Research Article
BibTex RIS Cite
Year 2017, Volume: 76 Issue: 1, 1 - 6, 01.06.2017
https://doi.org/10.5152/EurJBiol.2017.1701

Abstract

References

  • 1. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 1989; 20: 249-78. 2. Stearns SC. A natural experiment in life-history evolution: field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution 1983; 37(3): 601-17. 3. Meyer A. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Chichlidae) and their implications for speciation in Cichlid fishes. Evolution 1987; 41(6): 1357-69. 4. Schlosser IJ. Fish community structure and function along two habitat gradients in a headwater stream. Ecol Monogr 1982; 52(4): 395-414. 5. Matsuoka M. Development of the skeletal tissues and skeletal muscles in the red sea bream (Pagrus major). Bull Seikai Reg Fish Res Lab (Japan) 1987; 65: 1-114. 6. Poff NL, Allan JD. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 1995; 76: 606-27. 7. Werner EE, Peacor SD. A review of trait-mediated indirect interactions in ecological communities. Ecology 2003; 84(5): 1083-100. 8. Sfakianakis DG, Leris I, Laggis A, Kentouri M. The effect of rearing temperature on body shape and meristic characters in zebrafish (Danio rerio) juveniles. Environ Biol Fishes 2011; 92(2): 197-205. 9. Ye L, Yang SY, Zhu XM, Liu M, Lin JY, Wu KC. Effects of temperature on survival, development, growth and feeding of larvae of Yellowtail clownfish Amphiprion clarkii (Pisces: Perciformes). Acta Ecologica Sinica 2011; 31(5): 241-5. 10. Olivotto I, Capriotti F, Buttino I, Avella AM, Vitiello V, Maradonna F, et al. The use of harpacticoid copepods as live prey for Amphiprion clarkii larviculture: Effects on larval survival and growth. Aquaculture 2008; 274: 347-52. 11. Houde ED. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fishery Bulletin 1989; 87(3): 471-95. 12. Koumoundouros G, Sfakianakis DG, Divanach P, Kentouri M. Effect of temperature on swimming performance of sea bass juveniles. J Fish Biol 2002; 60: 923-32. 13. Hempel G. Summing-up of the symposium on the early life history of fish. In: The Early Life History of Fish: Springer 1974; 755-59. 14. Herzig A, Winkler H. The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. J Fish Biol 1986; 28(2): 171-81. 15. Jobling M. Bioenergetics: feed intake and energy partitioning. In: Fish ecophysiology: Springer 1993; 1-44. 16. Cabral HN, Marques JF, Rego ALS, Catarino AI, Figueiredo J, Garcia J. Genetic and morphological variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. J Sea Res 2003; 50: 167-75. 17. Turan C. Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) using morphometric and meristic characters. ICES Journal of Marine Science: Journal du Conseil 2004; 61: 774-81. 18. Georgakopoulou E, Sfakianakis DG, Kouttouki S, Divanach P, Kentouri M, Koumoundouros G. The influence of temperature during early life on phenotypic expression at later ontogenetic stages in sea bass. J Fish Biol 2007; 70(1): 278-91. 19. Abdel I, Abellán E, López-Albors O, Valdés P, Nortes MJ, García-Alcázar A. Abnormalities in the juvenile stage of sea bass (Dicentrarchus labrax L.) reared at different temperatures: types, prevalence and effect on growth. Aquac Int 2004; 12(6): 523-38. 20. Sfakianakis DG, Koumoundouros G, Divanach P, Kentouri M. Osteological development of the vertebral column and of the fins in Pagellus erythrinus (L. 1758). Temperature effect on the developmental plasticity and morpho-anatomical abnormalities. Aquaculture 2004; 232(1-4): 407-24. 21. Sfakianakis DG, Georgakopoulou E, Papadakis IE, Divanach P, Kentouri M, Koumoundouros G. Environmental determinants of Haemal lordosis in European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture 2006; 254(1): 54-64. 22. Friedland KD, Esteves C, Hansen LP, Lund RA. Discrimination of Norwegian farmed, ranched and wild-origin Atlantic salmon, Salmosalar L., by image processing. Fish Manag Ecol 1994; 1: 117-28. 23. Hossain MAR, Nahiduzzaman M, Saha D, Khanam MUH, Alam MS. Landmark-based morphometric and meristic variations of the endangered carp, kalibaus Labeo calbasu, from stocks of two isolated rivers, the Jamuna and Halda, and a hatchery. Zool Stud 2010; 49(4): 556-63. 24. Loy A, Busilacchi S, Costa C, Ferlin L, Cataudella S. Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquac Eng 2000; 21(4): 271-83. 25. Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 2004; 71: 5-16. 26. Coad BW. Aphanius vladykovi, a new species of tooth-carp from the Zagros Mountains of Iran (Osteichthyes: Cyprinodontidae). In: On lampreys and fishes: Springer 1988; 115-26. 27. Hrbek T, Keivany Y, Coad BW. New species of Aphanius (Teleostei, Cyprinodontidae) from Isfahan Province of Iran and a reanalysis of other Iranian species. Copeia 2006; 244-55. 28. Teimori A, Esmaeili HR, Erpenbeck D, Reichenbacher B. A new and unique species of the genus Aphanius (Teleostei: Cyprinodontidae) from Southern Iran: a case of regressive evolution. Zool Anz 2014; 253(4): 327-37. 29. Kamal S, Bakhtiyari M, Abdoli A, Eagderi S, Karami M. Life-history variations of killifish (Aphanius sophiae) populations in two environmentally different habitats in central Iran J Appl Ichthyol 2009; 25(4): 474-8. 30. Coad BW. Freshwater Fishes of Iran. www.briancoad.com. Retrieved on 1 June 2017. 31. Rohlf F. TPSDIG, version 1.40. A program for digitizing ‘landmarks’ and outlines for geometric morphometric analyses. Stony Brook, NY: Department of Ecology and Evolution, State University of New York. 32. Rohlf F.J. tpsSmall. Program for digitizing landmarks and outlines for geometric morphometric analyses, version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook, 2003. 33. Rohlf FJ. Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 1999; 16(2): 197-223. 34. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 2011(2); 11: 353-7. 35. Allendorf F.W. Conservation biology of fishes. Conserv Biol 1998; 2(2): 145-8. 36. Wimberger PH. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linnean Soc 1992; 45(3): 197-218. 37. Keast A, Webb D. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J Fish Res Board Can 1966; 23(12): 1845-74. 38. Gatz Jr AJ. Community organization in fishes as indicated by morphological features. Ecology 1979; 60: 711-18. 39. Motta PJ, Clifton KB, Hernandez P, Eggold BT. Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization. In: Ecomorphology of fishes: Springer 1995; 37-60. 40. Eagderi S, Poorbagher H, Parsazade F, Mousavi-Sabet H. Effects of rearing temperature on the body shape of swordtail (Xiphophorus hellerii) during the early development using geometric morphometrics. Poeciliid Research 2015; 5(1): 24-30. 41. Ayala MAD, López-Albors O, Gil F, Garcı’a-Alcázar A, Abellán E, Alarcón JA, et al. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 2001; 202: 359-70. 42. Walker JA. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L (Gasterosteidae) body shape. Biol J Linnean Soc 1997; 61(8): 3-50. 43. Spoljaric MA, Reimchen TE. 10 000 years later: evolution of body shape in Haida Gwaii three spined stickleback. J Fish Biol 2007; 70: 1484-503. 44. Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, et al. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 2009; 212(12): 1781-93. 45. Webb PW. Body form, locomotion and foraging in aquatic vertebrates. Am Zool 1984; 24: 107-20.

