Review Article
BibTex RIS Cite

Ultraviyole-C uygulamasının hasat sonrası dutsu meyvelerin fizyolojisine ve bozulmasına etkisi: Derleme

Year 2024, Volume: 2 Issue: 2, 85 - 100, 27.09.2024

Abstract

Dutsu meyveler dehidrasyona, mekanik hasara, yumuşamaya ve mikrobiyal çürümeye yatkınlıkları nedeniyle kısa raf ömrüne sahiptir. Isıl ve kimyasal olmayan bir yöntem olan UVC uygulaması, hasat sonrası meyve ve sebzelerin mikrobiyolojik, fizyolojik ve besinsel kalitesini iyileştirmek için kullanılmaktadır. Bu derlemede, hasat sonrası UVC uygulamasının dutsu meyvelerin fizyolojisini ele alınmakta ve depolama sırasında etilen üretimi, solunum hızı, doku (sertlik, ağırlık kaybı ve hücre duvarı), fenolik bileşikler, antioksidan kapasite, renk, lezzet ve mikrobiyal çürüme üzerindeki etkileri değerlendirilmektedir. Çalışmalar, UVC uygulamasının dutsu meyvelerde fenolik bileşikleri ve antioksidan kapasiteyi arttırmada ve meyvelerin sıkılığını korumada yararlı bir etkiye sahip olduğunu göstermiştir. Ayrıca, hasat sonrasında UVC ile muamele edilen meyvelerde yumuşama ve ağırlık kaybı engellenebilmektedir. Bununla birlikte, UVC uygulaması etilen üretimini ve solunum hızını artırarak aromanın bozulmasına ve erken yaşlanmaya neden olabilir. UVC uygulamasının etkinliği meyve çeşitlerine, UVC dozuna ve diğer uygulama parametrelerine bağlıdır. Ayrıca, engel teknolojisi kullanılarak fiziksel ve kimyasal uygulamaların UVC ile kombinasyonu, tek başına UVC işlemine kıyasla dutsu meyve fizyolojisini geliştirebilir.

