Review
BibTex RIS Cite

Pseudomonas otitidis: Discovery, Mechanisms and Potential Biotechnological Applications

Year 2023, , 224 - 238, 21.12.2023
https://doi.org/10.26650/EurJBiol.2023.1247822

Abstract

Pseudomonas otitidis is a species of Pseudomonas bacteria discovered in the early 2000s and has been studied systematically by many researchers. P. otitidis has been isolated from various infected parts of diseases, such as otitis, recurrent pneumonia, necrotizing fasciitis, peritonitis, foot cleft, or burns. It has been found to produce a variety of enzymes to decompose pollutants in the environment such as petroleum, polycyclic aromatic hydrocarbons, dyes, sodium dodecyl sulfate, zearalenone, etc. Furthermore,it can produce some ingredients for application in agriculture and health industries such as digestive enzymes, melanin, and L-asparaginase. Some scholars used P. otitidis as a model organism to investigate environmental degradation, biobattery, plant growth promotion, and biodegradable plastic polyhydroxyalkanoate production. The biofilm of P. otitidis consists of rhamnolipid. The research has provided the basis to produce rhamnolipid and the effective removal methods of P. otitidis. P. otitidis is prone to resistance to lactam antibiotics, and its resistance is caused by its unique metallo-𝛽-lactamase, a polyoxometalate enzyme. In other words, P. otitidis is a very interesting bacterium candidate to be used in different research fields. Hence, in this paper, the discovery, mechanisms, and potential biotechnological applications of P. otitidis are described.

