Research Article
BibTex RIS Cite

Yeni bir Pichia kudriavzevii FOL-27'nin yapay mide sindiriminde hayatta kalması ve biyoproses uyumluluğu

Year 2024, Volume: 2 Issue: 2, 101 - 108, 27.09.2024

Abstract

The goal of this study was to explore Pichia kudriavzevii FOL-27’s: i) survival against artificial gastric acid (AGJ) and artificial bile juice (ABJ), ii) growth kinetics in batch trials (BT) and fed-batch trials (FBT). Survival of FOL-27 as measured by relative cell density ratio (RCDR) against AGJ and ABJ was performed at four different pH-levels (control, 3, 2, 1.5) and ox-bile concentrations (control, 0.2%, 1%, 2%), respectively. Growth kinetics was calculated by periodic measurement of OD600 in BT or in FBT where pH, dissolved oxygen and temperature were controlled at 5.5, 25%, and 30°C, respectively. Also, impact of dissolved oxygen level at 12.5% or 25% were tested against the growth and performance of FOL-27 in FBT using exponential feeding regimen. The doubling-time, maximum specific growth rate, and final cell densities achieved for BT were 101.8 min, 8.202h-1 and 28.7, respectively. FBT at 25% O2 or 12.5% O2 level resulted in doubling-time, maximum specific growth rate, and final cell densities of 90.18 min, 3.95h-1, 22.51 and 88.8 min, 2.83h-1, 26.6, respectively. RCDRs calculated were similar for pH=3 and control vs both were remarkably higher (p<0.05) than pH=1.5 and pH=2 with the last two pH-levels were significantly different (p<0.05) from each other. RCDRs were similar across control, 0.2%, 1%, and 2% ox-bile levels (p>0.05). P. kudriavzevii FOL-27 is a potential probiotic candidate showing resistance against AGJ and ABJ conditions. A remarkable increase in biomass when grown with FBT implies that P. kudriavzevii FOL-27 is compatible to bioprocess development therefore a yeast-based probiotic culture could perhaps be developed using this strain.

