. J., & Castanedo, S. (2020). Deep oil spill hazard assessment based on spatio-temporal met-ocean patterns. Marine pollution bulletin, 154, 111123.
- Deltares, D. (2013a). Delft3D-FLOW user manual.
- Deltares, D. (2013b). Delft3D-PART user manual.
- Erdik, T., Şen, O., & Öztürk, İ. (2019). 3D numerical modeling of exchange flows in golden horn estuary. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(5), 04019018.
- Erdik, T., Şen, O., Erdik, J. D., & Öztürk, İ. (2018). Long-term 3D hydrodynamic modeling and water surface statistics in Marmara Sea. Marine Geodesy, 41(2), 126-143.
- Fingas, M. (2016). Oil spill science and technology. Gulf professional publishing.
- Goldman, R., Biton, E., Brokovich, E., Kark, S., & Levin, N. (2015). Oil spill contamination probability in the southeastern Levantine basin. Marine pollution bulletin, 91(1), 347-356.
- Nelson, J. R., & Grubesic, T. H. (2017). A repeated sampling method for oil spill impact uncertainty and interpolation. International Journal of Disaster Risk Reduction, 22, 420-430.
- Oguz, T. (2005). Hydraulic adjustments of the Bosphorus exchange flow. Geophysical research letters, 32(6).
- Oguz, T., Özsoy, E., Latif, M. A., Sur, H. I., & Ünlüata, Ü. (1990). Modeling of hydraulically controlled exchange flow in the Bosphorus Strait. Journal of Physical Oceanography, 20(7), 945-965.
- Ozsoy, E., Latif, M. A., Besiktepe, S. T., Cetin, N., Gregg, M. C., Belokopytov, V., ... & Diaconu, V. (1998). The Bosphorus Strait: exchange fluxes, currents and sea-level changes.
- Öztürk, B., Öztürk, A. A., & Algan, N. (2001). Ship originated pollution in the Turkish Straits System. In Proc. Int. Symp. on Regional Seas, Tudav Publication, İstanbul (pp. 86-94).
- Türkiye Cumhuriyeti Denizcilik Genel Müdürlüğü, 2017. https://denizcilikistatistikleri.uab.gov.tr (Erişim 6 Mayıs 2021).
- Saçu, Ş., Erdik, T., Stanev, E. V., Şen, O., Erdik, J. D., & Öztürk, İ. (2020). Hydrodynamics of Canal Istanbul and its impact in the northern Sea of Marmara under extreme conditions. Ocean Dynamics, 70(6), 745-758.
- Saçu, Ş., Erdik, T., & Şen, O. (2020b). Salinity Distribution at Canal Istanbul and Its Possible Impacts on the Northern Marmara Sea. China Ocean Engineering, 34(6), 881-888.
- Saçu, Ş., Şen, O., & Erdik, T. (2021). A stochastic assessment for oil contamination probability: A case study of the Bosphorus. Ocean Engineering, 231, 109064.
- Stanev, E. V., Grashorn, S., & Zhang, Y. J. (2017). Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system. Ocean Dynamics, 67(8), 1003-1025.