References

  • Palleroni NJ, Genus I. Pseudomonas Migula In Bergey’s Manual of Systematic Bacteriology. Springer. 1984; 141-199. google scholar
  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M. Nu-cleic acid homologies in the genus Pseudomonas. Int J Syst Evol Microbiol. 1973;23(4):333-339. google scholar
  • Kersters K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer KH. Recent changes in the classification of the Pseudomonads: An overview. Syst Appl Microbiol. 1996;19(4):465-477. google scholar
  • Romaniuk K, Krucon T, Decewicz P, Gorecki A, Dziewit L. Molecular characterization of the pA3J1 plasmid from the psy-chrotolerant antarctic bacterium Pseudomonas sp. ANT_J3. Plasmid. 2017;1(92):49-56. google scholar
  • Passarelli-Araujo H, Franco GR, Venancio TM. Network anal-ysis of ten thousand genomes shed light on Pseudomonas di-versity and classification. Microbiol Res. 2022;1(254):126919. doi:10.1016/j.micres.2021.126919 google scholar
  • Campbell RA, Farlow J, Freyberger HR, et al. Genome Sequences of 17 Diverse Pseudomonas aeruginosa phages. Microbiol Resour Announc. 2021;10(9):e0003121. doi:10.1128/MRA.00031-21 google scholar
  • Sundararajaperumal A, Murugan N, Karthick R, Harikrishnan S. Profile of pulmonary infections in renal transplant patients. J Evid Based Med. 2018;5(3):260-264. google scholar
  • Hillman KM, Twigley A. Aerosol EDTA to eliminate respiratory-tract Pseudomonas. Lancet. 1984;324(8394): 99. doi:10.1016/s0140-6736(84)90265-4 google scholar
  • Beasley KL, Cristy SA, Elmassry MM, et al. During bac-teremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those in-volved in quorum sensing. PloS one. 2020;15(10):e0240351. doi:10.1371/journal.pone.0240351 google scholar
  • Kalpana Thalava, Vigila J. Urinary infections in pregnancy con-ditions. J Pharm Res Int. 2021;2(17):22-28. google scholar
  • Lee K, Kim CK, Yong D, et al. POM-1 metallo-S-lactamase-producing Pseudomonas otitidis isolate from a pa-tient with chronic otitis media. Diagn Microbiol Infect Dis. 2012;72(3): 295-296. google scholar
  • Poirel L, Palmieri M, Brilhante M, Masseron A, Perreten V, Nordmann P. PFM-like enzymes are a novel family of subclass B2 metallo-S-lactamases from Pseudomonas synxantha belong-ing to the Pseudomonas fluorescens complex. Antimicrob Agents Chemother. 2020;64(2):1700-1719. google scholar
  • Silveira MC, Albano RM, Rocha-de-Souza CM, et al. Description of a novel IncP plasmid harboring blaKPC-2 recov-ered from a SPM-1-producing Pseudomonas aeruginosa from ST277. Infect Genet Evol. 2022;102:105302.doi:10.1016/j.meegid.2022.105302 google scholar
  • Lalucat J, Gomila M, Mulet M, Zaruma A, Garaa-Valdes E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Syst Appl Microbiol. 2022;45(1):126289. doi:10.1016/j.syapm.2021.126289 google scholar
  • Olsen RH, Metcalf ES, Todd JK. Characteristics of bacterio-phages attacking psychrophilic and mesophilic Pseudomonas. J Virol. 1968;2(4):357-364. google scholar
  • Chakrabarty AM. Gunsalus IC. Autonomous replication of a defective transducing phage in Pseudomonas putida. Virol. 1969;38(1):92-104. google scholar
  • Cornelis, P Ed. Pseudomonas: Genomics and molecular biology. Horizon Scientific Press; 2008. google scholar
  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phy-logenetic affiliation of the Pseudomonas based on 16S rRNA sequence. IntJ Syst Evol Microbiol. 2000;50(4):1563-1589. google scholar
  • Miyazaki K, Hase E, Maruya T. Complete genome sequence of Pseudomonas otitidis Strain MrB4, isolated from Lake Biwa in Japan. Microbiol Resour Announc. 2020;9(16):e00148-20. doi:10.1128/MRA.00148-20 google scholar
  • Abed, Wu H, Kareem SM. Molecular detection of gyrA and mexA genes in Pseudomonas aeruginosa. Mol Biol Rep. 2021;48(12):7907-7912. google scholar
  • Manivannan B, Mahalingam N, Jadhao S, Mishra A, Nilawe P, Pradeep BE. Draft genome sequence of a clinically iso-lated extensively drug-resistant Pseudomonas aeruginosa strain. Genome Announc. 2016;4(2):2-16. google scholar
  • Kacaniova M, Kluga A, Kantor A, et al. Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identifica-tion of Pseudomonas species isolated from fish. Microb Pathog. 2019;132:313-318. google scholar
  • Roland PS, Stroman DW. Microbiology of acute otitis externa. The Laryngoscope. 2002;112(7):1166-1177. google scholar
  • Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW. Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol. 2006;56(4):709-714. google scholar
  • Kim D, Hong SK, Seo YH, et al. Two non-otic cases of POM-1 metallo-S-lactamase-producing Pseudomonas otitidis infection: Necrotizing fasciitis and pan-peritonitis. J Glob Antimicrob Resist. 2016;7:157-158. google scholar
  • Balasubramani G, Induja K, Aiswarya D, et al. Isolation and characterization of human foot crack-associated bac-terium, Pseudomonas otitidis, and its biological propensity. Smart Science. 2019;7(2):79-90. google scholar
  • Yamada K, Aoki K, Nagasawa T, et al. Complete whole-genome sequence of the novel Pseudomonas species strain TUM18999, isolated from a patient with a burn wound in Japan. J Glob Antimicrob Resist. 2021;24:395-397. google scholar
  • Adriana LC, Alexandros NV, Ming C, Mats L. Pseudomonas otitidis bacteraemia in a patient with COPD and recurrent pneumonia: Case report and literature review. BMC Infect Dis. 2021;21:868. doi:10.1186/s12879-021-06569-8 google scholar
  • Garca-Ulloa M. II, Souza V, Olmedo-Âlvarez G, Eguiarte LE. Can bacterial populations go extinct? Evolutionary biology and bacterial studies in Cuatro Cienegas shed light on the extinction process. In Conflicts Between Biodiversity Conservation and Humans. 2022;143-162. google scholar
  • Reddy CSK, Ghai R, Kalia V. Polyhydroxyalkanoates: An overview. Bioresour Technol. 2003;87(2):137-146. google scholar
  • Garca-Ulloa MI, Escalante AE, Moreno-Letelier A, Eguiarte LE, Souza V. Evolutionary rescue of an environ-mental Pseudomonas otitidis in response to anthro-pogenic perturbation. Front Microbiol. 2021;11:563885. doi:10.3389/fmicb.2020.563885 google scholar
  • Rodriguez-Verdugo A, Souza V, Eguiarte LE, Escalante AE. Di-versity across seasons of culturable Pseudomonas from a Des-iccation Lagoon in Cuatro Cienegas, Mexico. Int J Microbiol. 2012;201389. doi:10.1155/2012/201389 google scholar
  • Jun SR, Wassenaar TM, Nookaew I, et al. Diver-sity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis. Appl Environ Microbiol. 2015;82(1):375-383. doi:10.1128/AEM.02612-15 google scholar
  • Dahiya S, Mohan SV. Strategic design of synthetic consortium with embedded wastewater treatment po-tential: Deciphering the competence of isolates from diverse microbiome. Front Environ Sci. 2016; 4:30.https://doi.org/10.3389/fenvs.2016.00030 google scholar
  • Dasgupta D, Ghosh R, Sengupta TK. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol. 2013;2013:250749. doi:10.5402/2013/250749 google scholar
  • Gogoi B, Das I, Gogoi M, Charingia D, Bandyopadhyay T, Borah D. Bioremediation of motor oil-contaminated soil and water by a novel indigenous Pseudomonas otitidis strain DU13 and characterization of its biosurfactant. 3 Biotech. 2022;3(12):68. doi:10.1007/s13205-022-03133-2 google scholar
  • Peng YH, Shih YH, Lai YC, Liu YZ, Liu YT, Lin NC. Degra-dation of polyurethane by bacterium isolated from soil and as-sessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res Int. 2014;21(16):9529-9537. google scholar
  • Bestawy EE, El-Shatby BF, Eltaweil AS. Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World J Microbiol Biotechnol. 2020;36(9):141. doi:10.1007/s11274-020-02915-1 google scholar
  • Mohammadi F, Sepahy A, Naghavi N, Salehi M. Removal of phe-nolic compounds from Spent caustic wastewater by the isolated and detected Pseudomonas otitidis. Adv Biores. 2017; 8(5):123-129. doi: 10.15515/abr.0976-4585.8.5.123129 google scholar
  • Maitra S, Maity D, Kundu P, Adhikarinee S. Isolation and iden-tification of a bacterial strain from soil for bioremediation of phenol for pollution control. J Indian Chem Soc.2020;97(4):607-612. google scholar
  • Mohanty SS, Jena HM. Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Braz J Chem Eng. 2017;34:75-84. google scholar
  • Poyraz N. Isolation of novel toluene degrading bacteria from waste water treatment plants and determination of their toluene tolerance and other biotechnological potential. Pol J Environ Stud. 2021;30(1):811-821. google scholar
  • Dados A, Omirou M, Demetriou K, Papastephanou C, Ioannides IM. Rapid remediation of soil heavily contaminated with hydro-carbons: A comparison of different approaches. Ann Microbiol. 2015;65(1):241-251. google scholar
  • Anwar MS, Kapri A, Chaudhry V, et al. Response of indige-nously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma. 2016;253(4):1023-1032. google scholar
  • Xu CB, Wang WY, Li XZ. Identification and characteristics of a phenanthrene degrading bacterium. Acta Sci. 2015;35(3):684-691. google scholar
  • Soberon-Chavez G, Lepine F, Deziel E. Production of rhamno-lipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2005;68(6):718-725. google scholar
  • Soberon-Chavez G, Maier RM. Biosurfactants: A general overview. Biosurfactants. 2011;1-11. google scholar
  • Holland PM, Rubingh DN. Mixed surfactant systems: An overview, 1992. doi:10.1021/bk-1992-0501.ch001 google scholar
  • Haloi S, Sarmah S, Gogoi SB, Medhi T. Characterization of Pseudomonas sp. TMB2 produced rhamnolipids for ex-situ mi-crobial enhanced oil recovery. 3 Biotech. 2020;10(3):1-17. google scholar
  • Buonocore C, Tedesco P, Vitale GA, et al. Characteriza-tion of a new mixture of mono-rhamnolipids produced by Pseudomonas gessardii isolated from Edmonson Point (Antarc-tica). Mar Drugs. 2020;18(5): 269. doi:10.3390/md18050269 google scholar
  • Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain iso-lated from Chirimiri coal mines, India. Bioresour Bioprocess. 2016;3(1):1-16. google scholar