References

  • Abd El-Rahman, S. S., Mazen, M. M., Mohamed, H. I., & Mahmoud, N. M. (2012). Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. European Journal of Plant Pathology, 134(1), 105–116. https://doi.org/10.1007/s10658-012-0028-z
  • Abdipour, M., Sadat Malekhossini, P., Hosseinifarahi, M., & Radi, M. (2020). Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Scientia Horticulturae, 264, 109197. https://doi.org/10.1016/j.scienta.2020.109197
  • Adhikari, A., Syamaladevi, R. M., Killinger, K., & Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology, 210, 136–142. https://doi.org/10.1016/J.IJFOODMICRO.2015.06.018
  • Adlercreutz, H. (2008). Lignans and Human Health. Critical Reviews in Clinical Laboratory Sciences, 44(5–6), 483–525. https://doi.org/10.1080/10408360701612942
  • Allende, A., Marín, A., Buendía, B., Tomás-Barberán, F., & Gil, M. I. (2007). Impact of combined postharvest treatments (UV-C light, gaseous O3, superatmospheric O2 and high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest Biology and Technology, 46(3), 201–211. https://doi.org/https://doi.org/10.1016/j.postharvbio.2007.05.007
  • Amiri, A., Mortazavi, S. M. H., Ramezanian, A., Mahmoodi Sourestani, M., Mottaghipisheh, J., Iriti, M., & Vitalini, S. (2021). Prevention of decay and maintenance of bioactive compounds in strawberry by application of UV-C and essential oils. Journal of Food Measurement and Characterization, 15(6), 5310–5317. https://doi.org/10.1007/S11694-021-01095-2/FIGURES/4
  • Artés, F., & Allende, A. (2015). Processing Lines and Alternative Preservation Techniques to Prolong the Shelf-life of Minimally Lines and Alternative Preservation Processing long the Shelf-life of Minimally Fresh Processed to Pro Techniques Leafy Vegetables. European Journal of Horticultural Science, 70(5), 231–245.
  • Ascencio-Arteaga, A., Luna-Suárez, S., Cárdenas-Valdovinos, J. G., Oregel-Zamudio, E., Oyoque-Salcedo, G., Ceja-Díaz, J. A., Angoa-Pérez, M. V., & Mena-Violante, H. G. (2022). Shelf Life of Blackberry Fruits (Rubus fruticosus) with Edible Coatings Based on Candelilla Wax and Guar Gum. Horticulturae 2022, Vol. 8, Page 574, 8(7), 574. https://doi.org/10.3390/HORTICULTURAE8070574
  • Baietto, M., & Wilson, A. D. (2015). Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, Vol. 15, Pages 899-931, 15(1), 899–931. https://doi.org/10.3390/S150100899
  • Basaran, P., & Kepenek, K. (2011). Fruit quality attributes of blackberry (Rubus sanctus) mutants obtained by 60Co gamma irradiation. Biotechnology and Bioprocess Engineering, 16(3), 587–592. https://doi.org/10.1007/S12257-010-0101-4/METRICS
  • Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68(3), 168–177. https://doi.org/10.1111/J.1753-4887.2010.00273.X
  • Bovi, G. G., Fröhling, A., Pathak, N., Valdramidis, V. P., & Schlüter, O. (2019). Safety Control of Whole Berries by Cold Atmospheric Pressure Plasma Processing: A Review. Journal of Food Protection, 82(7), 1233–1243. https://doi.org/10.4315/0362-028X.JFP-18-606
  • Cassar, J. R., Ouyang, B., Krishnamurthy, K., & Demirci, A. (2020). Microbial Decontamination of Food by Light-Based Technologies: Ultraviolet (UV) Light, Pulsed UV Light (PUV), and UV Light-Emitting Diodes (UV-LED). Food Engineering Series, 493–521. https://doi.org/10.1007/978-3-030-42660-6_19/FIGURES/8
  • Chen, H., Cao, S., Fang, X., Mu, H., Yang, H., Wang, X., Xu, Q., & Gao, H. (2015). Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Scientia Horticulturae, 188, 44–48. https://doi.org/10.1016/j.scienta.2015.03.018
  • Chiabrando, V., Garavaglia, L., & Giacalone, G. (2019). The Postharvest Quality of Fresh Sweet Cherries and Strawberries with an Active Packaging System. Foods 2019, Vol. 8, Page 335, 8(8), 335. https://doi.org/10.3390/FOODS8080335
  • Cho, E. R., Kim, J. Y., Oh, S. W., & Kang, D. H. (2022). Inactivation of Pectobacterium carotovorum subsp. Carotovorum and Dickeya chrysanthemi on the surface of fresh produce using a 222 nm krypton–chlorine excimer lamp and 280 nm UVC light-emitting diodes. LWT, 165, 113710. https://doi.org/10.1016/J.LWT.2022.113710
  • Choudhary, R., & Bandla, S. (2012). Ultraviolet Pasteurization for Food Industry. International Journal of Food Science and Nutrition Engineering, 2(1), 12–15. https://doi.org/10.5923/j.food.20120201.03
  • Costa, H. C. de B., Siguemoto, É. S., Cavalcante, T. A. B. B., de Oliveira Silva, D., Vieira, L. G. M., & Gut, J. A. W. (2021). Effect of microwave-assisted processing on polyphenol oxidase and peroxidase inactivation kinetics of açai-berry (Euterpe oleracea) pulp. Food Chemistry, 341, 128287. https://doi.org/10.1016/J.FOODCHEM.2020.128287
  • Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., & Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. https://doi.org/10.1016/J.POSTHARVBIO.2013.03.009
  • Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M. A., & Vázquez-Odériz, M. L. (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23–30. https://doi.org/10.1016/J.JFCA.2012.07.004
  • Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods, 11(5), 653. https://doi.org/10.3390/foods11050653
  • Del Rio, D., Borges, G., & Crozier, A. (2010). Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journal of Nutrition, 104(S3), S67–S90. https://doi.org/10.1017/S0007114510003958
  • Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., Margalho, L. P., Pimentel, T. C., Silva, M. C., Freitas, M. Q., Granato, D., Sant’Ana, A. S., Duart, M. C. K. H., & Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology, 102, 146–154. https://doi.org/10.1016/j.tifs.2020.06.001
  • Deshi, V., Siddiqui, M. W., Homa, F., & Singh, J. P. (2020). Postharvest hydrogen sulfide infiltration modulates antioxidative metabolism and increases shelf life of litchi. Acta Physiologiae Plantarum, 42(5), 1–9. https://doi.org/10.1007/S11738-020-03056-6/TABLES/8
  • Devore, E. E., Kang, J. H., Breteler, M. M. B., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135–143. https://doi.org/10.1002/ANA.23594
  • Dickenson, V. (2020). Berries. Replika Press. EFSA. (2014). Scientific Opinion on the risk posed by pathogens in food of non‐animal origin. Part 2 (Salmonella and Norovirus in berries). EFSA Journal, 12(6). https://doi.org/10.2903/j.efsa.2014.3706
  • Falcó, I., Randazzo, W., Sánchez, G., López-Rubio, A., & Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocolloids, 92, 74–85. https://doi.org/10.1016/j.foodhyd.2019.01.039
  • Fan, D., Wang, W., Hao, Q., & Jia, W. (2022). Do Non-climacteric Fruits Share a Common Ripening Mechanism of Hormonal Regulation? Frontiers in Plant Science, 13, 923484. https://doi.org/10.3389/FPLS.2022.923484/BIBTEX
  • Farneti, B., Khomenko, I., Ajelli, M., Emanuelli, F., Biasioli, F., & Giongo, L. (2022). Ethylene Production Affects Blueberry Fruit Texture and Storability. Frontiers in Plant Science, 13, 813863. https://doi.org/10.3389/FPLS.2022.813863/BIBTEX
  • FDA. (2013). Ultraviolet Radiation for the Processing and Treatment of Food (21CFR179. 39). In Code of Federal Regulations, United States Food and Drug Administration.
  • Gimeno, D., Gonzalez-Buesa, J., Oria, R., Venturini, M. E., & Arias, E. (2021). Effect of Modified Atmosphere Packaging (MAP) and UV-C Irradiation on Postharvest Quality of Red Raspberries. Agriculture 2022, Vol. 12, Page 29, 12(1), 29. https://doi.org/10.3390/AGRICULTURE12010029
  • González-Villagra, J., Reyes-Díaz, M., Alberdi, M., Mora, M. L., Ulloa-Inostroza, E. M., & Ribera-Fonseca, A. E. (2020). Impact of Cold-Storage and UV-C Irradiation Postharvest Treatments on Quality and Antioxidant Properties of Fruits from Blueberry Cultivars Grown in Southern Chile. Journal of Soil Science and Plant Nutrition, 20(4), 1751–1758. https://doi.org/10.1007/S42729-020-00247-5/FIGURES/3
  • Green, A., Popović, V., Warriner, K., & Koutchma, T. (2020). The efficacy of UVC LEDs and low pressure mercury lamps for the reduction of Escherichia coli O157:H7 and Listeria monocytogenes on produce. Innovative Food Science and Emerging Technologies, 64(October 2019), 102410. https://doi.org/10.1016/j.ifset.2020.102410
  • Gündüz, G. T., Juneja, V. K., & Pazır, F. (2015). Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens. Food Control, 57, 9–13. https://doi.org/10.1016/j.foodcont.2015.04.003
  • Gunes, G., Liu, R. H., & Watkins, C. B. (2002). Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits. Journal of Agricultural and Food Chemistry, 50(21), 5932–5938. https://doi.org/10.1021/JF025572C/ASSET/IMAGES/LARGE/JF025572CF00005.JPEG
  • Hakguder Taze, B., & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/j.scienta.2018.02.012
  • Häkkinen, S. (2000). Flavonols and Phenolic Acids in Berries and Berry Products . University of Kuopio.