References

  • Alakeji, T. P., & Oloke, J. K. (2020). Association of probiotic potential of strains of Pichia kudriavzevii isolated from “ogi” with the number of open reading frame (ORF) in the nucleotide sequences. African Journal of Biotechnology, 19(3), 148-155. https://doi.org/10.5897/AJB2019.16814
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Buts, J. P. (2009). Twenty-five years of research on Saccharomyces boulardii trophic effects: Updates and perspectives. Digestive Diseases and Sciences, 54, 15–18. https://doi.org/10.1007/s10620-008-0322-y
  • Chelliah, R., Ramakrishnan, S., Prabhu, P., & Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385-401. https://doi.org/10.1002/yea.3181
  • Chen, L. S., Ma, Y., Maubois, J. L., He, S. H., Chen, L. J., & Li, H. M. (2010). Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Science & Technology, 90(5), 537–548. https://doi.org/10.1051/dst/2010001
  • Chu, Y., Li, M., Jin, J., Dong, X., Xu, K., Jin, L., Qiao, Y., & Ji, H. (2023). Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. Journal of Fungi, 9(2), 170. https://doi.org/10.3390/jof9020170
  • Cintas, L. M., Casaus, M. P., Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Review: Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7, 281–305. https://doi.org/10.1106/R8DE-P6HU-CLXP-5RYT
  • Czerucka, D., Piche, T., & Rampal, P. (2007). Review article: Yeast as probiotics – Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 26, 767–778. https://doi.org/10.1106/R8DE-P6HU-CLXP-5RYT
  • Díaz-Nava, L. E., Montes-Garcia, N., Domínguez, J. M., & Aguilar-Uscanga, M. G. (2017). Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess and Biosystems Engineering, 40(7), 1069–1077. https://doi.org/10.1007/s00449-017-1769-z
  • Foligné, B., Dewulf, J., Breton, J., Claisse, O., Lonvaud-Funel, A., & Pot, B. (2010). Probiotic properties of non-conventional lactic acid bacteria: Immunomodulation by Oenococcus oeni. International Journal of Food Microbiology, 140, 136–145. https://doi.org/10.1016/j.ijfoodmicro.2010.04.007
  • Galafassi, S., Merico, A., Pizza, F., Hellborg, L., Molinari, F., Piškur, J., & Compagno, C. (2010). Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. Journal of Industrial Microbiology & Biotechnology, 38(8), 1079-1088. https://doi.org/10.1007/s10295-010-0885-4
  • Gómez-Gaviria, M., & Mora-Montes, H. M. (2020). Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infection and Drug Resistance, 13, 1673–1689. https://doi.org/10.2147/idr.s247944
  • Golomb, B. L., Morales, V., Jung, A., Yau, B., Boundy-Mills, K. L., & Marco, M. L. (2013). Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiology, 33, 97–106. https://doi.org/10.1016/j.fm.2012.09.004
  • Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169–177. https://doi.org/10.1016/j.fm.2016.09.016
  • Hoffman, C. S., Wood, V., & Fantes, P. A. (2015). An ancient yeast for young geneticists: A primer on the Schizosaccharomyces pombe model system. Genetics, 201(2), 403-423. https://doi.org/10.1534/genetics.115.181503
  • Klaenhammer, T. R., & Kleeman, E. G. (1981). Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 41(6), 1461–1467. https://doi.org/10.1128/aem.41.6.1461-1467.1981
  • Kurtzman, C. P., Robnett, C. J., & Basehoar-Powers, E. (2008). Phylogenetic relationships among species of Pichia, Issatchenkia, and Williopsis determined from multigene sequence analysis and the proposal of Barnettozyma gen. nov., Lindnera gen. nov., and Wickerhamomyces gen. nov. FEMS Yeast Research, 8(6), 939–954. https://doi.org/10.1111/j.1567-1364.2008.00419.x
  • Liti, G. (2015). The fascinating and secret wildlife of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835
  • Martinez, R., Bedani, R., & Saad, S. (2015). Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. British Journal of Nutrition, 114(12), 1993-2015. https://doi.org/10.1017/S0007114515003864
  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13(1), 91. https://doi.org/10.1186/s13068-020-01729-5
  • Nielsen, J. (2019). Yeast systems biology: Model organism and cell factory. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800421
  • Power, S., O'Toole, P., Stanton, C., Ross, R., & Fitzgerald, G. (2014). Intestinal microbiota, diet, and health. British Journal of Nutrition, 111(3), 387-402. https://doi.org/10.1017/S0007114513002560
  • Saavedra, J. M. (2001). Clinical applications of probiotic agents. The American Journal of Clinical Nutrition, 73, 1147S–1151S. https://doi.org/10.1093/ajcn/73.6.1147S
  • Saber, A., Yari Khosroushahi, A., Faghfoori, Z., Seyyedi, M., & Alipour, B. (2019). Molecular identification and probiotic characterization of isolated yeasts from Iranian traditional dairies. Progress in Nutrition, 21(1-S), 445–457. https://doi.org/10.23751/pn.v21i1-S.5958
  • Sankh, S., Thiru, M., Saran, S., & Rangaswamy, V. (2013). Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel, 106, 690–696. https://doi.org/10.1016/j.fuel.2012.12.014
  • Sharma, R., Bhaskar, B., Sanodiya, B. S., & Bisen, P. (2014). Probiotic efficacy and potential of Streptococcus thermophilus modulating human health: A synoptic review. Journal of Pharmacy and Biological Sciences, 9(3), 52–58. https://doi.org/10.9790/3008-09325258
  • Song, S. H., Cho, Y. H., & Park, J. (2003). Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. Journal of Food Science, 68(1), 195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x
  • Steensels, J., & Verstrepen, K. J. (2014). Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annual Review of Microbiology, 68(1), 61–80. https://doi.org/10.1146/annurev-micro-091213-113025
  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
  • Thorwall, S., Schwartz, C., Chartron, J., & Wheeldon, I. (2020). Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nature Chemical Biology, 16(2), 113–121. https://doi.org/10.1038/s41589-019-0452-x
  • Tolulope, P. A., & Julius, K. (2020). Association of probiotic potential of strains of Pichia kudriavzevii isolated from ogi with the number of open reading frame (ORF) in the nucleotide sequences. African Journal of Biotechnology, 19, 148-155. https://doi.org/10.5897/AJB2019.16814
  • Van Rijswijck, I. M., Dijksterhuis, J., Wolkers-Rooijackers, J., Abee, T., & Smid, E. J. (2014). Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, Pichia kudriavzevii, and Saccharomyces cerevisiae. Yeast, n/a. https://doi.org/10.1002/yea.3050
  • Vandenplas, Y., Rudolph, C. D., Di Lorenzo, C., & Wenzl, T. (2009). Pediatric gastroesophageal reflux clinical practice guidelines: Joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). Journal of Pediatric Gastroenterology & Nutrition, 49(5), 498–547. https://doi.org/10.1097/mpg.0b013e3181b7f563
  • Villa, S., Hamideh, M., Weinstock, A., Qasim, M. N., Hazbun, T. R., Sellam, A., Hernday, A. D., & Thangamani, S. (2020). Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Research, 20(1). https://doi.org/10.1093/femsyr/foaa005
  • Vlasova, A., Kandasamy, S., Chattha, K., Rajashekara, G., & Saif, L. (2016). Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses, and rotavirus vaccines and infection in different host species. Veterinary Immunology and Immunopathology, 172, 72-84. https://doi.org/10.1016/j.vetimm.2016.01.003
  • Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 30. https://doi.org/10.3390/beverages2040030
  • Wu, Z. F., Sun, L., Zhang, X., Shen, X. Q., & Weng, P. F. (2016). Quantitative analysis of predominant yeasts and volatile compounds in the process of pickled wax gourd. CyTA – Journal of Food, 14, 92–100. https://doi.org/10.1080/19476337.2015.1052018
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/10.1016/j.fbio.2021.101499