  • Ibrahim AG, Abd Elsalam HE. Biodegradation of anionic surfactants (SDS) by bacteria isolated from waste water in Taif Governate. Annu Res Rev Biol. 2018;1-13. doi: 10.9734/ARRB/2018/41436 google scholar
  • Chaturvedi V, Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent con-taminated ponds situated in Varanasi city, India. Int Biodeterior Biodegradation. 2011;65(7):961-971. google scholar
  • Jovcic B, BegovIc JELENA, Lozo J, Topisirovic LJ, Kojic M. Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch Biol Sci. 2009;61(2):159-164. google scholar
  • Ibrahim AG, Abd Elsalam HE. Enhancement the biodegrada-tion of sodium dodecyl sulfate by Pseudomonas aeruginosa and Pseudomonas otitidis isolated from waste water in Saudi Arabia. Annu Res Rev Biol. 2018; 1-7. doi: 10.9734/arrb/2018/43744 google scholar
  • Jing WU, Byung-Gil JU, Kyoung-Sook KI, Young-Choon LE, Nak-Chang SU. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J Environ Sci. 2009;21(7):960-964. google scholar
  • Jing W, Kang NY, Kim KS, Sung NC, Lee YC. Isolation and characterization of Pseudomonas otitidis Strain CV-1 capable of decolorizing triphenylmethane dye. In Proceedings of the Korean Society of Life Science Conference. 2007; 108. google scholar
  • Shah MP, Patel KA, Nair SS, Darji AM. Environmental biore-mediation of dyes by Pseudomonas aeruginosa ETL-1 isolated from final effluent treatment plant of ankleshwar. Am J Microbiol Res. 2013;1(4):74-83. google scholar
  • Gamboa-Loira B, Lopez-Carrillo L, Mar-Sanchez Y, Stern D, Cebrian ME. Epidemiologic evidence of exposure to poly-cyclic aromatic hydrocarbons and breast cancer: A system-atic review and meta-analysis. Chemosphere. 2022;290:133237. doi:10.1016/j.chemosphere.2021.133237 google scholar
  • Benignus VA. Health effects of toluene: A review. Neurotoxicology. 1981;2(3): 567-588. google scholar
  • Buckley JP, Quiros-Alcala L, Teitelbaum SL, Calafat AM, Wolff MS, Engel SM. Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and7 years. Environ Int. 2018;115:79-88. google scholar
  • Itoh M. The role of brain acetylcholine in phenol-induced tremor in mice. Arch Oral Biol. 1995;40(5):365-372. google scholar
  • Reynolds JA, Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem. 1970;245(19):5161-5165. google scholar
  • Sleutels TH, Ter Heijne A, Buisman CJ, Hamelers HV. Bio-electrochemical systems: An outlook for practical applications. Chem Sus Chem. 2012;5(6):1012-1019. google scholar
  • Carver A, Gallicchio VS. Heavy metals and cancer. In Cancer Causing Substances. 2018. doi:10.5772/intechopen.70348. google scholar
  • Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF. Iso-lation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol. 2019;65(4):308-321. google scholar
  • Yeoh CC. Production, partial purification and characteriza-tion of yellow-green fluorescent siderophores produced by Pseudomonas otitidis B1, UTAR, Doctoral dissertation, 2014. google scholar
  • Ai C, Hou S, Yan Z, et al. Recovery of metals from acid mine drainage by bioelectrochemical system inoculated with a novel exoelectrogen, Pseudomonas sp. E8. Microorganisms. 2019;8(1):41. doi:10.3390/microorganisms8010041 google scholar
  • Modestra, J.A. and Mohan, S.V. Bio-electrocatalyzed electron efflux in Gram-positive and Gram-negative bacteria: An in-sight into disparity in electron transfer kinetics. RSC Adv. 2014;4(64):34045-34055. google scholar
  • Thulasinathan B, Nainamohamed S, Samuel JO, et al. Compar-ative study on Cronobacter sakazakii and Pseudomonas otitidis isolated from septic tank wastewater in microbial fuel cell for bioelectricity generation. Fuel. 2019;248:47-55. google scholar
  • Reddy MV, Mohan SV. Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresour Technol. 2012;114:573-582. google scholar
  • Reddy MV, Nikhil GN, Mohan SV, Swamy YV, Sarma PN. Pseudomonas otitidis as a potential biocatalyst for polyhydrox-yalkanoates (PHA) synthesis using synthetic wastewater and aci-dogenic effluents. Bioresour Technol. 2012; 123 471-479. google scholar
  • Wang Y, Yin J, Chen GQ. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol. 2014;30:59-65. google scholar
  • Venkateswar Reddy M, Chitanya DNSK, Nikhil GN, Venkata Mohan S, Sarma PN. Influence of Co-F actor on enhancement of bioplastic production through wastew-ater treatment. Clean-Soil Air Water. 2014;42(6):809-814. https://doi.org/10.1002/clen.201300105 google scholar
  • Cardinali-Rezende J, Di Genova A, Nahat RA, et al. The rele-vance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol. 2020;163:240-250. google scholar
  • Idrees N, Liaqat I, Qurashi AW. Pseudomonas otitidis and Bacillus subtilis from saline soil of Pakistan exhibiting a po-tential for calcium precipitation. Inter J Econ Envir Geo. 2018;9(4):62-67. google scholar
  • Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD. Biocontrol of Phytophthora blight and anthracnose in pep-per by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J. 2013;29(2):154-167. google scholar
  • Pintado A, Perez-Martmez I, Aragon IM, et al. The Rhizobacterium Pseudomonas alcaligenes AVO110 induces the expression of biofilm-related genes in response to Rosellinia necatrix exudates. Microorganisms. 2021;9(7):1388. doi:10.3390/microorganisms9071388 google scholar
  • Ruenchit P, Whangviboonkij N, Sawasdipokin H, Phumisan-tiphong U, Chaicumpa WA. Search for anti-Naegleria fow-leri agents based on competitive exclusion behavior of mi-croorganisms in natural aquatic environments. Pathogens. 2021;10(2):142. doi:10.3390/pathogens10020142 google scholar
  • Ahn KJ. Antibiotic production of Pseudomonas otitidis PS and mode of action. Biotechnol Lett. 2018;46(1):40-44. google scholar
  • Vivero RJ, Mesa GB, Robledo SM, Herrera CXM, Cadavid-Restrepo G. Enzymatic, antimicrobial, and leishmanici-dal bioactivity of gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of Leishma-niasis in Colombia. Biotechnol Rep (Amst). 2019;24:e00379 doi:10.1016/j.btre.2019.e00379 google scholar
  • Lu H, Wang X, Zhang K, Xu Y, Zhou L, Li G. Identification and nematicidal activity of bacteria isolated from cow dung. Ann Microbiol. 2014;64(1):407-411. google scholar
  • Chellaram C, Praveen MM. Molecular characterization of an-tagonistic bacteria, Pseudomonas otitidis from Insect gut, short horned grasshopper. J Pure Appl Microbiol. 2015;9(23):91-96. google scholar
  • Husain F, Duraisamy S, Balakrishnan S, Ranjith S, Chidambaram P, Kumarasamy A. Phenotypic assessment of safety and probiotic potential of native isolates from marine fish Moolgarda seheli towards sustainable aquaculture. Biologia (Bratisl). 2022;77(3):775-790. google scholar
  • Siddiqui R, Ali IK, Cope JR, Khan NA. Biology and pathogen-esis of Naegleria fowleri. Acta Tropica. 2016;164(3):75-94. google scholar
  • Al-Mamary NI, Al-Hayali HL. Effect of synergism of thalido-mide and liposomal amphotericin-B on Leishmania tropica and Leishmania donovani promastigote. Revis Bionatura. 2022; 7(2): 59. doi:10.21931/RB/2022.07.02.59 google scholar
  • Desjeux P. Leishmaniasis: Current situation and new perspec-tives. Comp Immunol Microbiol Infect Dis. 2004;27(5):305-318. google scholar
  • Ankeny RA. The natural history of Caenorhabditis elegans re-search. Nat Rev Genet. 2001;2(6):474-479. google scholar
  • Wang W, Wang X. Prevalence of metallo-3-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. Lab Med. 2020;44(4):97-203. google scholar
  • Kaur R, Singh D, Kesavan AK, Kaur R. Molecular characteriza-tion and antimicrobial susceptibility of bacterial isolates present in tap water of public toilets. Int Health. 2020;12(5):472-483. google scholar
  • Nordmann P, Fournier C, Poirel L. A Selective culture medium for screening carbapenem resistance in Pseudomonas spp. Microb Drug Resist. 2021;27(10): 1355-1359. google scholar
  • Suzuki M, Suzuki S, Matsui M, Hiraki Y, Kawano F, Shibayama K. A subclass B3 metallo-^-lactamase found in Pseudomonas alcaligenes. J Antimicrob Chemother. 2014;69(5):1430-1432. google scholar
  • Borgianni L, De Luca F, Thaller MC, Chong Y, Rossolini GM, Docquier JD. Biochemical characterization of the POM-1 metallo-3-lactamase from Pseudomonas otitidis. Antimicrob Agents Chemother. 2015; 59(3):1755-1758. google scholar
  • Mathys DA, Mollenkopf DF, Feicht SM, et al. Carbapenemase-producing Enterobacteriaceae and Aeromonas spp. present in wastewater treatment plant effluent and nearby sur-face waters in the US. PloS One 2019;14(6):e0218650. doi:10.1371/journal.pone.0218650 google scholar
  • Vieira TR, Sambrano GE, Silva NM, et al. In-Depth genomic characterization of a meropenem-nonsusceptible Pseudomonas otitidis strain contaminating chicken carcass. Acta Sci Vet. 2020;48. doi:10.22456/1679-9216.103176 google scholar
  • Wong MHY, Chi Chan EW, Chen S. Isolation of carbapenem-resistant Pseudomonas spp. from food. J Glob Antimicrob Resist 2015;3(2):109-114. google scholar
  • Thaller MC, Borgianni L, Di Lallo G, et al. Metallo-3-lactamase production by Pseudomonas otitidis: A species-related trait. Antimicrob Agents Chemother. 2011;55(1):118-123. google scholar
  • Poirel L, Palmieri M, Brilhante M, Masseron A, Perreten V, Nordmann P. PFM-like enzymes are a novel family of subclass B2 metallo—8-lactamases from Pseudomonas synxantha belong-ing to the Pseudomonas fluorescens complex. Antimicrob Agents Chemother. 2020;64(2):17-19. google scholar
  • Yum JH. Prevalence and diversity of MBL gene-containing inte-grons in metallo-3-lactamase (MBL)-producing Pseudomonas spp. isolates disseminated in a Korean hospital. Biomed Sci Lett. 2019;25(4):321-330. google scholar
  • Martins WM, Narciso AC, Cayo R, et al. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from micro-biota of migratory birds. Diagn Microbiol Infect Dis. 2018; 90(3):221-227. google scholar
  • Le Terrier C, Masseron A, Uwaezuoke NS, et al. Wide spread of carbapenemase-producing bacterial isolates in a Nigerian en-vironment. J Glob Antimicrob Resist. 2020;21:321-323. google scholar