Temperature-Induced Phenotypic Plasticity in Aphanius arakensis Teimori, Esmaeili, Gholami, Zarei, & Reichenbacher, 2012 (Teleostei: Aphaniidae)

Year 2017, Volume: 76 Issue: 1, 1 - 6, 01.06.2017
https://doi.org/10.5152/EurJBiol.2017.1701

Abstract

This study was conducted to examine the effects of different thermal conditions on the body shape of Aphanius arakensis, a eurythermal species in Iranian inland waters. The specimens were collected from Eshtehard Shoor River, Iran, transferred to the laboratory, and exposed to 22ÅãC, 25ÅãC, and 28ÅãC for 2 months. After this period, the specimens were photographed and landmark points were digitized on the 2D pictures. The extracted coordinates of the landmark points were superimposed using the generalized procrustes analysis to remove the effects of size, rotation, and translation. Canonical variate analysis and Mahalanobis distance followed by permutation multivariate analysis of variance were used to discriminate the shapes of the specimens exposed to the three temperatures. The results indicated that the shape of A. arakensis was significantly affected by temperature in both males and females. The specimens exposed to 25ÅãC and 28ÅãC had similar shapes but dissimilar shapes compared to those exposed to 22ÅãC. Those exposed to 22ÅãC had shorter head and tail regions and upper position of eyes.










Males and females showed similar changes to temperature variations.