Artificial gastric digestion survival and bioprocess compatibility of a novel Pichia kudriavzevii FOL-27

Year 2024, Volume: 2 Issue: 2, 101 - 108, 27.09.2024

Abstract

The goal of this study was to explore Pichia kudriavzevii FOL-27’s: i) survival against artificial gastric acid (AGJ) and artificial bile juice (ABJ), ii) growth kinetics in batch trials (BT) and fed-batch trials (FBT). Survival of FOL-27 as measured by relative cell density ratio (RCDR) against AGJ and ABJ was performed at four different pH-levels (control, 3, 2, 1.5) and ox-bile concentrations (control, 0.2%, 1%, 2%), respectively. Growth kinetics was calculated by periodic measurement of OD600 in BT or in FBT where pH, dissolved oxygen and temperature were controlled at 5.5, 25%, and 30°C, respectively. Also, impact of dissolved oxygen level at 12.5% or 25% were tested against the growth and performance of FOL-27 in FBT using exponential feeding regimen. The doubling-time, maximum specific growth rate, and final cell densities achieved for BT were 101.8 min, 8.202h-1 and 28.7, respectively. FBT at 25% O2 or 12.5% O2 level resulted in doubling-time, maximum specific growth rate, and final cell densities of 90.18 min, 3.95h-1, 22.51 and 88.8 min, 2.83h-1, 26.6, respectively. RCDRs calculated were similar for pH=3 and control vs both were remarkably higher (p<0.05) than pH=1.5 and pH=2 with the last two pH-levels were significantly different (p<0.05) from each other. RCDRs were similar across control, 0.2%, 1%, and 2% ox-bile levels (p>0.05). P. kudriavzevii FOL-27 is a potential probiotic candidate showing resistance against AGJ and ABJ conditions. A remarkable increase in biomass when grown with FBT implies that P. kudriavzevii FOL-27 is compatible to bioprocess development therefore a yeast-based probiotic culture could perhaps be developed using this strain.

