Review
BibTex RIS Cite

Cave Ecosystems: Microbiological View

Year 2017, , 36 - 42, 27.12.2017
https://doi.org/10.5152/EurJBiol.2017.1707

Abstract

The
mysterious passages known as caves between the earth and the underworld are
important geological forms that can be investigated for several astonishing
facts. The caves that we define as cavities or gaps into which a person can
enter are usually visited by people for several different purposes. Caves are
important for studies on environments in terms of biology and geology due to
their extreme conditions. In Turkey, there are about 35.000-40.000 caves, most
of which have not been mapped or scientifically explored. The mechanisms by
which living creatures survive in these cave environments, adapt to the extreme
conditions, and develop for survival have been the topics of research.
Microorganisms and physical factors are responsible for the occurrence and
formation of different geological forms such as stalactites, stalagmites, and
cave pearls in these extreme environments. This fact makes the caves more
interesting in terms of their microbiology. Studies on cave microbiology have
been aimed at exploring the functions of these microorganisms and new ones unique
to the cave habitats. On the other hand, these environment-specific
microorganisms carry a great potential to possess new and different enzymes or
antimicrobial substances. The discovery of new features and new microorganisms
is also important as it adds new information to the science of systematics. The
topics on caves and their microbiology, which have been studied by few
researchers throughout the world, are less commonly studied in Turkey. The
protection of the cave environment while people enter into them for touristic,
sports, and scientific causes is of historical and scientific importance. In
this context, the protection of caves is an issue that requires caution in
obtaining both correct and new results from the environment and the study of caves.
Cave sportsmen, researchers, and related authorities must adhere to the rules
to protect the unique habitat of each cave and prevent earth-borne pollution
from entering into the cave.