  • El-Bestawy E, Sabir J, Mansy AH, Zabermawi N. Isolation, iden-tification and acclimatization of Atrazine-resistant soil bacteria. Ann Agric Sci. 2013; 58(2): 119-130. google scholar
  • Shaini VP, Jayasree S. Biochemical characterization and 16S rDNA sequencing of lipolytic bacterial isolates WCS. Natl Sci. 2015;11(1):82-90. google scholar
  • Ramani K, Saranya P, Jain SC, Sekaran G. Lipase from marine strain using cooked sunflower oil waste: Production optimiza-tion and application for hydrolysis and thermodynamic studies. Bioprocess Biosyst Eng. 2013;36(3): 301-315. google scholar
  • Fibriana F, Upaichit A, Cheirsilp B June. Turning waste into valuable products: Utilization of agroindustrial oily wastes as the low-cost media for microbial lipase production. In Journal of Physics: Conference Series. IOP Publishing. 2021;1918(5):28-52. google scholar
  • Kumar A, Vyas P. Biochemical and molecular characteriza-tion of cellulase producing bacterial isolates from cattle dung samples. J Adv Res Biotechnol. 2018;1-6. doi:10.15226/2475-4714/3/1/00132. google scholar
  • Huang Y, Liu X, Ran Y, Cao Q, Zhang A, Li D. Produc-tion of feather oligopeptides by a newly isolated bacterium Pseudomonas otitis H11. Poult Sci. 2019. google scholar
  • Fatoni A, Zusfahair. Isolation and partial purification of new protease form thermophilic bacteria Pseudomonas otitidis WN 1 obtained from Indonesian hot spring. Conference Paper; 2016; Jakarta. google scholar
  • Shamsi TN, Parveen R, Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int J Biol Macromol. 2016;91:1120-1133. google scholar
  • Viera-Limon MJ, Morlett-Chavez JA, Sierra-Rivera CA, Luque-Contreras D, Zugasti-Cruz A. Zearalenone induced cytotoxic-ity and oxidative stress in human peripheral blood leukocytes. Toxicology. 2015;1(1):102. doi:10.4172/2476-2067.1000102 google scholar
  • Tan H, Zhang Z, Hu Y, et al. Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading Zearalenone. Food Control. 2015;47:285-290. google scholar
  • Mahler HR, Hubscher Georg, Baum H. Studies on uricase. J Biol Chem. 1955; 216:625-641. google scholar
  • Lee NSIS, Khosravi HM, Ibrahim N, Shahir S. Isolation, partial purification and characterization of thermophilic uricase from Pseudomonas otitidis strain SN4. Malays J Microbiol. 2015;352-357. google scholar
  • Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev. 1950;30(1):91-126. google scholar
  • Deepthi SS, Reddy MK, Mishra N, Agsar D. Melanin production by Pseudomonas sp. and in silico comparative analysis of tyrosi-nase gene sequences. BioTechnologia (Pozn). 2021;102(4):411-424. google scholar
  • Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK. Recent developments in L-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol.2016;100:1-10. google scholar
  • Ehsanipour EA, Sheng X, Behan JW, et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glu-tamine. Cancer Res. 2013;73(10): 2998-3006. google scholar
  • Shi R, Liu Y, Mu Q, Jiang Z, Yang S. Biochemical characteriza-tion of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. Int J Biol Macromol. 2017;96:93-99. google scholar
  • Ghosh S, Chaganti SR, Prakasham RS. Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. JMol Catal B Enzym. 2012;74(1-2):132-137. google scholar
  • Sharma A, Husain I. Evaluation of antitumor activity of glutaminase-free periplasmic asparaginase from indigenous bac-terial isolates as candidates for cancer therapy. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87(3):997-1004. google scholar
  • Muneer F, Siddique MH, Azeem F, et al. Microbial L-asparaginase: Purification, characterization and applications. Arch Microbiol. 2020;202(5):967-981. google scholar
  • Husain I, Sharma A, Kumar S, Malik F. Purification and charac-terization of glutaminase free asparaginase from Pseudomonas otitidis: Induce apoptosis in human leukemia MOLT-4 cells. Biochimie. 2016;121:38-51. google scholar
  • Wang Z, Fast W, Valentine AM, Benkovic SJ. Metallo-3-lactamase: Structure and mechanism. Curr Opin Chem Biol. 1999;3(5):614-622. google scholar
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecu-lar structure. Antimicrob Agents Chemother. 1995;39(6):1211-1233. google scholar
  • Hall BG, Barlow M. Revised ambler classification of [3-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1051. google scholar
  • Khan AU, Maryam L, Zarrilli R. Structure, genetics and world-wide spread of New Delhi metallo-3-lactamase (NDM): A threat to public health. BMC Microbiol. 2017;17(1):1-12. google scholar
  • Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a 3-lactamase gene, bla GIM-1, encoding a new subclass of metallo-3-lactamase. Antimicrob Agents Chemother. 2004;48(12):4654-4661. google scholar
  • Breilh D, Texier-Maugein J, Allaouchiche B, Saux MC, Boselli, E. Carbapenems. J Chemother. 2013;25(1):1-17. google scholar
  • Demain AL, Elander RP. The 3-lactam antibiotics: Past, present, and future. Antonie Van Leeuwenhoek. 1999;75(1):5-19. google scholar
  • Hou JP, Poole JW. 3-lactam antibiotics: Their physicochemical properties and biological activities in relation to structure. J Pharm Sci. 1971;60(4):503-532. google scholar
  • Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and 3-lactam resistance. FEMS Microbiol Rev. 2008;32(2):361-385. google scholar
  • De Sousa Borges A, de Keyzer J, Driessen AJ, Scheffers DJ. The Escherichia coli membrane protein insertase YidC assists in the biogenesis of penicillin binding proteins. J Bacteriol. 2015;97(8):1444-1450. google scholar
  • Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-3-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother. 2001;45(5):1343-1348. google scholar
  • Miriagou V, Tzelepi E, Gianneli D, Tzouvelekis LS. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-3-lactamase VIM-1. Antimicrob Agents Chemother. 2003;47(1):395-397. google scholar
  • Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-3-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891-897. google scholar
  • Holloway BW, Krishnapillai V, Stanisich V. Pseudomonas ge-netics. Annu Rev Genet. 1971;5(1):425-446. google scholar
  • Yang Z, Liu W, Cui Q, et al. Prevalence and detec-tion of Stenotrophomonas maltophilia carrying metallo-j8-lactamaseblaLl inBeijing, China. FrontMicrobiol. 2014;5:692. doi:10.3389/fmicb.2014.00692 google scholar
  • Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux sys-tem, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633-1641. google scholar
  • Lee K, Lim JB, Yum JH, et al. bla VIM-2 cassette-containing novel integrons in metallo-3-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates dis-seminated in a Korean hospital. Antimicrob Agents Chemother. 2002;46(4):1053-1058. google scholar
  • Tickler IA, Shettima SA, Dela Cruz CM, et al. Char-acterization of carbapenem-resistant gram-negative bacte-rial isolates from Nigeria by whole genome sequenc-ing. Diagn Microbiol Infect Dis. 2021;101(1):115422. doi:10.1016/j.diagmicrobio.2021.115422 google scholar
  • Frisk A, Schurr JR, Wang G, et al. Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun. 2004;72(9):5433-5438. google scholar
  • Reis RS, Pacheco GJ, Pereira AG, Freire DMG. Bio-surfactants: Production and Applications [Internet]. Biodegradation-Life of Science. InTech; 2013. Available from: http://dx.doi.org/10.5772/56144) google scholar
  • Dinache A, Pascu ML, Smarandache A. Spectral proper-ties of foams and emulsions. Molecules. 2021;26(24):7704. doi:10.3390/molecules26247704 google scholar
  • Myers D. Surfactant science and technology. Edition, John Wiley & Sons, Inc., Hoboken, NJ. 2020. google scholar
  • McClements DJ, Gumus CE. Natural emulsifiers biosurfactants, phospholipids, biopolymers, and colloidal particles: Molec-ular and physicochemical basis of functional performance. Adv Colloid Interface Sci. 2016;234:3-26. google scholar
  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A. Evaluation of different carbon and nitrogen sources in produc-tion of biosurfactant by Pseudomonas fluorescens. Desalination. 2008;223(1-3):143-151. google scholar
  • Thavasi R, Sharma S, Jayalakshmi S. Evaluation of screening methods for the isolation of biosurfactant producing marine bac-teria. J Pet Environ Biotechnol S. 2011; 1(2): 1-6. google scholar
  • Chen CY, Baker SC, Darton RC. Batch production of biosurfactant with foam fractionation. J Chem Technol. 2006;81(12):1923-1931. google scholar
  • Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol. 2002;13(3):249-252. google scholar
  • Mendes AN, Filgueiras LA, Pinto JC, Nele M. Physicochemi-cal properties of rhamnolipid biosurfactant from Pseudomonas aeruginosa PA1 to applications in microemulsions. J Biomater Nanobiotechnol. 2015;6:64-79. google scholar
  • Gudina EJ, Rangarajan V, Sen R, Rodrigues LR. Potential ther-apeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667-675. google scholar
  • Dubey K, Juwarkar A. Distillery and curd whey wastes as vi-able alternative sources for biosurfactant production. World J Microbiol Biotechnol. 2001;17(1):61-69. google scholar
  • Maneerat S. Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol. 2005;27(6):1263-1272. google scholar
  • Ray S, Ray, M. Purification and characterization of NAD and NADP-linked alpha-ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. J Biol Chem. 1982;257(18):10566-10570. google scholar
  • Aparna A, Srinikethan G, Smitha H. Production and character-ization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B. 2012; 95:23-29. google scholar
  • Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H, Kamata T. The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem Lett. 1987;16(5):763-766. google scholar
  • Helvacı ŞŞ, Peker S, Özdemir G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf. B. 2004; 35(3-4):225-233. google scholar
Year 2023, , 224 - 238, 21.12.2023
https://doi.org/10.26650/EurJBiol.2023.1247822