References

  • Alakeji, T. P., & Oloke, J. K. (2020). Association of probiotic potential of strains of Pichia kudriavzevii isolated from “ogi” with the number of open reading frame (ORF) in the nucleotide sequences. African Journal of Biotechnology, 19(3), 148-155. https://doi.org/10.5897/AJB2019.16814
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Buts, J. P. (2009). Twenty-five years of research on Saccharomyces boulardii trophic effects: Updates and perspectives. Digestive Diseases and Sciences, 54, 15–18. https://doi.org/10.1007/s10620-008-0322-y
  • Chelliah, R., Ramakrishnan, S., Prabhu, P., & Antony, U. (2016). Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8), 385-401. https://doi.org/10.1002/yea.3181
  • Chen, L. S., Ma, Y., Maubois, J. L., He, S. H., Chen, L. J., & Li, H. M. (2010). Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Science & Technology, 90(5), 537–548. https://doi.org/10.1051/dst/2010001
  • Chu, Y., Li, M., Jin, J., Dong, X., Xu, K., Jin, L., Qiao, Y., & Ji, H. (2023). Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. Journal of Fungi, 9(2), 170. https://doi.org/10.3390/jof9020170
  • Cintas, L. M., Casaus, M. P., Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Review: Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7, 281–305. https://doi.org/10.1106/R8DE-P6HU-CLXP-5RYT
  • Czerucka, D., Piche, T., & Rampal, P. (2007). Review article: Yeast as probiotics – Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 26, 767–778. https://doi.org/10.1106/R8DE-P6HU-CLXP-5RYT
  • Díaz-Nava, L. E., Montes-Garcia, N., Domínguez, J. M., & Aguilar-Uscanga, M. G. (2017). Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess and Biosystems Engineering, 40(7), 1069–1077. https://doi.org/10.1007/s00449-017-1769-z
  • Foligné, B., Dewulf, J., Breton, J., Claisse, O., Lonvaud-Funel, A., & Pot, B. (2010). Probiotic properties of non-conventional lactic acid bacteria: Immunomodulation by Oenococcus oeni. International Journal of Food Microbiology, 140, 136–145. https://doi.org/10.1016/j.ijfoodmicro.2010.04.007
  • Galafassi, S., Merico, A., Pizza, F., Hellborg, L., Molinari, F., Piškur, J., & Compagno, C. (2010). Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. Journal of Industrial Microbiology & Biotechnology, 38(8), 1079-1088. https://doi.org/10.1007/s10295-010-0885-4
  • Gómez-Gaviria, M., & Mora-Montes, H. M. (2020). Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infection and Drug Resistance, 13, 1673–1689. https://doi.org/10.2147/idr.s247944
  • Golomb, B. L., Morales, V., Jung, A., Yau, B., Boundy-Mills, K. L., & Marco, M. L. (2013). Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiology, 33, 97–106. https://doi.org/10.1016/j.fm.2012.09.004
  • Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169–177. https://doi.org/10.1016/j.fm.2016.09.016
  • Hoffman, C. S., Wood, V., & Fantes, P. A. (2015). An ancient yeast for young geneticists: A primer on the Schizosaccharomyces pombe model system. Genetics, 201(2), 403-423. https://doi.org/10.1534/genetics.115.181503
  • Klaenhammer, T. R., & Kleeman, E. G. (1981). Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 41(6), 1461–1467. https://doi.org/10.1128/aem.41.6.1461-1467.1981
  • Kurtzman, C. P., Robnett, C. J., & Basehoar-Powers, E. (2008). Phylogenetic relationships among species of Pichia, Issatchenkia, and Williopsis determined from multigene sequence analysis and the proposal of Barnettozyma gen. nov., Lindnera gen. nov., and Wickerhamomyces gen. nov. FEMS Yeast Research, 8(6), 939–954. https://doi.org/10.1111/j.1567-1364.2008.00419.x
  • Liti, G. (2015). The fascinating and secret wildlife of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835
  • Martinez, R., Bedani, R., & Saad, S. (2015). Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. British Journal of Nutrition, 114(12), 1993-2015. https://doi.org/10.1017/S0007114515003864
  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13(1), 91. https://doi.org/10.1186/s13068-020-01729-5
  • Nielsen, J. (2019). Yeast systems biology: Model organism and cell factory. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800421