References

  • 1. Palmer AN. Origin and morphology of limestone caves. Geol Soc Am Bull 1991; 103: 1-21. 2. Northup DE, Lavoie KH. Geomicrobiology of Caves: A Review. Geomicrobiol J 2001; 18: 199-222. 3. Lee IT, Liu JY, Lin CH, Oyama KI, Chen CY, Chen CH. Ionospheric plasma caves under the equatorial ionization anomaly. JGR 2012; 117(A11): 1-9. 4. Eavis A. An up to date report of cave exploration around the world, Proceedings of 15th International Congress of Speleology 2009 Kerrville, Texas. 5. Engel AS, Stern LA, Bennett PC. Microbial contributions to cave formation: New insights into sulfuricacid speleogenesis. Geology 2004; 32(5): 369-72. 6. Maden Tektik ve Arama Genel Mudurluğu http://www.mta.gov.tr/v3.0/arastirmalar/magara-envanteri 7. Turkiye Arkeolojik Yerlesmeleri Projesiveri Tabanları. “Magara veritabani” http://www.tayproject.org/TAYmaster.fm 8. Gornitz V. Sea level change, post-glacial. Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Dordrecht 2009; 887-92. 9. Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, et al. Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 2001; 1(1): 25-55. 10. Leveille RJ, Fyfe WS, Longstaffe FJ. Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 2000; 169: 339-55. 11. Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 2000; 47(Suppl 1): 179-214. 12. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD. Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Appl Environ Microbiol 2003; 69(8): 4901-9. 13. Baskar S, Baskar R, Mauclaire L, McKenzie JA. Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci 2006; 90(1): 58-64. 14. Barton HA, Jurado V. What’s Up Down There? Microbial Diversity in Caves. Microbe 2007; 23(3): 132-8. 15. Castanier S, Le Metayer-Levrel G, Perthuisot JP. Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment Geol 1999; 126: 9 -23. 16. Jones B, Kahle CF. Origin of endogeneticmicrite in karstterrains: a case study from the Cayman Islands. J Sediment Res 1995; 65: 283-93. 17. Riding R. Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology 1977; 20(1): 33-46. 18. Golubić S. The relationship between blue-green algae and carbonate deposits. The Biology of Blue-Green Algae 1973; 434-72. 19. Canaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 2001; 18(3): 223-40. 20. Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, et al. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 2009; 3(9): 1093-104. 21. Barton HA. Biospeleogenesis Biogenetic Processes and Microbial Impact on Speleogenesis. Treatise on Geomorphology 2013; (6). Editor: Shroder, J. F. San Diego: Academic Press. 22. Rajput Y, Biswas J. Subterranean depth dependent protein constitutions of the Micrococcus sp., isolated from the Kotumsar Cave. India. Asian J Biochem 2012; 7: 90-7. 23. Gabriel CR, Northup DE. Microbial ecology: caves as an extreme habitat. In Cave microbiomes: a novel resource for drug discovery. Springer New York 2013; 85-108. 24. Sand W. Microbial mechanisms of deterioration of inorganic substrates-a general mechanistic overview. Int Biodeter Biodegr 1997; 40: 183-90. 25. Engel AS, Megan L, Porter BK, Kinkle TC, Kane A. Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol J 2001; 18: 259-74. 26. Groth I, Vettermann R, Schuetze B, Schumann P, Saiz-Jimenez C. Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo). J Microbiol Methods 1999; 36(1-2): 115-22. 27. Sarbu SM, Kane TC, Kinkle BK. A chemoautotrophically based cave ecosystem. Science 1996; 272(5270): 1953-5. 28. Porter ML, Engel AS, Kane TC, Kinkle BK. Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 2009; 38(1): 27-40. 29. Jurado V, Porca E, Cuezva S, Fernandez-Cortes A, Sanches-Moral S, Saiz-Jimenez C. Fungal Outbreak in a Show Cave. Sci Total Environ 2010; 408: 3632-8. 30. Zhou JP, Gu YQ, Zou CS, Mo M. Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China. J Microbiol 2007; 45(2): 105-12. 31. Chelius MK, Moore JC. Molecular phylogenetic analysis of archaea and bacteria in Wind Cave, South Dakota. Geomicrobiol J 2004; 21: 123-34. 32. Engel AS. Microbial diversity of cave ecosystems. In: Geomicrobiology: Molecular and Environmental Perspective. Editors: Loy, A., Mandl, M. & Barton, L. L. New York: Springer 2010; 219-38. 33. Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, et al. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 2003; 5(11): 1071-86. 