Abstract

References

  • Palleroni NJ, Genus I. Pseudomonas Migula In Bergey’s Manual of Systematic Bacteriology. Springer. 1984; 141-199. google scholar
  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M. Nu-cleic acid homologies in the genus Pseudomonas. Int J Syst Evol Microbiol. 1973;23(4):333-339. google scholar
  • Kersters K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer KH. Recent changes in the classification of the Pseudomonads: An overview. Syst Appl Microbiol. 1996;19(4):465-477. google scholar
  • Romaniuk K, Krucon T, Decewicz P, Gorecki A, Dziewit L. Molecular characterization of the pA3J1 plasmid from the psy-chrotolerant antarctic bacterium Pseudomonas sp. ANT_J3. Plasmid. 2017;1(92):49-56. google scholar
  • Passarelli-Araujo H, Franco GR, Venancio TM. Network anal-ysis of ten thousand genomes shed light on Pseudomonas di-versity and classification. Microbiol Res. 2022;1(254):126919. doi:10.1016/j.micres.2021.126919 google scholar
  • Campbell RA, Farlow J, Freyberger HR, et al. Genome Sequences of 17 Diverse Pseudomonas aeruginosa phages. Microbiol Resour Announc. 2021;10(9):e0003121. doi:10.1128/MRA.00031-21 google scholar
  • Sundararajaperumal A, Murugan N, Karthick R, Harikrishnan S. Profile of pulmonary infections in renal transplant patients. J Evid Based Med. 2018;5(3):260-264. google scholar
  • Hillman KM, Twigley A. Aerosol EDTA to eliminate respiratory-tract Pseudomonas. Lancet. 1984;324(8394): 99. doi:10.1016/s0140-6736(84)90265-4 google scholar
  • Beasley KL, Cristy SA, Elmassry MM, et al. During bac-teremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those in-volved in quorum sensing. PloS one. 2020;15(10):e0240351. doi:10.1371/journal.pone.0240351 google scholar
  • Kalpana Thalava, Vigila J. Urinary infections in pregnancy con-ditions. J Pharm Res Int. 2021;2(17):22-28. google scholar
  • Lee K, Kim CK, Yong D, et al. POM-1 metallo-S-lactamase-producing Pseudomonas otitidis isolate from a pa-tient with chronic otitis media. Diagn Microbiol Infect Dis. 2012;72(3): 295-296. google scholar
  • Poirel L, Palmieri M, Brilhante M, Masseron A, Perreten V, Nordmann P. PFM-like enzymes are a novel family of subclass B2 metallo-S-lactamases from Pseudomonas synxantha belong-ing to the Pseudomonas fluorescens complex. Antimicrob Agents Chemother. 2020;64(2):1700-1719. google scholar
  • Silveira MC, Albano RM, Rocha-de-Souza CM, et al. Description of a novel IncP plasmid harboring blaKPC-2 recov-ered from a SPM-1-producing Pseudomonas aeruginosa from ST277. Infect Genet Evol. 2022;102:105302.doi:10.1016/j.meegid.2022.105302 google scholar
  • Lalucat J, Gomila M, Mulet M, Zaruma A, Garaa-Valdes E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Syst Appl Microbiol. 2022;45(1):126289. doi:10.1016/j.syapm.2021.126289 google scholar
  • Olsen RH, Metcalf ES, Todd JK. Characteristics of bacterio-phages attacking psychrophilic and mesophilic Pseudomonas. J Virol. 1968;2(4):357-364. google scholar
  • Chakrabarty AM. Gunsalus IC. Autonomous replication of a defective transducing phage in Pseudomonas putida. Virol. 1969;38(1):92-104. google scholar
  • Cornelis, P Ed. Pseudomonas: Genomics and molecular biology. Horizon Scientific Press; 2008. google scholar
  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phy-logenetic affiliation of the Pseudomonas based on 16S rRNA sequence. IntJ Syst Evol Microbiol. 2000;50(4):1563-1589. google scholar
  • Miyazaki K, Hase E, Maruya T. Complete genome sequence of Pseudomonas otitidis Strain MrB4, isolated from Lake Biwa in Japan. Microbiol Resour Announc. 2020;9(16):e00148-20. doi:10.1128/MRA.00148-20 google scholar
  • Abed, Wu H, Kareem SM. Molecular detection of gyrA and mexA genes in Pseudomonas aeruginosa. Mol Biol Rep. 2021;48(12):7907-7912. google scholar
  • Manivannan B, Mahalingam N, Jadhao S, Mishra A, Nilawe P, Pradeep BE. Draft genome sequence of a clinically iso-lated extensively drug-resistant Pseudomonas aeruginosa strain. Genome Announc. 2016;4(2):2-16. google scholar
  • Kacaniova M, Kluga A, Kantor A, et al. Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identifica-tion of Pseudomonas species isolated from fish. Microb Pathog. 2019;132:313-318. google scholar
  • Roland PS, Stroman DW. Microbiology of acute otitis externa. The Laryngoscope. 2002;112(7):1166-1177. google scholar
  • Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW. Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol. 2006;56(4):709-714. google scholar
  • Kim D, Hong SK, Seo YH, et al. Two non-otic cases of POM-1 metallo-S-lactamase-producing Pseudomonas otitidis infection: Necrotizing fasciitis and pan-peritonitis. J Glob Antimicrob Resist. 2016;7:157-158. google scholar
  • Balasubramani G, Induja K, Aiswarya D, et al. Isolation and characterization of human foot crack-associated bac-terium, Pseudomonas otitidis, and its biological propensity. Smart Science. 2019;7(2):79-90. google scholar
  • Yamada K, Aoki K, Nagasawa T, et al. Complete whole-genome sequence of the novel Pseudomonas species strain TUM18999, isolated from a patient with a burn wound in Japan. J Glob Antimicrob Resist. 2021;24:395-397. google scholar
  • Adriana LC, Alexandros NV, Ming C, Mats L. Pseudomonas otitidis bacteraemia in a patient with COPD and recurrent pneumonia: Case report and literature review. BMC Infect Dis. 2021;21:868. doi:10.1186/s12879-021-06569-8 google scholar
  • Garca-Ulloa M. II, Souza V, Olmedo-Âlvarez G, Eguiarte LE. Can bacterial populations go extinct? Evolutionary biology and bacterial studies in Cuatro Cienegas shed light on the extinction process. In Conflicts Between Biodiversity Conservation and Humans. 2022;143-162. google scholar
  • Reddy CSK, Ghai R, Kalia V. Polyhydroxyalkanoates: An overview. Bioresour Technol. 2003;87(2):137-146. google scholar
  • Garca-Ulloa MI, Escalante AE, Moreno-Letelier A, Eguiarte LE, Souza V. Evolutionary rescue of an environ-mental Pseudomonas otitidis in response to anthro-pogenic perturbation. Front Microbiol. 2021;11:563885. doi:10.3389/fmicb.2020.563885 google scholar
  • Rodriguez-Verdugo A, Souza V, Eguiarte LE, Escalante AE. Di-versity across seasons of culturable Pseudomonas from a Des-iccation Lagoon in Cuatro Cienegas, Mexico. Int J Microbiol. 2012;201389. doi:10.1155/2012/201389 google scholar
  • Jun SR, Wassenaar TM, Nookaew I, et al. Diver-sity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis. Appl Environ Microbiol. 2015;82(1):375-383. doi:10.1128/AEM.02612-15 google scholar
  • Dahiya S, Mohan SV. Strategic design of synthetic consortium with embedded wastewater treatment po-tential: Deciphering the competence of isolates from diverse microbiome. Front Environ Sci. 2016; 4:30.https://doi.org/10.3389/fenvs.2016.00030 google scholar
  • Dasgupta D, Ghosh R, Sengupta TK. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol. 2013;2013:250749. doi:10.5402/2013/250749 google scholar
  • Gogoi B, Das I, Gogoi M, Charingia D, Bandyopadhyay T, Borah D. Bioremediation of motor oil-contaminated soil and water by a novel indigenous Pseudomonas otitidis strain DU13 and characterization of its biosurfactant. 3 Biotech. 2022;3(12):68. doi:10.1007/s13205-022-03133-2 google scholar
  • Peng YH, Shih YH, Lai YC, Liu YZ, Liu YT, Lin NC. Degra-dation of polyurethane by bacterium isolated from soil and as-sessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res Int. 2014;21(16):9529-9537. google scholar
  • Bestawy EE, El-Shatby BF, Eltaweil AS. Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World J Microbiol Biotechnol. 2020;36(9):141. doi:10.1007/s11274-020-02915-1 google scholar