  • Haley, O. C., Pliakoni, E. D., Rivard, C., Nwadike, L., & Bhullar, M. (2023). The Attenuation of Microbial Reduction in Blueberry Fruit Following UV-LED Treatment. Journal of Food Protection, 86(3), 100056. https://doi.org/10.1016/J.JFP.2023.100056
  • Harm, W. (1980). Biological effects of ultraviolet radiation (Vol. 12). Cambridge University Press.
  • Horvitz, S. (2017). Postharvest Handling of Berries. IntechOpen. https://books.google.com.tr/books?id=sT2lzQEACAAJ
  • Huynh, N. K., Wilson, M. D., Eyles, A., & Stanley, R. A. (2019). Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). Journal of Berry Research, 9(4), 687–707. https://doi.org/10.3233/JBR-190421
  • Janisiewicz, W., Takeda, F., Evans, B., & Camp, M. (2021). Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens. Crop Protection, 150, 105791. https://doi.org/10.1016/J.CROPRO.2021.105791
  • Jaramillo Sánchez, G., Contigiani, E. V., Coronel, M. B., Alzamora, S. M., García-Loredo, A., & Nieto, A. B. (2021). Study of UV-C treatments on postharvest life of blueberries ‘O’Neal’ and correlation between structure and quality parameters. Heliyon, 7(6), e07190. https://doi.org/10.1016/j.heliyon.2021.e07190
  • Ji, Y., Hu, W., Liao, J., Jiang, A., Xiu, Z., Gaowa, S., Guan, Y., Yang, X., Feng, K., & Liu, C. (2020). Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture, 100(15), 5586–5595. https://doi.org/10.1002/JSFA.10611
  • Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209–215. https://doi.org/10.1016/J.POSTHARVBIO.2010.01.011
  • Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., & Zheng, Y. (2017). UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 225, 106–111. https://doi.org/10.1016/j.scienta.2017.06.062
  • Jin, P., Zheng, C., Huang, Y., Wang, X., Luo, Z., & Zheng, Y. (2016). Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit. Journal of Integrative Agriculture, 15(11), 2658–2665. https://doi.org/10.1016/S2095-3119(16)61387-4
  • Kaur, R., Shekhar, S., Prasad, K., Kaur, R., Shekhar, S., & Prasad, K. (2022). Secondary Metabolites of Fruits and Vegetables with Antioxidant Potential. Secondary Metabolites - Trends and Reviews. https://doi.org/10.5772/INTECHOPEN.103707
  • Khanizadeh, S., Rekika, D., Ehsani-Moghaddam, B., Tsao, R., Yang, R., Charles, M. T., Sullivan, J. A., Gauthier, L., Gosselin, A., Potel, A.-M., Reynaud, G., & Émilie Thomas. (2009). Horticultural characteristics and chemical composition of advanced raspberry lines from Quebec and Ontario. LWT - Food Science and Technology, 42(4), 893–898. https://doi.org/10.1016/j.lwt.2008.08.016
  • Koutchma, T. (2008). UV Light for Processing Foods. Ozone: Science and Engineering, 30(1), 93–98. https://doi.org/10.1080/01919510701816346
  • Koutchma, T. (2014). Basic Principles of UV Light Generation. Food Plant Safety, 3–13. https://doi.org/10.1016/B978-0-12-416620-2.00002-3
  • Koutchma, T. (2019). Ultraviolet Light in Food Technology: Principles and Applications (Vol. 2). CRC press.
  • Kumar, S., Baghel, M., Yadav, A., & Dhakar, M. K. (2018). Postharvest Biology and Technology of Berries. Postharvest Biology and Technology of Temperate Fruits, 349–370. https://doi.org/10.1007/978-3-319-76843-4_15
  • Kutlu, B., Taştan, Ö., & Baysal, T. (2022). Decontamination of frozen cherries by innovative light-based technologies: Assessment of microbial inactivation and quality changes. Food Control, 141, 109149. https://doi.org/10.1016/j.foodcont.2022.109149
  • Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. https://doi.org/10.1016/j.fm.2014.09.010
  • Lewis, M. (2023). The high-frequency end of the electromagnetic spectrum. Food Process Engineering Principles and Data, 377–382. https://doi.org/10.1016/B978-0-12-821182-3.00026-1
  • Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T., & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56–62. https://doi.org/10.1016/j.postharvbio.2013.12.006
  • Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries. Postharvest Biology and Technology, 156, 110945. https://doi.org/10.1016/j.postharvbio.2019.110945
  • Lipe, J. A. (1978). Ethylene in Fruits of Blackberry and Rabbiteye Blueberry1. Journal of the American Society for Horticultural Science, 103(1), 76–77. https://doi.org/10.21273/JASHS.103.1.76
  • Liu, B., Wang, K., Shu, X., Liang, J., Fan, X., & Sun, L. (2019). Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Scientia Horticulturae, 246, 557–562. https://doi.org/10.1016/j.scienta.2018.11.042
  • Liu, C., Huang, Y., & Chen, H. (2015). Inactivation of Escherichia Coli O157:H7 and Salmonella Enterica on Blueberries in Water Using Ultraviolet Light. Journal of Food Science, 80(7), M1532–M1537. https://doi.org/10.1111/1750-3841.12910
  • Lou, X., Xiong, J., Tian, H., Yu, H., Chen, C., Huang, J., Yuan, H., Hanna, M., Yuan, L., & Xu, H. (2022). Effect of high-pressure processing on the bioaccessibility of phenolic compounds from cloudy hawthorn berry (Crataegus pinnatifida) juice. Journal of Food Composition and Analysis, 110, 104540. https://doi.org/10.1016/j.jfca.2022.104540
  • Lu, H., Li, L., Limwachiranon, J., Xie, J., & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae, 213, 104–109. https://doi.org/10.1016/j.scienta.2016.10.017
  • Mannozzi, C., Cecchini, J. P., Tylewicz, U., Siroli, L., Patrignani, F., Lanciotti, R., Rocculi, P., Dalla Rosa, M., & Romani, S. (2017). Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT - Food Science and Technology, 85, 440–444. https://doi.org/10.1016/J.LWT.2016.12.056
  • Markovic, I., Ilic, J., Markovic, D., Simonovic, V., & Kosanic, N. (2013). Color measurement of food products using CIE L* a* b* and RGB color space. Journal of Hygienic Engineering and Design, 4(1), 50–53.
  • Marquenie, D., Michiels, C. W., Van Impe, J. F., Schrevens, E., & Nicolaï, B. N. (2003). Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology, 28(3), 455–461. https://doi.org/10.1016/S0925-5214(02)00214-4
  • Mattila, P., Hellström, J., Hellström, H., Törrönen, R. (2006). Phenolic Acids in Berries, Fruits, and Beverages. Journal of Agricultural and Food Chemistry, 54(19), 7193–7199. https://doi.org/10.1021/JF0615247 Minamata Convention on Mercury. (2023). Minamata Convention on Mercury: text and annexes. United Nations Publication.
  • Nguyen, C. T. T., Kim, J., Yoo, K. S., Lim, S., & Lee, E. J. (2014). Effect of prestorage UV-A, -B, and -C radiation on fruit quality and anthocyanin of “Duke” blueberries during cold storage. Journal of Agricultural and Food Chemistry, 62(50), 12144–12151. https://doi.org/10.1021/JF504366X/ASSET/IMAGES/LARGE/JF-2014-04366X_0004.JPEG
  • Nigro, F., Ippolito, A., Lattanzio, V., Di Venere, D., & Salerno, M. (2000). Effect of ultraviolet-C light on postharvest decay of strawberry. Journal of Plant Pathology, 82(1), 29–37. http://www.jstor.org/stable/41997977
  • Ortiz Araque, L. C., Ortiz, C. M., Darré, M., Rodoni, L. M., Civello, P. M., & Vicente, A. R. (2019). Role of UV-C irradiation scheme on cell wall disassembly and surface mechanical properties in strawberry fruit. Postharvest Biology and Technology, 150, 122–128. https://doi.org/10.1016/J.POSTHARVBIO.2019.01.002
  • Ortiz-Solà, J., Abadias, I., Colàs-Medà, P., Anguera, M., & Viñas, I. (2021). Inactivation of Salmonella enterica, Listeria monocytogenes and murine norovirus (MNV-1) on fresh strawberries by conventional and water-assisted ultraviolet light (UV-C). Postharvest Biology and Technology, 174, 111447. https://doi.org/10.1016/j.postharvbio.2020.111447
  • Padmanabhan, P., Correa-Betanzo, J., & Paliyath, G. (2016). Berries and Related Fruits. In Encyclopedia of Food and Health (pp. 364–371). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00060-X
  • Pan, J., Vicente, A. R., Martínez, G. A., Chaves, A. R., & Civello, P. M. (2004). Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. Journal of the Science of Food and Agriculture, 84(14), 1831–1838. https://doi.org/10.1002/JSFA.1894
  • Paniagua, A. C., East, A. R., Hindmarsh, J. P., & Heyes, J. A. (2013). Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biology and Technology, 79, 13–19. https://doi.org/10.1016/j.postharvbio.2012.12.016
  • Perkins-Veazie, P., Collins, J. K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285. https://doi.org/10.1016/J.POSTHARVBIO.2007.08.002
  • Piechowiak, T. (2021). Effect of ozone treatment on glutathione (GSH) status in selected berry fruit. Phytochemistry, 187, 112767. https://doi.org/10.1016/J.PHYTOCHEM.2021.112767
  • Piechowiak, T., Sowa, P., Tarapatskyy, M., & Balawejder, M. (2021). The Role of Mitochondrial Energy Metabolism in Shaping the Quality of Highbush Blueberry Fruit During Storage in Ozone-Enriched Atmosphere. Food and Bioprocess Technology, 14(11), 1973–1982. https://doi.org/10.1007/S11947-021-02696-X/TABLES/1