34. Docampo S, Trigo MM, Recio M, Melgar M, Garcia-Sanchez J, Calderon-Ezquerro MC, et al. High incidence of Aspergillus and Penicillium spores in the atmosphere of the cave of Neija (Malaga, southern Spain). Aerobiologia 2010; 26(2): 89-98. 35. Dupont J, Jacquet C, Dennetiere B, Lacoste S, Bousta F, Orial G, et al. Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 2007; 99(4): 526-33. 36. Kiyuna T, An K, Sano RKC, Miura S, Sugiyama J. Mycobiota of the Takamatsuzuka and Kitora Tumuli in Japan, focussing on the molecular phylogenetic diversity of Fusarium and Trichoderma. Mycoscience 2008; 49(5): 298-311. 37. Nagai K, Suzuki K, Okada G. Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 1998; 39: 293-8. 38. Sarbu SM, Lascu C. Condensation corrosion in Movile cave, Romania. J Caves Karst Stud 1997; 59(3): 99-102. 39. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59(1): 143-69. 40. Winogradsky S. Microbiologie du sol: problèmes et méthodes. 861. 1949, Paris: Masson. 41. Knapp CW, Dolfing J, Ehlert PA, Graham DW. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 2010; 44(2): 580-7. 42. Thaller MC, Migliore L, Marquez C, Tapia W, Cedeno V, Rossolini GM, et al. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance. PLoS One 2010; 5(2): 8989. 43. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Blanks ED, Johnson MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012; 7(4): e34953. 44. Brown MG, Balkwill DL. Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 2009; 57(3): 484-93. 45. D’costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science 2006; 311(5759): 374-7. 46. Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev 1980; 44(2): 230-51. 47. Dapkevicius MLNE. Cave biofilms and their potential for novel antibiotic drug discovery. In: Cheeptham n, ed. cave microbiomes: A novel resource for drug discovery. Springer Briefs in Microbiology 2013; 1: 85-108. 48. Ehrlich Marie-France. Metacognitive monitoring in the processing of anaphoric devices in skilled and less skilled comprehenders. Reading comprehension difficulties: Processes and Intervention 1996; 221-49. 49. Cabeza MS, Baca FL, Puntes EM, Loto F, Baigorí MD, Morata VI. Selection of psychrotolerant microorganisms producing cold-active pectinases for biotechnological processes at low temperature. Food Technol Biotechnol 2011; 49(2): 187-95. 50. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ. Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 2011; 4(4): 449-60. 51. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, et al. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol 2000; 18(3): 103-7. 52. Russell NJ. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 1998; 61: 1-21. 53. Paksuz S, Ozkan B, Postawa T. Seasonal changes of cave-dwelling bat fauna and their relationship with microclimate in dupnisa cave system (Turkish Thrace). Acta Zool Cracov 2007; 50: 57-6. 54. Guher H. A Faunistic Study on the Freshwater Cladocera (Crustacea) Species in Turkish Thrace (Edirne, Tekirdağ, Kırklareli). Turk J Zool 2000; 24(3): 237-43. 55. Baris O. Erzurum Ilindeki Magaralarda Damlatasi Olusumunda Etkili Bakterilerin İzolasyonu, Karakterizasyonu Ve Tanısı 2009, Ataturk Universitesi Doktora Tezi. 56. Yucel S, Yamac M. Selection of streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms. Pak J Pharm Sci 2010; 23(1): 1-6. 57. Sen M, Bayburt C, Aydın S, Onder NI, Incesu Z, Atli B, Yamac M. Duzkır Magarasından (Aladaglar) Elde Edilen Bakteri Izolatlarının Biyolojik Aktiviteleri, 2011. 5. Ulusal speleoloji sempozyumu, 18-21 Mart, İstanbul. 58. Roche B, Guégan JF. Ecosystem dynamics, biological diversity and emerging infectious diseases. C R Biol 2011; 334(3-6): 385-92. 59. Field HE. Bats and emerging zoonoses: henipaviruses and SARS. Zoonoses Public Health 2009; 56(6-7): 278-84. 60. Emmons CW. Association of bats with histoplasmosis. Public Health Rep 1958; 73(7): 590-5. 61. Nasher MA, Hay RJ, Mahgoub ES, Gumaa SA. In vitro studies of antibiotic sensitivities of Streptomyces somaliensis-a cause of human actinomycetoma. Trans Rl Soc Trop Med Hyg 1989; 83(2): 265-8. 62. Jurado V, Boiron P, Kroppenstedt RM, Laurent F, Couble A, Laiz L, et al. Nocardia altamirensis sp. nov., isolated from Altamira cave, Cantabria, Spain. Int J Syst Evol Microbiol 2008; 58(Pt 9): 2210-4. 63. Li L, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, et al. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 2010; 84(14): 6955-65.
Year 2017, , 36 - 42, 27.12.2017
https://doi.org/10.5152/EurJBiol.2017.1707