  • Mohammadi F, Sepahy A, Naghavi N, Salehi M. Removal of phe-nolic compounds from Spent caustic wastewater by the isolated and detected Pseudomonas otitidis. Adv Biores. 2017; 8(5):123-129. doi: 10.15515/abr.0976-4585.8.5.123129 google scholar
  • Maitra S, Maity D, Kundu P, Adhikarinee S. Isolation and iden-tification of a bacterial strain from soil for bioremediation of phenol for pollution control. J Indian Chem Soc.2020;97(4):607-612. google scholar
  • Mohanty SS, Jena HM. Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Braz J Chem Eng. 2017;34:75-84. google scholar
  • Poyraz N. Isolation of novel toluene degrading bacteria from waste water treatment plants and determination of their toluene tolerance and other biotechnological potential. Pol J Environ Stud. 2021;30(1):811-821. google scholar
  • Dados A, Omirou M, Demetriou K, Papastephanou C, Ioannides IM. Rapid remediation of soil heavily contaminated with hydro-carbons: A comparison of different approaches. Ann Microbiol. 2015;65(1):241-251. google scholar
  • Anwar MS, Kapri A, Chaudhry V, et al. Response of indige-nously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma. 2016;253(4):1023-1032. google scholar
  • Xu CB, Wang WY, Li XZ. Identification and characteristics of a phenanthrene degrading bacterium. Acta Sci. 2015;35(3):684-691. google scholar
  • Soberon-Chavez G, Lepine F, Deziel E. Production of rhamno-lipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2005;68(6):718-725. google scholar
  • Soberon-Chavez G, Maier RM. Biosurfactants: A general overview. Biosurfactants. 2011;1-11. google scholar
  • Holland PM, Rubingh DN. Mixed surfactant systems: An overview, 1992. doi:10.1021/bk-1992-0501.ch001 google scholar
  • Haloi S, Sarmah S, Gogoi SB, Medhi T. Characterization of Pseudomonas sp. TMB2 produced rhamnolipids for ex-situ mi-crobial enhanced oil recovery. 3 Biotech. 2020;10(3):1-17. google scholar
  • Buonocore C, Tedesco P, Vitale GA, et al. Characteriza-tion of a new mixture of mono-rhamnolipids produced by Pseudomonas gessardii isolated from Edmonson Point (Antarc-tica). Mar Drugs. 2020;18(5): 269. doi:10.3390/md18050269 google scholar
  • Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain iso-lated from Chirimiri coal mines, India. Bioresour Bioprocess. 2016;3(1):1-16. google scholar
  • Ibrahim AG, Abd Elsalam HE. Biodegradation of anionic surfactants (SDS) by bacteria isolated from waste water in Taif Governate. Annu Res Rev Biol. 2018;1-13. doi: 10.9734/ARRB/2018/41436 google scholar
  • Chaturvedi V, Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent con-taminated ponds situated in Varanasi city, India. Int Biodeterior Biodegradation. 2011;65(7):961-971. google scholar
  • Jovcic B, BegovIc JELENA, Lozo J, Topisirovic LJ, Kojic M. Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch Biol Sci. 2009;61(2):159-164. google scholar
  • Ibrahim AG, Abd Elsalam HE. Enhancement the biodegrada-tion of sodium dodecyl sulfate by Pseudomonas aeruginosa and Pseudomonas otitidis isolated from waste water in Saudi Arabia. Annu Res Rev Biol. 2018; 1-7. doi: 10.9734/arrb/2018/43744 google scholar
  • Jing WU, Byung-Gil JU, Kyoung-Sook KI, Young-Choon LE, Nak-Chang SU. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J Environ Sci. 2009;21(7):960-964. google scholar
  • Jing W, Kang NY, Kim KS, Sung NC, Lee YC. Isolation and characterization of Pseudomonas otitidis Strain CV-1 capable of decolorizing triphenylmethane dye. In Proceedings of the Korean Society of Life Science Conference. 2007; 108. google scholar
  • Shah MP, Patel KA, Nair SS, Darji AM. Environmental biore-mediation of dyes by Pseudomonas aeruginosa ETL-1 isolated from final effluent treatment plant of ankleshwar. Am J Microbiol Res. 2013;1(4):74-83. google scholar
  • Gamboa-Loira B, Lopez-Carrillo L, Mar-Sanchez Y, Stern D, Cebrian ME. Epidemiologic evidence of exposure to poly-cyclic aromatic hydrocarbons and breast cancer: A system-atic review and meta-analysis. Chemosphere. 2022;290:133237. doi:10.1016/j.chemosphere.2021.133237 google scholar
  • Benignus VA. Health effects of toluene: A review. Neurotoxicology. 1981;2(3): 567-588. google scholar
  • Buckley JP, Quiros-Alcala L, Teitelbaum SL, Calafat AM, Wolff MS, Engel SM. Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and7 years. Environ Int. 2018;115:79-88. google scholar
  • Itoh M. The role of brain acetylcholine in phenol-induced tremor in mice. Arch Oral Biol. 1995;40(5):365-372. google scholar
  • Reynolds JA, Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem. 1970;245(19):5161-5165. google scholar
  • Sleutels TH, Ter Heijne A, Buisman CJ, Hamelers HV. Bio-electrochemical systems: An outlook for practical applications. Chem Sus Chem. 2012;5(6):1012-1019. google scholar
  • Carver A, Gallicchio VS. Heavy metals and cancer. In Cancer Causing Substances. 2018. doi:10.5772/intechopen.70348. google scholar
  • Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF. Iso-lation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol. 2019;65(4):308-321. google scholar
  • Yeoh CC. Production, partial purification and characteriza-tion of yellow-green fluorescent siderophores produced by Pseudomonas otitidis B1, UTAR, Doctoral dissertation, 2014. google scholar
  • Ai C, Hou S, Yan Z, et al. Recovery of metals from acid mine drainage by bioelectrochemical system inoculated with a novel exoelectrogen, Pseudomonas sp. E8. Microorganisms. 2019;8(1):41. doi:10.3390/microorganisms8010041 google scholar
  • Modestra, J.A. and Mohan, S.V. Bio-electrocatalyzed electron efflux in Gram-positive and Gram-negative bacteria: An in-sight into disparity in electron transfer kinetics. RSC Adv. 2014;4(64):34045-34055. google scholar
  • Thulasinathan B, Nainamohamed S, Samuel JO, et al. Compar-ative study on Cronobacter sakazakii and Pseudomonas otitidis isolated from septic tank wastewater in microbial fuel cell for bioelectricity generation. Fuel. 2019;248:47-55. google scholar
  • Reddy MV, Mohan SV. Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresour Technol. 2012;114:573-582. google scholar
  • Reddy MV, Nikhil GN, Mohan SV, Swamy YV, Sarma PN. Pseudomonas otitidis as a potential biocatalyst for polyhydrox-yalkanoates (PHA) synthesis using synthetic wastewater and aci-dogenic effluents. Bioresour Technol. 2012; 123 471-479. google scholar
  • Wang Y, Yin J, Chen GQ. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol. 2014;30:59-65. google scholar
  • Venkateswar Reddy M, Chitanya DNSK, Nikhil GN, Venkata Mohan S, Sarma PN. Influence of Co-F actor on enhancement of bioplastic production through wastew-ater treatment. Clean-Soil Air Water. 2014;42(6):809-814. https://doi.org/10.1002/clen.201300105 google scholar
  • Cardinali-Rezende J, Di Genova A, Nahat RA, et al. The rele-vance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol. 2020;163:240-250. google scholar
  • Idrees N, Liaqat I, Qurashi AW. Pseudomonas otitidis and Bacillus subtilis from saline soil of Pakistan exhibiting a po-tential for calcium precipitation. Inter J Econ Envir Geo. 2018;9(4):62-67. google scholar
  • Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD. Biocontrol of Phytophthora blight and anthracnose in pep-per by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J. 2013;29(2):154-167. google scholar
  • Pintado A, Perez-Martmez I, Aragon IM, et al. The Rhizobacterium Pseudomonas alcaligenes AVO110 induces the expression of biofilm-related genes in response to Rosellinia necatrix exudates. Microorganisms. 2021;9(7):1388. doi:10.3390/microorganisms9071388 google scholar