  • Pinto, L., Palma, A., Cefola, M., Pace, B., D’Aquino, S., Carboni, C., & Baruzzi, F. (2020). Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26, 100573. https://doi.org/10.1016/J.FPSL.2020.100573
  • Pombo, M. A., Dotto, M. C., Martínez, G. A., & Civello, P. M. (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology, 51(2), 141–148. https://doi.org/10.1016/j.postharvbio.2008.07.007
  • Pombo, M. A., Rosli, H. G., Martínez, G. A., & Civello, P. M. (2011). UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa, Duch.). Postharvest Biology and Technology, 59(1), 94–102. https://doi.org/10.1016/J.POSTHARVBIO.2010.08.003
  • Pritts, M. (2017). Soft Fruits. Encyclopedia of Applied Plant Sciences, 3, 268–272. https://doi.org/10.1016/B978-0-12-394807-6.00005-8
  • Priya Sethu, K. M., Prabha, T. N., & Tharanathan, R. N. (1996). Post-harvest biochemical changes associated with the softening phenomenon in Capsicum annuum fruits. Phytochemistry, 42(4), 961–966. https://doi.org/10.1016/0031-9422(96)00057-X
  • Rabelo, M. C., Bang, W. Y., Nair, V., Alves, R. E., Jacobo-Velázquez, D. A., Sreedharan, S., de Miranda, M. R. A., & Cisneros-Zevallos, L. (2020). UVC light modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production. Scientific Reports, 10(1), 21972. https://doi.org/10.1038/s41598-020-78948-1
  • Rios de Souza, V., Popović, V., Warriner, K., & Koutchma, T. (2020). A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm. Food Control, 110(December 2019), 107039. https://doi.org/10.1016/j.foodcont.2019.107039
  • Rodriguez, J., & Zoffoli, J. P. (2016). Effect of sulfur dioxide and modified atmosphere packaging on blueberry postharvest quality. Postharvest Biology and Technology, 117, 230–238. https://doi.org/10.1016/J.POSTHARVBIO.2016.03.008
  • Rodriguez-Mateos, A., Cifuentes-Gomez, T., Tabatabaee, S., Lecras, C., & Spencer, J. P. E. (2012). Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. Journal of Agricultural and Food Chemistry, 60(23), 5772–5778. https://doi.org/10.1021/JF203812W/ASSET/IMAGES/LARGE/JF-2011-03812W_0002.JPEG
  • Sempere-Ferre, F., Giménez-Santamarina, S., Roselló, J., & Santamarina, M. P. (2022). Antifungal in vitro potential of Aloe vera gel as postharvest treatment to maintain blueberry quality during storage. LWT, 163, 113512. https://doi.org/10.1016/J.LWT.2022.113512
  • Severo, J., de Oliveira, I. R., Tiecher, A., Chaves, F. C., & Rombaldi, C. V. (2015). Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry. LWT - Food Science and Technology, 64(2), 685–692. https://doi.org/10.1016/J.LWT.2015.06.041
  • Shah, H. M. S., Singh, Z., Kaur, J., Hasan, M. U., Woodward, A., & Afrifa-Yamoah, E. (2023). Trends in maintaining postharvest freshness and quality of Rubus berries. Comprehensive Reviews in Food Science and Food Safety, 22(6), 4600–4643. https://doi.org/10.1111/1541-4337.13235
  • Sheng, K., Shui, S. S., Yan, L., Liu, C., & Zheng, L. (2018). Effect of postharvest UV-B or UV-C irradiation on phenolic compounds and their transcription of phenolic biosynthetic genes of table grapes. Journal of Food Science and Technology, 55(8), 3292–3302. https://doi.org/10.1007/S13197-018-3264-1/FIGURES/2
  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive Compounds and Antioxidant Activity in Different Types of Berries. International Journal of Molecular Sciences 2015, Vol. 16, Pages 24673-24706, 16(10), 24673–24706. https://doi.org/10.3390/IJMS161024673
  • Smeds, A. I., Eklund, P. C., & Willför, S. M. (2012). Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chemistry, 134(4), 1991–1998. https://doi.org/10.1016/J.FOODCHEM.2012.03.133
  • Spinardi, A., Cola, G., Gardana, C. S., & Mignani, I. (2019). Variation of Anthocyanin Content and Profile Throughout Fruit Development and Ripening of Highbush Blueberry Cultivars Grown at Two Different Altitudes. Frontiers in Plant Science, 10, 1045. https://doi.org/10.3389/FPLS.2019.01045/BIBTEX
  • Sun, T., Ouyang, H., Sun, P., Zhang, W., Wang, Y., Cheng, S., & Chen, G. (2022). Postharvest UV-C irradiation inhibits blackhead disease by inducing disease resistance and reducing mycotoxin production in ‘Korla’ fragrant pear (Pyrus sinkiangensis). International Journal of Food Microbiology, 362, 109485. https://doi.org/10.1016/j.ijfoodmicro.2021.109485
  • Szajdek, A., & Borowska, E. J. (2008). Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review. Plant Foods for Human Nutrition 2008 63:4, 63(4), 147–156. https://doi.org/10.1007/S11130-008-0097-5
  • Tena, N., Martín, J., & Asuero, A. G. (2020). State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, Vol. 9, Page 451, 9(5), 451. https://doi.org/10.3390/ANTIOX9050451
  • Trainotti, L., Spinello, R., Piovan, A., Spolaore, S., & Casadoro, G. (2001). β‐Galactosidases with a lectin‐like domain are expressed in strawberry. Journal of Experimental Botany, 52(361), 1635–1645. https://doi.org/10.1093/JEXBOT/52.361.1635
  • Urban, L., Charles, F., de Miranda, M. R. A., & Aarrouf, J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiology and Biochemistry, 105, 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004
  • Van der Steen, C., Jacxsens, L., Devlieghere, F., & Debevere, J. (2002). Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biology and Technology, 26(1), 49–58. https://doi.org/https://doi.org/10.1016/S0925-5214(02)00005-4
  • Vicente, A., Repice, B., Martínez, G., Chaves, A., Civello, P., & Sozz, G. (2004). Maintenance of fresh boysenberry fruit quality with UV-C light and heat treatments combined with low storage temperature. The Journal of Horticultural Science and Biotechnology, 79(2), 246–251. https://doi.org/10.1080/14620316.2004.11511756
  • Vidovic, N. (2018). Berries and Berry Products. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22497-9
  • Walsh, C. S., Popenoe, J., & Solomos, T. (1983). Thornless Blackberry is a Climacteric Fruit. HortScience, 18(4), 482–483. https://doi.org/10.21273/HORTSCI.18.4.482
  • Wang, C., Gao, Y., Tao, Y., Wu, X., & Zhibo, C. (2017). Influence of γ-irradiation on the reactive-oxygen metabolism of blueberry fruit during cold storage. Innovative Food Science & Emerging Technologies, 41, 397–403. https://doi.org/10.1016/J.IFSET.2017.04.007
  • Wang, C. Y., Chen, C.-T., & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. https://doi.org/10.1016/j.foodchem.2009.04.037
  • Wang, H., Guo, X., Hu, X., Li, T., Fu, X., & Liu, R. H. (2017). Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chemistry, 217, 773–781. https://doi.org/10.1016/j.foodchem.2016.09.002
  • Wang, J.-F., Ma, L., Xi, H.-F., Wang, L.-J., & Li, S.-H. (2015). Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera×V. amurensis). Food Chemistry, 168, 430–438. https://doi.org/10.1016/j.foodchem.2014.07.025
  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry, 49(10), 4977–4982. https://doi.org/10.1021/JF0106244/ASSET/IMAGES/MEDIUM/JF0106244E00002.GIF
  • Wen, P. F., Chen, J. Y., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., Zhan, J. C., Pan, Q. H., & Huang, W. D. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55(1), 1–10. https://doi.org/10.1007/S10725-007-9250-7/FIGURES/5
  • Xu, F., & Liu, S. (2017). Control of Postharvest Quality in Blueberry Fruit by Combined 1-Methylcyclopropene (1-MCP) and UV-C Irradiation. Food and Bioprocess Technology, 10(9), 1695–1703. https://doi.org/10.1007/S11947-017-1935-Y/FIGURES/3
  • Xu, F., Wang, S., Xu, J., Liu, S., & Li, G. (2016). Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biology and Technology, 117, 125–131. https://doi.org/10.1016/J.POSTHARVBIO.2016.01.012
  • Yang, J., Li, B., Shi, W., Gong, Z., Chen, L., & Hou, Z. (2018). Transcriptional Activation of Anthocyanin Biosynthesis in Developing Fruit of Blueberries (Vaccinium corymbosum L.) by Preharvest and Postharvest UV Irradiation. Journal of Agricultural and Food Chemistry, 66(42), 10931–10942. https://doi.org/10.1021/ACS.JAFC.8B03081/SUPPL_FILE/JF8B03081_SI_001.PDF
  • Yang, J., Shi, W., Li, B., Bai, Y., & Hou, Z. (2019). Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chemistry, 301, 125248. https://doi.org/10.1016/j.foodchem.2019.125248
  • Zhai, Y., Tian, J., Ping, R., Yu, X., Wang, Z., & Shen, R. (2021). Effects of UVC light‐emitting diodes on inactivation of Escherichia coli O157:H7 and quality attributes of fresh‐cut white pitaya. Journal of Food Measurement and Characterization, 15(3), 2637–2644. https://doi.org/10.1007/s11694-021-00816-x
  • Zhou, D., Wang, Z., Tu, S., Chen, S., Peng, J., & Tu, K. (2019). Effects of cold plasma, UV‐C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. Journal of Applied Microbiology, 127(1), 175–185. https://doi.org/10.1111/JAM.14280