Abstract

References

  • 1. Palmer AN. Origin and morphology of limestone caves. Geol Soc Am Bull 1991; 103: 1-21. 2. Northup DE, Lavoie KH. Geomicrobiology of Caves: A Review. Geomicrobiol J 2001; 18: 199-222. 3. Lee IT, Liu JY, Lin CH, Oyama KI, Chen CY, Chen CH. Ionospheric plasma caves under the equatorial ionization anomaly. JGR 2012; 117(A11): 1-9. 4. Eavis A. An up to date report of cave exploration around the world, Proceedings of 15th International Congress of Speleology 2009 Kerrville, Texas. 5. Engel AS, Stern LA, Bennett PC. Microbial contributions to cave formation: New insights into sulfuricacid speleogenesis. Geology 2004; 32(5): 369-72. 6. Maden Tektik ve Arama Genel Mudurluğu http://www.mta.gov.tr/v3.0/arastirmalar/magara-envanteri 7. Turkiye Arkeolojik Yerlesmeleri Projesiveri Tabanları. “Magara veritabani” http://www.tayproject.org/TAYmaster.fm 8. Gornitz V. Sea level change, post-glacial. Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Dordrecht 2009; 887-92. 9. Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, et al. Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 2001; 1(1): 25-55. 10. Leveille RJ, Fyfe WS, Longstaffe FJ. Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 2000; 169: 339-55. 11. Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 2000; 47(Suppl 1): 179-214. 12. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD. Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Appl Environ Microbiol 2003; 69(8): 4901-9. 13. Baskar S, Baskar R, Mauclaire L, McKenzie JA. Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci 2006; 90(1): 58-64. 14. Barton HA, Jurado V. What’s Up Down There? Microbial Diversity in Caves. Microbe 2007; 23(3): 132-8. 15. Castanier S, Le Metayer-Levrel G, Perthuisot JP. Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment Geol 1999; 126: 9 -23. 16. Jones B, Kahle CF. Origin of endogeneticmicrite in karstterrains: a case study from the Cayman Islands. J Sediment Res 1995; 65: 283-93. 17. Riding R. Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology 1977; 20(1): 33-46. 18. Golubić S. The relationship between blue-green algae and carbonate deposits. The Biology of Blue-Green Algae 1973; 434-72. 19. Canaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 2001; 18(3): 223-40. 20. Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, et al. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 2009; 3(9): 1093-104. 21. Barton HA. Biospeleogenesis Biogenetic Processes and Microbial Impact on Speleogenesis. Treatise on Geomorphology 2013; (6). Editor: Shroder, J. F. San Diego: Academic Press. 22. Rajput Y, Biswas J. Subterranean depth dependent protein constitutions of the Micrococcus sp., isolated from the Kotumsar Cave. India. Asian J Biochem 2012; 7: 90-7. 23. Gabriel CR, Northup DE. Microbial ecology: caves as an extreme habitat. In Cave microbiomes: a novel resource for drug discovery. Springer New York 2013; 85-108. 24. Sand W. Microbial mechanisms of deterioration of inorganic substrates-a general mechanistic overview. Int Biodeter Biodegr 1997; 40: 183-90. 25. Engel AS, Megan L, Porter BK, Kinkle TC, Kane A. Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol J 2001; 18: 259-74. 26. Groth I, Vettermann R, Schuetze B, Schumann P, Saiz-Jimenez C. Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo). J Microbiol Methods 1999; 36(1-2): 115-22. 27. Sarbu SM, Kane TC, Kinkle BK. A chemoautotrophically based cave ecosystem. Science 1996; 272(5270): 1953-5. 28. Porter ML, Engel AS, Kane TC, Kinkle BK. Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 2009; 38(1): 27-40. 29. Jurado V, Porca E, Cuezva S, Fernandez-Cortes A, Sanches-Moral S, Saiz-Jimenez C. Fungal Outbreak in a Show Cave. Sci Total Environ 2010; 408: 3632-8. 30. Zhou JP, Gu YQ, Zou CS, Mo M. Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China. J Microbiol 2007; 45(2): 105-12. 31. Chelius MK, Moore JC. Molecular phylogenetic analysis of archaea and bacteria in Wind Cave, South Dakota. Geomicrobiol J 2004; 21: 123-34. 32. Engel AS. Microbial diversity of cave ecosystems. In: Geomicrobiology: Molecular and Environmental Perspective. Editors: Loy, A., Mandl, M. & Barton, L. L. New York: Springer 2010; 219-38. 33. Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, et al. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 2003; 5(11): 1071-86. 34. Docampo S, Trigo MM, Recio M, Melgar M, Garcia-Sanchez J, Calderon-Ezquerro MC, et al. High incidence of Aspergillus and Penicillium spores in the atmosphere of the cave of Neija (Malaga, southern Spain). Aerobiologia 2010; 26(2): 89-98. 