  • Ruenchit P, Whangviboonkij N, Sawasdipokin H, Phumisan-tiphong U, Chaicumpa WA. Search for anti-Naegleria fow-leri agents based on competitive exclusion behavior of mi-croorganisms in natural aquatic environments. Pathogens. 2021;10(2):142. doi:10.3390/pathogens10020142 google scholar
  • Ahn KJ. Antibiotic production of Pseudomonas otitidis PS and mode of action. Biotechnol Lett. 2018;46(1):40-44. google scholar
  • Vivero RJ, Mesa GB, Robledo SM, Herrera CXM, Cadavid-Restrepo G. Enzymatic, antimicrobial, and leishmanici-dal bioactivity of gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of Leishma-niasis in Colombia. Biotechnol Rep (Amst). 2019;24:e00379 doi:10.1016/j.btre.2019.e00379 google scholar
  • Lu H, Wang X, Zhang K, Xu Y, Zhou L, Li G. Identification and nematicidal activity of bacteria isolated from cow dung. Ann Microbiol. 2014;64(1):407-411. google scholar
  • Chellaram C, Praveen MM. Molecular characterization of an-tagonistic bacteria, Pseudomonas otitidis from Insect gut, short horned grasshopper. J Pure Appl Microbiol. 2015;9(23):91-96. google scholar
  • Husain F, Duraisamy S, Balakrishnan S, Ranjith S, Chidambaram P, Kumarasamy A. Phenotypic assessment of safety and probiotic potential of native isolates from marine fish Moolgarda seheli towards sustainable aquaculture. Biologia (Bratisl). 2022;77(3):775-790. google scholar
  • Siddiqui R, Ali IK, Cope JR, Khan NA. Biology and pathogen-esis of Naegleria fowleri. Acta Tropica. 2016;164(3):75-94. google scholar
  • Al-Mamary NI, Al-Hayali HL. Effect of synergism of thalido-mide and liposomal amphotericin-B on Leishmania tropica and Leishmania donovani promastigote. Revis Bionatura. 2022; 7(2): 59. doi:10.21931/RB/2022.07.02.59 google scholar
  • Desjeux P. Leishmaniasis: Current situation and new perspec-tives. Comp Immunol Microbiol Infect Dis. 2004;27(5):305-318. google scholar
  • Ankeny RA. The natural history of Caenorhabditis elegans re-search. Nat Rev Genet. 2001;2(6):474-479. google scholar
  • Wang W, Wang X. Prevalence of metallo-3-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. Lab Med. 2020;44(4):97-203. google scholar
  • Kaur R, Singh D, Kesavan AK, Kaur R. Molecular characteriza-tion and antimicrobial susceptibility of bacterial isolates present in tap water of public toilets. Int Health. 2020;12(5):472-483. google scholar
  • Nordmann P, Fournier C, Poirel L. A Selective culture medium for screening carbapenem resistance in Pseudomonas spp. Microb Drug Resist. 2021;27(10): 1355-1359. google scholar
  • Suzuki M, Suzuki S, Matsui M, Hiraki Y, Kawano F, Shibayama K. A subclass B3 metallo-^-lactamase found in Pseudomonas alcaligenes. J Antimicrob Chemother. 2014;69(5):1430-1432. google scholar
  • Borgianni L, De Luca F, Thaller MC, Chong Y, Rossolini GM, Docquier JD. Biochemical characterization of the POM-1 metallo-3-lactamase from Pseudomonas otitidis. Antimicrob Agents Chemother. 2015; 59(3):1755-1758. google scholar
  • Mathys DA, Mollenkopf DF, Feicht SM, et al. Carbapenemase-producing Enterobacteriaceae and Aeromonas spp. present in wastewater treatment plant effluent and nearby sur-face waters in the US. PloS One 2019;14(6):e0218650. doi:10.1371/journal.pone.0218650 google scholar
  • Vieira TR, Sambrano GE, Silva NM, et al. In-Depth genomic characterization of a meropenem-nonsusceptible Pseudomonas otitidis strain contaminating chicken carcass. Acta Sci Vet. 2020;48. doi:10.22456/1679-9216.103176 google scholar
  • Wong MHY, Chi Chan EW, Chen S. Isolation of carbapenem-resistant Pseudomonas spp. from food. J Glob Antimicrob Resist 2015;3(2):109-114. google scholar
  • Thaller MC, Borgianni L, Di Lallo G, et al. Metallo-3-lactamase production by Pseudomonas otitidis: A species-related trait. Antimicrob Agents Chemother. 2011;55(1):118-123. google scholar
  • Poirel L, Palmieri M, Brilhante M, Masseron A, Perreten V, Nordmann P. PFM-like enzymes are a novel family of subclass B2 metallo—8-lactamases from Pseudomonas synxantha belong-ing to the Pseudomonas fluorescens complex. Antimicrob Agents Chemother. 2020;64(2):17-19. google scholar
  • Yum JH. Prevalence and diversity of MBL gene-containing inte-grons in metallo-3-lactamase (MBL)-producing Pseudomonas spp. isolates disseminated in a Korean hospital. Biomed Sci Lett. 2019;25(4):321-330. google scholar
  • Martins WM, Narciso AC, Cayo R, et al. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from micro-biota of migratory birds. Diagn Microbiol Infect Dis. 2018; 90(3):221-227. google scholar
  • Le Terrier C, Masseron A, Uwaezuoke NS, et al. Wide spread of carbapenemase-producing bacterial isolates in a Nigerian en-vironment. J Glob Antimicrob Resist. 2020;21:321-323. google scholar
  • El-Bestawy E, Sabir J, Mansy AH, Zabermawi N. Isolation, iden-tification and acclimatization of Atrazine-resistant soil bacteria. Ann Agric Sci. 2013; 58(2): 119-130. google scholar
  • Shaini VP, Jayasree S. Biochemical characterization and 16S rDNA sequencing of lipolytic bacterial isolates WCS. Natl Sci. 2015;11(1):82-90. google scholar
  • Ramani K, Saranya P, Jain SC, Sekaran G. Lipase from marine strain using cooked sunflower oil waste: Production optimiza-tion and application for hydrolysis and thermodynamic studies. Bioprocess Biosyst Eng. 2013;36(3): 301-315. google scholar
  • Fibriana F, Upaichit A, Cheirsilp B June. Turning waste into valuable products: Utilization of agroindustrial oily wastes as the low-cost media for microbial lipase production. In Journal of Physics: Conference Series. IOP Publishing. 2021;1918(5):28-52. google scholar
  • Kumar A, Vyas P. Biochemical and molecular characteriza-tion of cellulase producing bacterial isolates from cattle dung samples. J Adv Res Biotechnol. 2018;1-6. doi:10.15226/2475-4714/3/1/00132. google scholar
  • Huang Y, Liu X, Ran Y, Cao Q, Zhang A, Li D. Produc-tion of feather oligopeptides by a newly isolated bacterium Pseudomonas otitis H11. Poult Sci. 2019. google scholar
  • Fatoni A, Zusfahair. Isolation and partial purification of new protease form thermophilic bacteria Pseudomonas otitidis WN 1 obtained from Indonesian hot spring. Conference Paper; 2016; Jakarta. google scholar
  • Shamsi TN, Parveen R, Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int J Biol Macromol. 2016;91:1120-1133. google scholar
  • Viera-Limon MJ, Morlett-Chavez JA, Sierra-Rivera CA, Luque-Contreras D, Zugasti-Cruz A. Zearalenone induced cytotoxic-ity and oxidative stress in human peripheral blood leukocytes. Toxicology. 2015;1(1):102. doi:10.4172/2476-2067.1000102 google scholar
  • Tan H, Zhang Z, Hu Y, et al. Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading Zearalenone. Food Control. 2015;47:285-290. google scholar
  • Mahler HR, Hubscher Georg, Baum H. Studies on uricase. J Biol Chem. 1955; 216:625-641. google scholar
  • Lee NSIS, Khosravi HM, Ibrahim N, Shahir S. Isolation, partial purification and characterization of thermophilic uricase from Pseudomonas otitidis strain SN4. Malays J Microbiol. 2015;352-357. google scholar
  • Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev. 1950;30(1):91-126. google scholar
  • Deepthi SS, Reddy MK, Mishra N, Agsar D. Melanin production by Pseudomonas sp. and in silico comparative analysis of tyrosi-nase gene sequences. BioTechnologia (Pozn). 2021;102(4):411-424. google scholar
  • Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK. Recent developments in L-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol.2016;100:1-10. google scholar
  • Ehsanipour EA, Sheng X, Behan JW, et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glu-tamine. Cancer Res. 2013;73(10): 2998-3006. google scholar
