Research Article
BibTex RIS Cite

Gerçek Zamanlı Dijital İkiz Platformu: Ad-hoc Hava Ağlarında Çekirdek Ağ Seçimi Üzerine Vaka Çalışması

Year 2024, Volume: 1 Issue: 1, 41 - 46, 30.09.2024

Abstract

Dijital İkizlerin (Dİ) geliştirilmesi için dinamik uygulamaların taleplerini karşılayabilme kabiliyetindeki ve açık kaynaklı çözümlerin eksiklikliklerden dolayı sekteye uğramaktadır. Bu, son teknoloji Dİ uygulamalarının çevrimdışı veriler kullanılarak doğrulanmasına neden olmuştur. Ancak bu yaklaşım, Dİ'lerin en önemli özelliklerinden biri olan gerçek zamanlı verilerin entegrasyonu konusunda yetersizdir. Bu, ad-hoc hava ağları (AHHA) gibi vakalarda Dİ uygulamalarının doğrulanmasını sınırlayabilmektedir. Bunu göz önünde bulundurarak, bu çalışmada Gerçek Zamanlı Dijital İkiz Platformu geliştirilmiş ve örnek olay olarak AHHA'larda çekirdek ağ seçimini uygulanmıştır. Bunda mikroservis tabanlı mimariye sahip dayanıklı veri işleme hattı tasarlanmıştır. Ayrıca açık kaynaklı araçlar kullanarak etkileşimli bir kullanıcı arayüzü geliştirilmiştir. Bunlar sayesinde geliştirilen platform, veri alma hataları durumunda dahi gerçek zamanlı karar almayı destekler hale getirilebilmiştir.

Project Number

5239903

References

  • D. Lehner, J. Pfeiffer, E.-F. Tinsel, et al., “Digital twin platforms: Requirements, capabilities, and future prospects,” IEEE Software, vol. 39, no. 2, pp. 53–61, 2022. DOI: 10.1109/MS.2021.3133795.
  • A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling technologies, challenges and open research,” IEEE Access, vol. 8, pp. 108 952–108 971, 2020. DOI: 10.1109/ACCESS.2020.2998358.
  • K. Duran, M. Özdem, T. Hoang, T. Q. Duong, and B. Canberk, “Age of twin (aot): A new digital twin qualifier for 6g ecosystem,” IEEE Internet of Things Magazine, vol. 6, no. 4, pp. 138–143, 2023. DOI: 10.1109/IOTM.001.2300113.
  • E. Ak and B. Canberk, “Fsc: Two-scale ai-driven fair sensitivity control for 802.11ax networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6. DOI: 10.1109/GLOBECOM42002.2020.9322153.
  • L. V. Cakir, K. Duran, C. Thomson, M. Broadbent, and B. Canberk, “Ai in energy digital twining: A reinforcement learning-based adaptive digital twin model for green cities,” in ICC 2024 - IEEE International Conference on Communications, 2024, pp. 4767–4772. DOI: 10.1109/ICC51166.2024.10622773.
  • D. M. Gutierrez-Estevez, B. Canberk, and I. F. Akyildiz, “Spatio-temporal estimation for interference management in femtocell networks,” in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), 2012, pp. 1137–1142. DOI: 10.1109/PIMRC.2012.6362517.
  • B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin: Definitions, characteristics, applications, and design implications,” IEEE Access, vol. 7, pp. 167 653–167 671, 2019. DOI: 10.1109/ACCESS.2019.2953499.
  • E. Ak, K. Duran, O. A. Dobre, T. Q. Duong, and B. Canberk, “T6conf: Digital twin networking framework for ipv6-enabled net-zero smart cities,” IEEE Communications Magazine, vol. 61, no. 3, pp. 36–42, 2023. DOI: 10.1109/MCOM.003.2200315.
  • Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021. DOI: 10.1109/JIOT.2021.3079510.
  • Y. Yigit, B. Bal, A. Karameseoglu, T. Q. Duong, and B. Canberk, “Digital twin-enabled intelligent ddos detection mechanism for autonomous core networks,” IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 38–44, 2022. DOI: 10.1109/MCOMSTD.0001.2100022.
  • Inmarsat Aviation, Inflight connectivity survey –global whitepaper i august 2018. [Online]. Available: https://www.inmarsat.com/content/dam/inmarsat/corporate/documents/aviation/insights/2018/Inmarsat % 20Aviation % 202018 %20Inflight % 20Connectivity % 20Survey % 20ENG.pdf
  • T. Bilen, E. Ak, B. Bal, and B. Canberk, “A proof of concept on digital twin-controlled wifi core network selection for in-flight connectivity,” IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 60–68, 2022. DOI: 10.1109/MCOMSTD.0001.2100103.
  • Flightradar, Live flight tracker - real-time flight tracker map, en. [Online]. Available: http://FlightRadar24.com.
  • C. Zhou, H. Yang, X. Duan, et al., Network digital twin: Concepts and reference architecture, en. [Online]. Available: https://datatracker.ietf.org/doc/draft- irtf- nmrg- network- digital- twinarch/.
  • F. TAO, X. SUN, J. CHENG, et al., “Maketwin: A reference architecture for digital twin software platform,” Chinese Journal of Aeronautics, vol. 37, no. 1, pp. 1–18, 2024, ISSN: 1000-9361. DOI: https://doi.org/10.1016/j.cja.2023.05.002. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S1000936123001541.
  • M. Redeker, J. N. Weskamp, B. Rössl, and F. Pethig,“Towards a digital twin platform for industrie 4.0,” in 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), 2021, pp. 39–46. DOI: 10.1109/ICPS49255.2021.9468204.
  • G. Blinowski, A. Ojdowska, and A. Przybyłek, “Monolithic vs. microservice architecture: A performance and scalability evaluation,” IEEE Access, vol. 10, pp. 20 357–20 374, 2022. DOI:10.1109/ACCESS.2022.3152803.
  • Opensky rest api, https://openskynetwork.github.io/opensky-api/rest.html, Accessed: 2023-05-19, 2023.
  • M. Schafer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm, “Bringing up opensky: A large-scale ads-b sensor network for research,” in IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 2014. DOI: 10.1109/IPSN.2014.6846743.
  • Get started with influxdb oss 2.7, https://docs.influxdata.com/influxdb/v2.7/, Accessed: May 21, 2023.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  • E. Schubert, “Stop using the elbow criterion for kmeans and how to choose the number of clusters instead,” ACM SIGKDD Explorations Newsletter, vol. 25, no. 1, pp. 36–42, Jun. 2023. DOI: 10.1145/3606274.3606278.
  • M. Grinberg, Flask Web Development: Developing Web Applications with Python. O’Reilly Media, Inc., 2018.
  • Grafana Labs, Grafana documentation, https://grafana.com/docs/, Online; accessed July 25, 2019, Jul. 2019.
  • Plotly Technologies Inc., Collaborative data science,2015. [Online]. Available: https://plot.ly