35. Dupont J, Jacquet C, Dennetiere B, Lacoste S, Bousta F, Orial G, et al. Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 2007; 99(4): 526-33. 36. Kiyuna T, An K, Sano RKC, Miura S, Sugiyama J. Mycobiota of the Takamatsuzuka and Kitora Tumuli in Japan, focussing on the molecular phylogenetic diversity of Fusarium and Trichoderma. Mycoscience 2008; 49(5): 298-311. 37. Nagai K, Suzuki K, Okada G. Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 1998; 39: 293-8. 38. Sarbu SM, Lascu C. Condensation corrosion in Movile cave, Romania. J Caves Karst Stud 1997; 59(3): 99-102. 39. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59(1): 143-69. 40. Winogradsky S. Microbiologie du sol: problèmes et méthodes. 861. 1949, Paris: Masson. 41. Knapp CW, Dolfing J, Ehlert PA, Graham DW. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 2010; 44(2): 580-7. 42. Thaller MC, Migliore L, Marquez C, Tapia W, Cedeno V, Rossolini GM, et al. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance. PLoS One 2010; 5(2): 8989. 43. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Blanks ED, Johnson MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012; 7(4): e34953. 44. Brown MG, Balkwill DL. Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 2009; 57(3): 484-93. 45. D’costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science 2006; 311(5759): 374-7. 46. Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev 1980; 44(2): 230-51. 47. Dapkevicius MLNE. Cave biofilms and their potential for novel antibiotic drug discovery. In: Cheeptham n, ed. cave microbiomes: A novel resource for drug discovery. Springer Briefs in Microbiology 2013; 1: 85-108. 48. Ehrlich Marie-France. Metacognitive monitoring in the processing of anaphoric devices in skilled and less skilled comprehenders. Reading comprehension difficulties: Processes and Intervention 1996; 221-49. 49. Cabeza MS, Baca FL, Puntes EM, Loto F, Baigorí MD, Morata VI. Selection of psychrotolerant microorganisms producing cold-active pectinases for biotechnological processes at low temperature. Food Technol Biotechnol 2011; 49(2): 187-95. 50. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ. Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 2011; 4(4): 449-60. 51. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, et al. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol 2000; 18(3): 103-7. 52. Russell NJ. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 1998; 61: 1-21. 53. Paksuz S, Ozkan B, Postawa T. Seasonal changes of cave-dwelling bat fauna and their relationship with microclimate in dupnisa cave system (Turkish Thrace). Acta Zool Cracov 2007; 50: 57-6. 54. Guher H. A Faunistic Study on the Freshwater Cladocera (Crustacea) Species in Turkish Thrace (Edirne, Tekirdağ, Kırklareli). Turk J Zool 2000; 24(3): 237-43. 55. Baris O. Erzurum Ilindeki Magaralarda Damlatasi Olusumunda Etkili Bakterilerin İzolasyonu, Karakterizasyonu Ve Tanısı 2009, Ataturk Universitesi Doktora Tezi. 56. Yucel S, Yamac M. Selection of streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms. Pak J Pharm Sci 2010; 23(1): 1-6. 57. Sen M, Bayburt C, Aydın S, Onder NI, Incesu Z, Atli B, Yamac M. Duzkır Magarasından (Aladaglar) Elde Edilen Bakteri Izolatlarının Biyolojik Aktiviteleri, 2011. 5. Ulusal speleoloji sempozyumu, 18-21 Mart, İstanbul. 58. Roche B, Guégan JF. Ecosystem dynamics, biological diversity and emerging infectious diseases. C R Biol 2011; 334(3-6): 385-92. 59. Field HE. Bats and emerging zoonoses: henipaviruses and SARS. Zoonoses Public Health 2009; 56(6-7): 278-84. 60. Emmons CW. Association of bats with histoplasmosis. Public Health Rep 1958; 73(7): 590-5. 61. Nasher MA, Hay RJ, Mahgoub ES, Gumaa SA. In vitro studies of antibiotic sensitivities of Streptomyces somaliensis-a cause of human actinomycetoma. Trans Rl Soc Trop Med Hyg 1989; 83(2): 265-8. 62. Jurado V, Boiron P, Kroppenstedt RM, Laurent F, Couble A, Laiz L, et al. Nocardia altamirensis sp. nov., isolated from Altamira cave, Cantabria, Spain. Int J Syst Evol Microbiol 2008; 58(Pt 9): 2210-4. 63. Li L, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, et al. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 2010; 84(14): 6955-65.
There are 1 citations in total.

Details

Journal Section Review
Authors

Begum Candiroglu This is me

Nihal Dogruoz Gungor

Publication Date December 27, 2017
Submission Date September 22, 2017
Published in Issue Year 2017

Cite

AMA Candiroglu B, Dogruoz Gungor N. Cave Ecosystems: Microbiological View. Eur J Biol. June 2017;76(1):36-42. doi:10.5152/EurJBiol.2017.1707