  • Shi R, Liu Y, Mu Q, Jiang Z, Yang S. Biochemical characteriza-tion of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. Int J Biol Macromol. 2017;96:93-99. google scholar
  • Ghosh S, Chaganti SR, Prakasham RS. Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. JMol Catal B Enzym. 2012;74(1-2):132-137. google scholar
  • Sharma A, Husain I. Evaluation of antitumor activity of glutaminase-free periplasmic asparaginase from indigenous bac-terial isolates as candidates for cancer therapy. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87(3):997-1004. google scholar
  • Muneer F, Siddique MH, Azeem F, et al. Microbial L-asparaginase: Purification, characterization and applications. Arch Microbiol. 2020;202(5):967-981. google scholar
  • Husain I, Sharma A, Kumar S, Malik F. Purification and charac-terization of glutaminase free asparaginase from Pseudomonas otitidis: Induce apoptosis in human leukemia MOLT-4 cells. Biochimie. 2016;121:38-51. google scholar
  • Wang Z, Fast W, Valentine AM, Benkovic SJ. Metallo-3-lactamase: Structure and mechanism. Curr Opin Chem Biol. 1999;3(5):614-622. google scholar
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecu-lar structure. Antimicrob Agents Chemother. 1995;39(6):1211-1233. google scholar
  • Hall BG, Barlow M. Revised ambler classification of [3-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1051. google scholar
  • Khan AU, Maryam L, Zarrilli R. Structure, genetics and world-wide spread of New Delhi metallo-3-lactamase (NDM): A threat to public health. BMC Microbiol. 2017;17(1):1-12. google scholar
  • Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a 3-lactamase gene, bla GIM-1, encoding a new subclass of metallo-3-lactamase. Antimicrob Agents Chemother. 2004;48(12):4654-4661. google scholar
  • Breilh D, Texier-Maugein J, Allaouchiche B, Saux MC, Boselli, E. Carbapenems. J Chemother. 2013;25(1):1-17. google scholar
  • Demain AL, Elander RP. The 3-lactam antibiotics: Past, present, and future. Antonie Van Leeuwenhoek. 1999;75(1):5-19. google scholar
  • Hou JP, Poole JW. 3-lactam antibiotics: Their physicochemical properties and biological activities in relation to structure. J Pharm Sci. 1971;60(4):503-532. google scholar
  • Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and 3-lactam resistance. FEMS Microbiol Rev. 2008;32(2):361-385. google scholar
  • De Sousa Borges A, de Keyzer J, Driessen AJ, Scheffers DJ. The Escherichia coli membrane protein insertase YidC assists in the biogenesis of penicillin binding proteins. J Bacteriol. 2015;97(8):1444-1450. google scholar
  • Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-3-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother. 2001;45(5):1343-1348. google scholar
  • Miriagou V, Tzelepi E, Gianneli D, Tzouvelekis LS. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-3-lactamase VIM-1. Antimicrob Agents Chemother. 2003;47(1):395-397. google scholar
  • Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-3-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891-897. google scholar
  • Holloway BW, Krishnapillai V, Stanisich V. Pseudomonas ge-netics. Annu Rev Genet. 1971;5(1):425-446. google scholar
  • Yang Z, Liu W, Cui Q, et al. Prevalence and detec-tion of Stenotrophomonas maltophilia carrying metallo-j8-lactamaseblaLl inBeijing, China. FrontMicrobiol. 2014;5:692. doi:10.3389/fmicb.2014.00692 google scholar
  • Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux sys-tem, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633-1641. google scholar
  • Lee K, Lim JB, Yum JH, et al. bla VIM-2 cassette-containing novel integrons in metallo-3-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates dis-seminated in a Korean hospital. Antimicrob Agents Chemother. 2002;46(4):1053-1058. google scholar
  • Tickler IA, Shettima SA, Dela Cruz CM, et al. Char-acterization of carbapenem-resistant gram-negative bacte-rial isolates from Nigeria by whole genome sequenc-ing. Diagn Microbiol Infect Dis. 2021;101(1):115422. doi:10.1016/j.diagmicrobio.2021.115422 google scholar
  • Frisk A, Schurr JR, Wang G, et al. Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun. 2004;72(9):5433-5438. google scholar
  • Reis RS, Pacheco GJ, Pereira AG, Freire DMG. Bio-surfactants: Production and Applications [Internet]. Biodegradation-Life of Science. InTech; 2013. Available from: http://dx.doi.org/10.5772/56144) google scholar
  • Dinache A, Pascu ML, Smarandache A. Spectral proper-ties of foams and emulsions. Molecules. 2021;26(24):7704. doi:10.3390/molecules26247704 google scholar
  • Myers D. Surfactant science and technology. Edition, John Wiley & Sons, Inc., Hoboken, NJ. 2020. google scholar
  • McClements DJ, Gumus CE. Natural emulsifiers biosurfactants, phospholipids, biopolymers, and colloidal particles: Molec-ular and physicochemical basis of functional performance. Adv Colloid Interface Sci. 2016;234:3-26. google scholar
  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A. Evaluation of different carbon and nitrogen sources in produc-tion of biosurfactant by Pseudomonas fluorescens. Desalination. 2008;223(1-3):143-151. google scholar
  • Thavasi R, Sharma S, Jayalakshmi S. Evaluation of screening methods for the isolation of biosurfactant producing marine bac-teria. J Pet Environ Biotechnol S. 2011; 1(2): 1-6. google scholar
  • Chen CY, Baker SC, Darton RC. Batch production of biosurfactant with foam fractionation. J Chem Technol. 2006;81(12):1923-1931. google scholar
  • Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol. 2002;13(3):249-252. google scholar
  • Mendes AN, Filgueiras LA, Pinto JC, Nele M. Physicochemi-cal properties of rhamnolipid biosurfactant from Pseudomonas aeruginosa PA1 to applications in microemulsions. J Biomater Nanobiotechnol. 2015;6:64-79. google scholar
  • Gudina EJ, Rangarajan V, Sen R, Rodrigues LR. Potential ther-apeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667-675. google scholar
  • Dubey K, Juwarkar A. Distillery and curd whey wastes as vi-able alternative sources for biosurfactant production. World J Microbiol Biotechnol. 2001;17(1):61-69. google scholar
  • Maneerat S. Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol. 2005;27(6):1263-1272. google scholar
  • Ray S, Ray, M. Purification and characterization of NAD and NADP-linked alpha-ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. J Biol Chem. 1982;257(18):10566-10570. google scholar
  • Aparna A, Srinikethan G, Smitha H. Production and character-ization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B. 2012; 95:23-29. google scholar
  • Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H, Kamata T. The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem Lett. 1987;16(5):763-766. google scholar
  • Helvacı ŞŞ, Peker S, Özdemir G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf. B. 2004; 35(3-4):225-233. google scholar
There are 157 citations in total.

Details

Primary Language English
Subjects Plant Cell and Molecular Biology, Animal Cell and Molecular Biology
Journal Section Review
Authors

Gao Jianfeng 0000-0002-7393-6884

Rosfarizan Mohamad 0000-0001-5672-1905

Murni Halim 0000-0002-5744-2147

Mohd Shamzi Mohamed 0000-0002-9813-2161

Publication Date December 21, 2023
Submission Date March 21, 2023
Published in Issue Year 2023

Cite

AMA Jianfeng G, Mohamad R, Halim M, Mohamed MS. Pseudomonas otitidis: Discovery, Mechanisms and Potential Biotechnological Applications. Eur J Biol. December 2023;82(2):224-238. doi:10.26650/EurJBiol.2023.1247822