  • Power, S., O'Toole, P., Stanton, C., Ross, R., & Fitzgerald, G. (2014). Intestinal microbiota, diet, and health. British Journal of Nutrition, 111(3), 387-402. https://doi.org/10.1017/S0007114513002560
  • Saavedra, J. M. (2001). Clinical applications of probiotic agents. The American Journal of Clinical Nutrition, 73, 1147S–1151S. https://doi.org/10.1093/ajcn/73.6.1147S
  • Saber, A., Yari Khosroushahi, A., Faghfoori, Z., Seyyedi, M., & Alipour, B. (2019). Molecular identification and probiotic characterization of isolated yeasts from Iranian traditional dairies. Progress in Nutrition, 21(1-S), 445–457. https://doi.org/10.23751/pn.v21i1-S.5958
  • Sankh, S., Thiru, M., Saran, S., & Rangaswamy, V. (2013). Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel, 106, 690–696. https://doi.org/10.1016/j.fuel.2012.12.014
  • Sharma, R., Bhaskar, B., Sanodiya, B. S., & Bisen, P. (2014). Probiotic efficacy and potential of Streptococcus thermophilus modulating human health: A synoptic review. Journal of Pharmacy and Biological Sciences, 9(3), 52–58. https://doi.org/10.9790/3008-09325258
  • Song, S. H., Cho, Y. H., & Park, J. (2003). Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. Journal of Food Science, 68(1), 195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x
  • Steensels, J., & Verstrepen, K. J. (2014). Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annual Review of Microbiology, 68(1), 61–80. https://doi.org/10.1146/annurev-micro-091213-113025
  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
  • Thorwall, S., Schwartz, C., Chartron, J., & Wheeldon, I. (2020). Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nature Chemical Biology, 16(2), 113–121. https://doi.org/10.1038/s41589-019-0452-x
  • Tolulope, P. A., & Julius, K. (2020). Association of probiotic potential of strains of Pichia kudriavzevii isolated from ogi with the number of open reading frame (ORF) in the nucleotide sequences. African Journal of Biotechnology, 19, 148-155. https://doi.org/10.5897/AJB2019.16814
  • Van Rijswijck, I. M., Dijksterhuis, J., Wolkers-Rooijackers, J., Abee, T., & Smid, E. J. (2014). Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, Pichia kudriavzevii, and Saccharomyces cerevisiae. Yeast, n/a. https://doi.org/10.1002/yea.3050
  • Vandenplas, Y., Rudolph, C. D., Di Lorenzo, C., & Wenzl, T. (2009). Pediatric gastroesophageal reflux clinical practice guidelines: Joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). Journal of Pediatric Gastroenterology & Nutrition, 49(5), 498–547. https://doi.org/10.1097/mpg.0b013e3181b7f563
  • Villa, S., Hamideh, M., Weinstock, A., Qasim, M. N., Hazbun, T. R., Sellam, A., Hernday, A. D., & Thangamani, S. (2020). Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Research, 20(1). https://doi.org/10.1093/femsyr/foaa005
  • Vlasova, A., Kandasamy, S., Chattha, K., Rajashekara, G., & Saif, L. (2016). Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses, and rotavirus vaccines and infection in different host species. Veterinary Immunology and Immunopathology, 172, 72-84. https://doi.org/10.1016/j.vetimm.2016.01.003
  • Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 30. https://doi.org/10.3390/beverages2040030
  • Wu, Z. F., Sun, L., Zhang, X., Shen, X. Q., & Weng, P. F. (2016). Quantitative analysis of predominant yeasts and volatile compounds in the process of pickled wax gourd. CyTA – Journal of Food, 14, 92–100. https://doi.org/10.1080/19476337.2015.1052018
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/10.1016/j.fbio.2021.101499
There are 38 citations in total.

Details

Primary Language English
Subjects Fermentation Technology, Food Biotechnology, Food Microbiology
Journal Section Research Articles
Authors

Kübra Yumuk 0000-0001-7524-7997

Özge Can This is me 0009-0002-9452-1976

Fatih Ortakcı 0000-0003-1319-0854

Publication Date September 27, 2024
Submission Date January 23, 2024
Acceptance Date September 17, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Yumuk, K., Can, Ö., & Ortakcı, F. (2024). Artificial gastric digestion survival and bioprocess compatibility of a novel Pichia kudriavzevii FOL-27. ITU Journal of Food Science and Technology, 2(2), 101-108.