Real-Time Digital Twin Platform: A Case Study on Core Network Selection in Aeronautical Ad-hoc Networks

Year 2024, Volume: 1 Issue: 1, 41 - 46, 30.09.2024

Abstract

The development of Digital Twins (DTs) is hindered by a lack of specialized, open-source solutions that can meet the demands of dynamic applications. This has caused state-of-the-art DT applications to be validated using offline data. However, this approach falls short of integrating real-time data, which is one of the most important characteristics of DTs. This can limit the validating effectiveness of DT applications in cases such as aeronautical ad-hoc networks (AANETs). Considering this, we develop a Real-Time Digital Twin Platform and implement core network selection in AANETs as a case study. In this, we implement microservice-based architecture and design a robust data pipeline. Additionally, we develop an interactive user interface using open-source tools. Using this, the platform supports real-time decision-making in the presence of data retrieval failures.

Supporting Institution

TUBITAK

Project Number

5239903

Thanks

This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) 1515 Frontier R&D Laboratories Support Program for BTS Advanced AI Hub: BTS Autonomous Networks and Data Innovation Lab. Project 5239903.

References

  • D. Lehner, J. Pfeiffer, E.-F. Tinsel, et al., “Digital twin platforms: Requirements, capabilities, and future prospects,” IEEE Software, vol. 39, no. 2, pp. 53–61, 2022. DOI: 10.1109/MS.2021.3133795.
  • A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling technologies, challenges and open research,” IEEE Access, vol. 8, pp. 108 952–108 971, 2020. DOI: 10.1109/ACCESS.2020.2998358.
  • K. Duran, M. Özdem, T. Hoang, T. Q. Duong, and B. Canberk, “Age of twin (aot): A new digital twin qualifier for 6g ecosystem,” IEEE Internet of Things Magazine, vol. 6, no. 4, pp. 138–143, 2023. DOI: 10.1109/IOTM.001.2300113.
  • E. Ak and B. Canberk, “Fsc: Two-scale ai-driven fair sensitivity control for 802.11ax networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6. DOI: 10.1109/GLOBECOM42002.2020.9322153.
  • L. V. Cakir, K. Duran, C. Thomson, M. Broadbent, and B. Canberk, “Ai in energy digital twining: A reinforcement learning-based adaptive digital twin model for green cities,” in ICC 2024 - IEEE International Conference on Communications, 2024, pp. 4767–4772. DOI: 10.1109/ICC51166.2024.10622773.
  • D. M. Gutierrez-Estevez, B. Canberk, and I. F. Akyildiz, “Spatio-temporal estimation for interference management in femtocell networks,” in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), 2012, pp. 1137–1142. DOI: 10.1109/PIMRC.2012.6362517.
  • B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin: Definitions, characteristics, applications, and design implications,” IEEE Access, vol. 7, pp. 167 653–167 671, 2019. DOI: 10.1109/ACCESS.2019.2953499.
  • E. Ak, K. Duran, O. A. Dobre, T. Q. Duong, and B. Canberk, “T6conf: Digital twin networking framework for ipv6-enabled net-zero smart cities,” IEEE Communications Magazine, vol. 61, no. 3, pp. 36–42, 2023. DOI: 10.1109/MCOM.003.2200315.
  • Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021. DOI: 10.1109/JIOT.2021.3079510.
  • Y. Yigit, B. Bal, A. Karameseoglu, T. Q. Duong, and B. Canberk, “Digital twin-enabled intelligent ddos detection mechanism for autonomous core networks,” IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 38–44, 2022. DOI: 10.1109/MCOMSTD.0001.2100022.