Effects of ultraviolet – C treatment on postharvest physiologies and decay of berries: A review

Year 2024, Volume: 2 Issue: 2, 85 - 100, 27.09.2024

Abstract

Berries have a short shelf-life due to susceptibility to dehydration, mechanical damage, softening, and microbial decay. UVC treatment, a non-thermal and non-chemical method, has been used to improve the microbiological, physiological, and nutritional quality of postharvest fruit and vegetables. This review discusses postharvest berry physiology following UVC treatment, evaluating its effects on ethylene production, respiration rate, texture (firmness, weight loss, and cell wall), phenolic compounds, antioxidant capacity, color, flavor, and microbial decay during storage are evaluated. Studies have shown that UVC treatment has a beneficial effect on increasing phenolic compounds, antioxidant capacity, and maintaining the firmness of berries. Besides, softening and weight loss can be inhibited in UVC-treated berries during postharvest. However, UVC treatment can increase ethylene production and respiration rate, causing flavor degradation and early senescence. The effectiveness of UVC treatment depends on berry cultivars, UVC doses, and other processing parameters. Moreover, combining physical and chemical treatments with UVC in a hurdle approach may enhance berry physiology compared to UVC treatment alone.

References

  • Abd El-Rahman, S. S., Mazen, M. M., Mohamed, H. I., & Mahmoud, N. M. (2012). Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. European Journal of Plant Pathology, 134(1), 105–116. https://doi.org/10.1007/s10658-012-0028-z
  • Abdipour, M., Sadat Malekhossini, P., Hosseinifarahi, M., & Radi, M. (2020). Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Scientia Horticulturae, 264, 109197. https://doi.org/10.1016/j.scienta.2020.109197
  • Adhikari, A., Syamaladevi, R. M., Killinger, K., & Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology, 210, 136–142. https://doi.org/10.1016/J.IJFOODMICRO.2015.06.018
  • Adlercreutz, H. (2008). Lignans and Human Health. Critical Reviews in Clinical Laboratory Sciences, 44(5–6), 483–525. https://doi.org/10.1080/10408360701612942
  • Allende, A., Marín, A., Buendía, B., Tomás-Barberán, F., & Gil, M. I. (2007). Impact of combined postharvest treatments (UV-C light, gaseous O3, superatmospheric O2 and high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest Biology and Technology, 46(3), 201–211. https://doi.org/https://doi.org/10.1016/j.postharvbio.2007.05.007
  • Amiri, A., Mortazavi, S. M. H., Ramezanian, A., Mahmoodi Sourestani, M., Mottaghipisheh, J., Iriti, M., & Vitalini, S. (2021). Prevention of decay and maintenance of bioactive compounds in strawberry by application of UV-C and essential oils. Journal of Food Measurement and Characterization, 15(6), 5310–5317. https://doi.org/10.1007/S11694-021-01095-2/FIGURES/4
  • Artés, F., & Allende, A. (2015). Processing Lines and Alternative Preservation Techniques to Prolong the Shelf-life of Minimally Lines and Alternative Preservation Processing long the Shelf-life of Minimally Fresh Processed to Pro Techniques Leafy Vegetables. European Journal of Horticultural Science, 70(5), 231–245.
  • Ascencio-Arteaga, A., Luna-Suárez, S., Cárdenas-Valdovinos, J. G., Oregel-Zamudio, E., Oyoque-Salcedo, G., Ceja-Díaz, J. A., Angoa-Pérez, M. V., & Mena-Violante, H. G. (2022). Shelf Life of Blackberry Fruits (Rubus fruticosus) with Edible Coatings Based on Candelilla Wax and Guar Gum. Horticulturae 2022, Vol. 8, Page 574, 8(7), 574. https://doi.org/10.3390/HORTICULTURAE8070574
  • Baietto, M., & Wilson, A. D. (2015). Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, Vol. 15, Pages 899-931, 15(1), 899–931. https://doi.org/10.3390/S150100899
  • Basaran, P., & Kepenek, K. (2011). Fruit quality attributes of blackberry (Rubus sanctus) mutants obtained by 60Co gamma irradiation. Biotechnology and Bioprocess Engineering, 16(3), 587–592. https://doi.org/10.1007/S12257-010-0101-4/METRICS
  • Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68(3), 168–177. https://doi.org/10.1111/J.1753-4887.2010.00273.X
  • Bovi, G. G., Fröhling, A., Pathak, N., Valdramidis, V. P., & Schlüter, O. (2019). Safety Control of Whole Berries by Cold Atmospheric Pressure Plasma Processing: A Review. Journal of Food Protection, 82(7), 1233–1243. https://doi.org/10.4315/0362-028X.JFP-18-606
  • Cassar, J. R., Ouyang, B., Krishnamurthy, K., & Demirci, A. (2020). Microbial Decontamination of Food by Light-Based Technologies: Ultraviolet (UV) Light, Pulsed UV Light (PUV), and UV Light-Emitting Diodes (UV-LED). Food Engineering Series, 493–521. https://doi.org/10.1007/978-3-030-42660-6_19/FIGURES/8
  • Chen, H., Cao, S., Fang, X., Mu, H., Yang, H., Wang, X., Xu, Q., & Gao, H. (2015). Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Scientia Horticulturae, 188, 44–48. https://doi.org/10.1016/j.scienta.2015.03.018
  • Chiabrando, V., Garavaglia, L., & Giacalone, G. (2019). The Postharvest Quality of Fresh Sweet Cherries and Strawberries with an Active Packaging System. Foods 2019, Vol. 8, Page 335, 8(8), 335. https://doi.org/10.3390/FOODS8080335
  • Cho, E. R., Kim, J. Y., Oh, S. W., & Kang, D. H. (2022). Inactivation of Pectobacterium carotovorum subsp. Carotovorum and Dickeya chrysanthemi on the surface of fresh produce using a 222 nm krypton–chlorine excimer lamp and 280 nm UVC light-emitting diodes. LWT, 165, 113710. https://doi.org/10.1016/J.LWT.2022.113710
  • Choudhary, R., & Bandla, S. (2012). Ultraviolet Pasteurization for Food Industry. International Journal of Food Science and Nutrition Engineering, 2(1), 12–15. https://doi.org/10.5923/j.food.20120201.03
  • Costa, H. C. de B., Siguemoto, É. S., Cavalcante, T. A. B. B., de Oliveira Silva, D., Vieira, L. G. M., & Gut, J. A. W. (2021). Effect of microwave-assisted processing on polyphenol oxidase and peroxidase inactivation kinetics of açai-berry (Euterpe oleracea) pulp. Food Chemistry, 341, 128287. https://doi.org/10.1016/J.FOODCHEM.2020.128287
  • Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., & Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. https://doi.org/10.1016/J.POSTHARVBIO.2013.03.009
  • Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M. A., & Vázquez-Odériz, M. L. (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23–30. https://doi.org/10.1016/J.JFCA.2012.07.004
  • Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods, 11(5), 653. https://doi.org/10.3390/foods11050653
  • Del Rio, D., Borges, G., & Crozier, A. (2010). Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journal of Nutrition, 104(S3), S67–S90. https://doi.org/10.1017/S0007114510003958
  • Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., Margalho, L. P., Pimentel, T. C., Silva, M. C., Freitas, M. Q., Granato, D., Sant’Ana, A. S., Duart, M. C. K. H., & Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology, 102, 146–154. https://doi.org/10.1016/j.tifs.2020.06.001