  • Inmarsat Aviation, Inflight connectivity survey –global whitepaper i august 2018. [Online]. Available: https://www.inmarsat.com/content/dam/inmarsat/corporate/documents/aviation/insights/2018/Inmarsat % 20Aviation % 202018 %20Inflight % 20Connectivity % 20Survey % 20ENG.pdf
  • T. Bilen, E. Ak, B. Bal, and B. Canberk, “A proof of concept on digital twin-controlled wifi core network selection for in-flight connectivity,” IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 60–68, 2022. DOI: 10.1109/MCOMSTD.0001.2100103.
  • Flightradar, Live flight tracker - real-time flight tracker map, en. [Online]. Available: http://FlightRadar24.com.
  • C. Zhou, H. Yang, X. Duan, et al., Network digital twin: Concepts and reference architecture, en. [Online]. Available: https://datatracker.ietf.org/doc/draft- irtf- nmrg- network- digital- twinarch/.
  • F. TAO, X. SUN, J. CHENG, et al., “Maketwin: A reference architecture for digital twin software platform,” Chinese Journal of Aeronautics, vol. 37, no. 1, pp. 1–18, 2024, ISSN: 1000-9361. DOI: https://doi.org/10.1016/j.cja.2023.05.002. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S1000936123001541.
  • M. Redeker, J. N. Weskamp, B. Rössl, and F. Pethig,“Towards a digital twin platform for industrie 4.0,” in 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), 2021, pp. 39–46. DOI: 10.1109/ICPS49255.2021.9468204.
  • G. Blinowski, A. Ojdowska, and A. Przybyłek, “Monolithic vs. microservice architecture: A performance and scalability evaluation,” IEEE Access, vol. 10, pp. 20 357–20 374, 2022. DOI:10.1109/ACCESS.2022.3152803.
  • Opensky rest api, https://openskynetwork.github.io/opensky-api/rest.html, Accessed: 2023-05-19, 2023.
  • M. Schafer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm, “Bringing up opensky: A large-scale ads-b sensor network for research,” in IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 2014. DOI: 10.1109/IPSN.2014.6846743.
  • Get started with influxdb oss 2.7, https://docs.influxdata.com/influxdb/v2.7/, Accessed: May 21, 2023.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  • E. Schubert, “Stop using the elbow criterion for kmeans and how to choose the number of clusters instead,” ACM SIGKDD Explorations Newsletter, vol. 25, no. 1, pp. 36–42, Jun. 2023. DOI: 10.1145/3606274.3606278.
  • M. Grinberg, Flask Web Development: Developing Web Applications with Python. O’Reilly Media, Inc., 2018.
  • Grafana Labs, Grafana documentation, https://grafana.com/docs/, Online; accessed July 25, 2019, Jul. 2019.
  • Plotly Technologies Inc., Collaborative data science,2015. [Online]. Available: https://plot.ly
There are 25 citations in total.

Details

Primary Language English
Subjects Network Engineering
Journal Section Research Articles
Authors

Lal Verda Cakir 0000-0002-2577-9562

Mihriban Nur Kocak 0009-0009-8532-9975

Mehmet Özdem 0000-0002-2901-2342

Berk Canberk 0000-0001-6472-1737

Project Number 5239903
Publication Date September 30, 2024
Submission Date August 19, 2024
Acceptance Date September 26, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

IEEE L. V. Cakir, M. N. Kocak, M. Özdem, and B. Canberk, “Real-Time Digital Twin Platform: A Case Study on Core Network Selection in Aeronautical Ad-hoc Networks”, ITU JWCC, vol. 1, no. 1, pp. 41–46, 2024.