  • Deshi, V., Siddiqui, M. W., Homa, F., & Singh, J. P. (2020). Postharvest hydrogen sulfide infiltration modulates antioxidative metabolism and increases shelf life of litchi. Acta Physiologiae Plantarum, 42(5), 1–9. https://doi.org/10.1007/S11738-020-03056-6/TABLES/8
  • Devore, E. E., Kang, J. H., Breteler, M. M. B., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135–143. https://doi.org/10.1002/ANA.23594
  • Dickenson, V. (2020). Berries. Replika Press. EFSA. (2014). Scientific Opinion on the risk posed by pathogens in food of non‐animal origin. Part 2 (Salmonella and Norovirus in berries). EFSA Journal, 12(6). https://doi.org/10.2903/j.efsa.2014.3706
  • Falcó, I., Randazzo, W., Sánchez, G., López-Rubio, A., & Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocolloids, 92, 74–85. https://doi.org/10.1016/j.foodhyd.2019.01.039
  • Fan, D., Wang, W., Hao, Q., & Jia, W. (2022). Do Non-climacteric Fruits Share a Common Ripening Mechanism of Hormonal Regulation? Frontiers in Plant Science, 13, 923484. https://doi.org/10.3389/FPLS.2022.923484/BIBTEX
  • Farneti, B., Khomenko, I., Ajelli, M., Emanuelli, F., Biasioli, F., & Giongo, L. (2022). Ethylene Production Affects Blueberry Fruit Texture and Storability. Frontiers in Plant Science, 13, 813863. https://doi.org/10.3389/FPLS.2022.813863/BIBTEX
  • FDA. (2013). Ultraviolet Radiation for the Processing and Treatment of Food (21CFR179. 39). In Code of Federal Regulations, United States Food and Drug Administration.
  • Gimeno, D., Gonzalez-Buesa, J., Oria, R., Venturini, M. E., & Arias, E. (2021). Effect of Modified Atmosphere Packaging (MAP) and UV-C Irradiation on Postharvest Quality of Red Raspberries. Agriculture 2022, Vol. 12, Page 29, 12(1), 29. https://doi.org/10.3390/AGRICULTURE12010029
  • González-Villagra, J., Reyes-Díaz, M., Alberdi, M., Mora, M. L., Ulloa-Inostroza, E. M., & Ribera-Fonseca, A. E. (2020). Impact of Cold-Storage and UV-C Irradiation Postharvest Treatments on Quality and Antioxidant Properties of Fruits from Blueberry Cultivars Grown in Southern Chile. Journal of Soil Science and Plant Nutrition, 20(4), 1751–1758. https://doi.org/10.1007/S42729-020-00247-5/FIGURES/3
  • Green, A., Popović, V., Warriner, K., & Koutchma, T. (2020). The efficacy of UVC LEDs and low pressure mercury lamps for the reduction of Escherichia coli O157:H7 and Listeria monocytogenes on produce. Innovative Food Science and Emerging Technologies, 64(October 2019), 102410. https://doi.org/10.1016/j.ifset.2020.102410
  • Gündüz, G. T., Juneja, V. K., & Pazır, F. (2015). Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens. Food Control, 57, 9–13. https://doi.org/10.1016/j.foodcont.2015.04.003
  • Gunes, G., Liu, R. H., & Watkins, C. B. (2002). Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits. Journal of Agricultural and Food Chemistry, 50(21), 5932–5938. https://doi.org/10.1021/JF025572C/ASSET/IMAGES/LARGE/JF025572CF00005.JPEG
  • Hakguder Taze, B., & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/j.scienta.2018.02.012
  • Häkkinen, S. (2000). Flavonols and Phenolic Acids in Berries and Berry Products . University of Kuopio.
  • Haley, O. C., Pliakoni, E. D., Rivard, C., Nwadike, L., & Bhullar, M. (2023). The Attenuation of Microbial Reduction in Blueberry Fruit Following UV-LED Treatment. Journal of Food Protection, 86(3), 100056. https://doi.org/10.1016/J.JFP.2023.100056
  • Harm, W. (1980). Biological effects of ultraviolet radiation (Vol. 12). Cambridge University Press.
  • Horvitz, S. (2017). Postharvest Handling of Berries. IntechOpen. https://books.google.com.tr/books?id=sT2lzQEACAAJ
  • Huynh, N. K., Wilson, M. D., Eyles, A., & Stanley, R. A. (2019). Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). Journal of Berry Research, 9(4), 687–707. https://doi.org/10.3233/JBR-190421
  • Janisiewicz, W., Takeda, F., Evans, B., & Camp, M. (2021). Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens. Crop Protection, 150, 105791. https://doi.org/10.1016/J.CROPRO.2021.105791
  • Jaramillo Sánchez, G., Contigiani, E. V., Coronel, M. B., Alzamora, S. M., García-Loredo, A., & Nieto, A. B. (2021). Study of UV-C treatments on postharvest life of blueberries ‘O’Neal’ and correlation between structure and quality parameters. Heliyon, 7(6), e07190. https://doi.org/10.1016/j.heliyon.2021.e07190
  • Ji, Y., Hu, W., Liao, J., Jiang, A., Xiu, Z., Gaowa, S., Guan, Y., Yang, X., Feng, K., & Liu, C. (2020). Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture, 100(15), 5586–5595. https://doi.org/10.1002/JSFA.10611
  • Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209–215. https://doi.org/10.1016/J.POSTHARVBIO.2010.01.011
  • Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., & Zheng, Y. (2017). UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 225, 106–111. https://doi.org/10.1016/j.scienta.2017.06.062
  • Jin, P., Zheng, C., Huang, Y., Wang, X., Luo, Z., & Zheng, Y. (2016). Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit. Journal of Integrative Agriculture, 15(11), 2658–2665. https://doi.org/10.1016/S2095-3119(16)61387-4
  • Kaur, R., Shekhar, S., Prasad, K., Kaur, R., Shekhar, S., & Prasad, K. (2022). Secondary Metabolites of Fruits and Vegetables with Antioxidant Potential. Secondary Metabolites - Trends and Reviews. https://doi.org/10.5772/INTECHOPEN.103707
  • Khanizadeh, S., Rekika, D., Ehsani-Moghaddam, B., Tsao, R., Yang, R., Charles, M. T., Sullivan, J. A., Gauthier, L., Gosselin, A., Potel, A.-M., Reynaud, G., & Émilie Thomas. (2009). Horticultural characteristics and chemical composition of advanced raspberry lines from Quebec and Ontario. LWT - Food Science and Technology, 42(4), 893–898. https://doi.org/10.1016/j.lwt.2008.08.016
  • Koutchma, T. (2008). UV Light for Processing Foods. Ozone: Science and Engineering, 30(1), 93–98. https://doi.org/10.1080/01919510701816346
  • Koutchma, T. (2014). Basic Principles of UV Light Generation. Food Plant Safety, 3–13. https://doi.org/10.1016/B978-0-12-416620-2.00002-3
  • Koutchma, T. (2019). Ultraviolet Light in Food Technology: Principles and Applications (Vol. 2). CRC press.
  • Kumar, S., Baghel, M., Yadav, A., & Dhakar, M. K. (2018). Postharvest Biology and Technology of Berries. Postharvest Biology and Technology of Temperate Fruits, 349–370. https://doi.org/10.1007/978-3-319-76843-4_15
  • Kutlu, B., Taştan, Ö., & Baysal, T. (2022). Decontamination of frozen cherries by innovative light-based technologies: Assessment of microbial inactivation and quality changes. Food Control, 141, 109149. https://doi.org/10.1016/j.foodcont.2022.109149
  • Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. https://doi.org/10.1016/j.fm.2014.09.010
  • Lewis, M. (2023). The high-frequency end of the electromagnetic spectrum. Food Process Engineering Principles and Data, 377–382. https://doi.org/10.1016/B978-0-12-821182-3.00026-1
  • Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T., & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56–62. https://doi.org/10.1016/j.postharvbio.2013.12.006
  • Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries. Postharvest Biology and Technology, 156, 110945. https://doi.org/10.1016/j.postharvbio.2019.110945
  • Lipe, J. A. (1978). Ethylene in Fruits of Blackberry and Rabbiteye Blueberry1. Journal of the American Society for Horticultural Science, 103(1), 76–77. https://doi.org/10.21273/JASHS.103.1.76
  • Liu, B., Wang, K., Shu, X., Liang, J., Fan, X., & Sun, L. (2019). Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Scientia Horticulturae, 246, 557–562. https://doi.org/10.1016/j.scienta.2018.11.042
  • Liu, C., Huang, Y., & Chen, H. (2015). Inactivation of Escherichia Coli O157:H7 and Salmonella Enterica on Blueberries in Water Using Ultraviolet Light. Journal of Food Science, 80(7), M1532–M1537. https://doi.org/10.1111/1750-3841.12910
  • Lou, X., Xiong, J., Tian, H., Yu, H., Chen, C., Huang, J., Yuan, H., Hanna, M., Yuan, L., & Xu, H. (2022). Effect of high-pressure processing on the bioaccessibility of phenolic compounds from cloudy hawthorn berry (Crataegus pinnatifida) juice. Journal of Food Composition and Analysis, 110, 104540. https://doi.org/10.1016/j.jfca.2022.104540
  • Lu, H., Li, L., Limwachiranon, J., Xie, J., & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae, 213, 104–109. https://doi.org/10.1016/j.scienta.2016.10.017
  • Mannozzi, C., Cecchini, J. P., Tylewicz, U., Siroli, L., Patrignani, F., Lanciotti, R., Rocculi, P., Dalla Rosa, M., & Romani, S. (2017). Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT - Food Science and Technology, 85, 440–444. https://doi.org/10.1016/J.LWT.2016.12.056
  • Markovic, I., Ilic, J., Markovic, D., Simonovic, V., & Kosanic, N. (2013). Color measurement of food products using CIE L* a* b* and RGB color space. Journal of Hygienic Engineering and Design, 4(1), 50–53.
  • Marquenie, D., Michiels, C. W., Van Impe, J. F., Schrevens, E., & Nicolaï, B. N. (2003). Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology, 28(3), 455–461. https://doi.org/10.1016/S0925-5214(02)00214-4
  • Mattila, P., Hellström, J., Hellström, H., Törrönen, R. (2006). Phenolic Acids in Berries, Fruits, and Beverages. Journal of Agricultural and Food Chemistry, 54(19), 7193–7199. https://doi.org/10.1021/JF0615247 Minamata Convention on Mercury. (2023). Minamata Convention on Mercury: text and annexes. United Nations Publication.
  • Nguyen, C. T. T., Kim, J., Yoo, K. S., Lim, S., & Lee, E. J. (2014). Effect of prestorage UV-A, -B, and -C radiation on fruit quality and anthocyanin of “Duke” blueberries during cold storage. Journal of Agricultural and Food Chemistry, 62(50), 12144–12151. https://doi.org/10.1021/JF504366X/ASSET/IMAGES/LARGE/JF-2014-04366X_0004.JPEG
  • Nigro, F., Ippolito, A., Lattanzio, V., Di Venere, D., & Salerno, M. (2000). Effect of ultraviolet-C light on postharvest decay of strawberry. Journal of Plant Pathology, 82(1), 29–37. http://www.jstor.org/stable/41997977
  • Ortiz Araque, L. C., Ortiz, C. M., Darré, M., Rodoni, L. M., Civello, P. M., & Vicente, A. R. (2019). Role of UV-C irradiation scheme on cell wall disassembly and surface mechanical properties in strawberry fruit. Postharvest Biology and Technology, 150, 122–128. https://doi.org/10.1016/J.POSTHARVBIO.2019.01.002
  • Ortiz-Solà, J., Abadias, I., Colàs-Medà, P., Anguera, M., & Viñas, I. (2021). Inactivation of Salmonella enterica, Listeria monocytogenes and murine norovirus (MNV-1) on fresh strawberries by conventional and water-assisted ultraviolet light (UV-C). Postharvest Biology and Technology, 174, 111447. https://doi.org/10.1016/j.postharvbio.2020.111447
  • Padmanabhan, P., Correa-Betanzo, J., & Paliyath, G. (2016). Berries and Related Fruits. In Encyclopedia of Food and Health (pp. 364–371). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00060-X
  • Pan, J., Vicente, A. R., Martínez, G. A., Chaves, A. R., & Civello, P. M. (2004). Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. Journal of the Science of Food and Agriculture, 84(14), 1831–1838. https://doi.org/10.1002/JSFA.1894
  • Paniagua, A. C., East, A. R., Hindmarsh, J. P., & Heyes, J. A. (2013). Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biology and Technology, 79, 13–19. https://doi.org/10.1016/j.postharvbio.2012.12.016
  • Perkins-Veazie, P., Collins, J. K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285. https://doi.org/10.1016/J.POSTHARVBIO.2007.08.002
  • Piechowiak, T. (2021). Effect of ozone treatment on glutathione (GSH) status in selected berry fruit. Phytochemistry, 187, 112767. https://doi.org/10.1016/J.PHYTOCHEM.2021.112767
  • Piechowiak, T., Sowa, P., Tarapatskyy, M., & Balawejder, M. (2021). The Role of Mitochondrial Energy Metabolism in Shaping the Quality of Highbush Blueberry Fruit During Storage in Ozone-Enriched Atmosphere. Food and Bioprocess Technology, 14(11), 1973–1982. https://doi.org/10.1007/S11947-021-02696-X/TABLES/1
  • Pinto, L., Palma, A., Cefola, M., Pace, B., D’Aquino, S., Carboni, C., & Baruzzi, F. (2020). Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26, 100573. https://doi.org/10.1016/J.FPSL.2020.100573
  • Pombo, M. A., Dotto, M. C., Martínez, G. A., & Civello, P. M. (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology, 51(2), 141–148. https://doi.org/10.1016/j.postharvbio.2008.07.007
  • Pombo, M. A., Rosli, H. G., Martínez, G. A., & Civello, P. M. (2011). UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa, Duch.). Postharvest Biology and Technology, 59(1), 94–102. https://doi.org/10.1016/J.POSTHARVBIO.2010.08.003
  • Pritts, M. (2017). Soft Fruits. Encyclopedia of Applied Plant Sciences, 3, 268–272. https://doi.org/10.1016/B978-0-12-394807-6.00005-8
  • Priya Sethu, K. M., Prabha, T. N., & Tharanathan, R. N. (1996). Post-harvest biochemical changes associated with the softening phenomenon in Capsicum annuum fruits. Phytochemistry, 42(4), 961–966. https://doi.org/10.1016/0031-9422(96)00057-X
  • Rabelo, M. C., Bang, W. Y., Nair, V., Alves, R. E., Jacobo-Velázquez, D. A., Sreedharan, S., de Miranda, M. R. A., & Cisneros-Zevallos, L. (2020). UVC light modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production. Scientific Reports, 10(1), 21972. https://doi.org/10.1038/s41598-020-78948-1
  • Rios de Souza, V., Popović, V., Warriner, K., & Koutchma, T. (2020). A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm. Food Control, 110(December 2019), 107039. https://doi.org/10.1016/j.foodcont.2019.107039
  • Rodriguez, J., & Zoffoli, J. P. (2016). Effect of sulfur dioxide and modified atmosphere packaging on blueberry postharvest quality. Postharvest Biology and Technology, 117, 230–238. https://doi.org/10.1016/J.POSTHARVBIO.2016.03.008
  • Rodriguez-Mateos, A., Cifuentes-Gomez, T., Tabatabaee, S., Lecras, C., & Spencer, J. P. E. (2012). Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. Journal of Agricultural and Food Chemistry, 60(23), 5772–5778. https://doi.org/10.1021/JF203812W/ASSET/IMAGES/LARGE/JF-2011-03812W_0002.JPEG
  • Sempere-Ferre, F., Giménez-Santamarina, S., Roselló, J., & Santamarina, M. P. (2022). Antifungal in vitro potential of Aloe vera gel as postharvest treatment to maintain blueberry quality during storage. LWT, 163, 113512. https://doi.org/10.1016/J.LWT.2022.113512
  • Severo, J., de Oliveira, I. R., Tiecher, A., Chaves, F. C., & Rombaldi, C. V. (2015). Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry. LWT - Food Science and Technology, 64(2), 685–692. https://doi.org/10.1016/J.LWT.2015.06.041
  • Shah, H. M. S., Singh, Z., Kaur, J., Hasan, M. U., Woodward, A., & Afrifa-Yamoah, E. (2023). Trends in maintaining postharvest freshness and quality of Rubus berries. Comprehensive Reviews in Food Science and Food Safety, 22(6), 4600–4643. https://doi.org/10.1111/1541-4337.13235
  • Sheng, K., Shui, S. S., Yan, L., Liu, C., & Zheng, L. (2018). Effect of postharvest UV-B or UV-C irradiation on phenolic compounds and their transcription of phenolic biosynthetic genes of table grapes. Journal of Food Science and Technology, 55(8), 3292–3302. https://doi.org/10.1007/S13197-018-3264-1/FIGURES/2
  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive Compounds and Antioxidant Activity in Different Types of Berries. International Journal of Molecular Sciences 2015, Vol. 16, Pages 24673-24706, 16(10), 24673–24706. https://doi.org/10.3390/IJMS161024673
  • Smeds, A. I., Eklund, P. C., & Willför, S. M. (2012). Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chemistry, 134(4), 1991–1998. https://doi.org/10.1016/J.FOODCHEM.2012.03.133
  • Spinardi, A., Cola, G., Gardana, C. S., & Mignani, I. (2019). Variation of Anthocyanin Content and Profile Throughout Fruit Development and Ripening of Highbush Blueberry Cultivars Grown at Two Different Altitudes. Frontiers in Plant Science, 10, 1045. https://doi.org/10.3389/FPLS.2019.01045/BIBTEX
  • Sun, T., Ouyang, H., Sun, P., Zhang, W., Wang, Y., Cheng, S., & Chen, G. (2022). Postharvest UV-C irradiation inhibits blackhead disease by inducing disease resistance and reducing mycotoxin production in ‘Korla’ fragrant pear (Pyrus sinkiangensis). International Journal of Food Microbiology, 362, 109485. https://doi.org/10.1016/j.ijfoodmicro.2021.109485
  • Szajdek, A., & Borowska, E. J. (2008). Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review. Plant Foods for Human Nutrition 2008 63:4, 63(4), 147–156. https://doi.org/10.1007/S11130-008-0097-5
  • Tena, N., Martín, J., & Asuero, A. G. (2020). State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, Vol. 9, Page 451, 9(5), 451. https://doi.org/10.3390/ANTIOX9050451
  • Trainotti, L., Spinello, R., Piovan, A., Spolaore, S., & Casadoro, G. (2001). β‐Galactosidases with a lectin‐like domain are expressed in strawberry. Journal of Experimental Botany, 52(361), 1635–1645. https://doi.org/10.1093/JEXBOT/52.361.1635
  • Urban, L., Charles, F., de Miranda, M. R. A., & Aarrouf, J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiology and Biochemistry, 105, 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004
  • Van der Steen, C., Jacxsens, L., Devlieghere, F., & Debevere, J. (2002). Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biology and Technology, 26(1), 49–58. https://doi.org/https://doi.org/10.1016/S0925-5214(02)00005-4
  • Vicente, A., Repice, B., Martínez, G., Chaves, A., Civello, P., & Sozz, G. (2004). Maintenance of fresh boysenberry fruit quality with UV-C light and heat treatments combined with low storage temperature. The Journal of Horticultural Science and Biotechnology, 79(2), 246–251. https://doi.org/10.1080/14620316.2004.11511756
  • Vidovic, N. (2018). Berries and Berry Products. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22497-9
  • Walsh, C. S., Popenoe, J., & Solomos, T. (1983). Thornless Blackberry is a Climacteric Fruit. HortScience, 18(4), 482–483. https://doi.org/10.21273/HORTSCI.18.4.482
  • Wang, C., Gao, Y., Tao, Y., Wu, X., & Zhibo, C. (2017). Influence of γ-irradiation on the reactive-oxygen metabolism of blueberry fruit during cold storage. Innovative Food Science & Emerging Technologies, 41, 397–403. https://doi.org/10.1016/J.IFSET.2017.04.007
  • Wang, C. Y., Chen, C.-T., & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. https://doi.org/10.1016/j.foodchem.2009.04.037
  • Wang, H., Guo, X., Hu, X., Li, T., Fu, X., & Liu, R. H. (2017). Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chemistry, 217, 773–781. https://doi.org/10.1016/j.foodchem.2016.09.002
  • Wang, J.-F., Ma, L., Xi, H.-F., Wang, L.-J., & Li, S.-H. (2015). Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera×V. amurensis). Food Chemistry, 168, 430–438. https://doi.org/10.1016/j.foodchem.2014.07.025
  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry, 49(10), 4977–4982. https://doi.org/10.1021/JF0106244/ASSET/IMAGES/MEDIUM/JF0106244E00002.GIF
  • Wen, P. F., Chen, J. Y., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., Zhan, J. C., Pan, Q. H., & Huang, W. D. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55(1), 1–10. https://doi.org/10.1007/S10725-007-9250-7/FIGURES/5
  • Xu, F., & Liu, S. (2017). Control of Postharvest Quality in Blueberry Fruit by Combined 1-Methylcyclopropene (1-MCP) and UV-C Irradiation. Food and Bioprocess Technology, 10(9), 1695–1703. https://doi.org/10.1007/S11947-017-1935-Y/FIGURES/3
  • Xu, F., Wang, S., Xu, J., Liu, S., & Li, G. (2016). Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biology and Technology, 117, 125–131. https://doi.org/10.1016/J.POSTHARVBIO.2016.01.012
  • Yang, J., Li, B., Shi, W., Gong, Z., Chen, L., & Hou, Z. (2018). Transcriptional Activation of Anthocyanin Biosynthesis in Developing Fruit of Blueberries (Vaccinium corymbosum L.) by Preharvest and Postharvest UV Irradiation. Journal of Agricultural and Food Chemistry, 66(42), 10931–10942. https://doi.org/10.1021/ACS.JAFC.8B03081/SUPPL_FILE/JF8B03081_SI_001.PDF
  • Yang, J., Shi, W., Li, B., Bai, Y., & Hou, Z. (2019). Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chemistry, 301, 125248. https://doi.org/10.1016/j.foodchem.2019.125248
  • Zhai, Y., Tian, J., Ping, R., Yu, X., Wang, Z., & Shen, R. (2021). Effects of UVC light‐emitting diodes on inactivation of Escherichia coli O157:H7 and quality attributes of fresh‐cut white pitaya. Journal of Food Measurement and Characterization, 15(3), 2637–2644. https://doi.org/10.1007/s11694-021-00816-x
  • Zhou, D., Wang, Z., Tu, S., Chen, S., Peng, J., & Tu, K. (2019). Effects of cold plasma, UV‐C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. Journal of Applied Microbiology, 127(1), 175–185. https://doi.org/10.1111/JAM.14280
There are 114 citations in total.

Details

Primary Language English
Subjects Food Technology
Journal Section Reviews
Authors

Ayşenur Betül Bilgin 0000-0002-8381-8224

Gürbüz Güneş 0000-0002-2948-3785

Publication Date September 27, 2024
Submission Date July 1, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Bilgin, A. B., & Güneş, G. (2024). Effects of ultraviolet – C treatment on postharvest physiologies and decay of berries: A review. ITU Journal of Food Science and Technology, 2(2), 85-100.