References

  • 1. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 1989; 20: 249-78. 2. Stearns SC. A natural experiment in life-history evolution: field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution 1983; 37(3): 601-17. 3. Meyer A. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Chichlidae) and their implications for speciation in Cichlid fishes. Evolution 1987; 41(6): 1357-69. 4. Schlosser IJ. Fish community structure and function along two habitat gradients in a headwater stream. Ecol Monogr 1982; 52(4): 395-414. 5. Matsuoka M. Development of the skeletal tissues and skeletal muscles in the red sea bream (Pagrus major). Bull Seikai Reg Fish Res Lab (Japan) 1987; 65: 1-114. 6. Poff NL, Allan JD. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 1995; 76: 606-27. 7. Werner EE, Peacor SD. A review of trait-mediated indirect interactions in ecological communities. Ecology 2003; 84(5): 1083-100. 8. Sfakianakis DG, Leris I, Laggis A, Kentouri M. The effect of rearing temperature on body shape and meristic characters in zebrafish (Danio rerio) juveniles. Environ Biol Fishes 2011; 92(2): 197-205. 9. Ye L, Yang SY, Zhu XM, Liu M, Lin JY, Wu KC. Effects of temperature on survival, development, growth and feeding of larvae of Yellowtail clownfish Amphiprion clarkii (Pisces: Perciformes). Acta Ecologica Sinica 2011; 31(5): 241-5. 10. Olivotto I, Capriotti F, Buttino I, Avella AM, Vitiello V, Maradonna F, et al. The use of harpacticoid copepods as live prey for Amphiprion clarkii larviculture: Effects on larval survival and growth. Aquaculture 2008; 274: 347-52. 11. Houde ED. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fishery Bulletin 1989; 87(3): 471-95. 12. Koumoundouros G, Sfakianakis DG, Divanach P, Kentouri M. Effect of temperature on swimming performance of sea bass juveniles. J Fish Biol 2002; 60: 923-32. 13. Hempel G. Summing-up of the symposium on the early life history of fish. In: The Early Life History of Fish: Springer 1974; 755-59. 14. Herzig A, Winkler H. The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. J Fish Biol 1986; 28(2): 171-81. 15. Jobling M. Bioenergetics: feed intake and energy partitioning. In: Fish ecophysiology: Springer 1993; 1-44. 16. Cabral HN, Marques JF, Rego ALS, Catarino AI, Figueiredo J, Garcia J. Genetic and morphological variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. J Sea Res 2003; 50: 167-75. 17. Turan C. Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) using morphometric and meristic characters. ICES Journal of Marine Science: Journal du Conseil 2004; 61: 774-81. 18. Georgakopoulou E, Sfakianakis DG, Kouttouki S, Divanach P, Kentouri M, Koumoundouros G. The influence of temperature during early life on phenotypic expression at later ontogenetic stages in sea bass. J Fish Biol 2007; 70(1): 278-91. 19. Abdel I, Abellán E, López-Albors O, Valdés P, Nortes MJ, García-Alcázar A. Abnormalities in the juvenile stage of sea bass (Dicentrarchus labrax L.) reared at different temperatures: types, prevalence and effect on growth. Aquac Int 2004; 12(6): 523-38. 20. Sfakianakis DG, Koumoundouros G, Divanach P, Kentouri M. Osteological development of the vertebral column and of the fins in Pagellus erythrinus (L. 1758). Temperature effect on the developmental plasticity and morpho-anatomical abnormalities. Aquaculture 2004; 232(1-4): 407-24. 21. Sfakianakis DG, Georgakopoulou E, Papadakis IE, Divanach P, Kentouri M, Koumoundouros G. Environmental determinants of Haemal lordosis in European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture 2006; 254(1): 54-64. 22. Friedland KD, Esteves C, Hansen LP, Lund RA. Discrimination of Norwegian farmed, ranched and wild-origin Atlantic salmon, Salmosalar L., by image processing. Fish Manag Ecol 1994; 1: 117-28. 23. Hossain MAR, Nahiduzzaman M, Saha D, Khanam MUH, Alam MS. Landmark-based morphometric and meristic variations of the endangered carp, kalibaus Labeo calbasu, from stocks of two isolated rivers, the Jamuna and Halda, and a hatchery. Zool Stud 2010; 49(4): 556-63. 24. Loy A, Busilacchi S, Costa C, Ferlin L, Cataudella S. Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquac Eng 2000; 21(4): 271-83. 25. Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 2004; 71: 5-16. 26. Coad BW. Aphanius vladykovi, a new species of tooth-carp from the Zagros Mountains of Iran (Osteichthyes: Cyprinodontidae). In: On lampreys and fishes: Springer 1988; 115-26. 27. Hrbek T, Keivany Y, Coad BW. New species of Aphanius (Teleostei, Cyprinodontidae) from Isfahan Province of Iran and a reanalysis of other Iranian species. Copeia 2006; 244-55. 28. Teimori A, Esmaeili HR, Erpenbeck D, Reichenbacher B. A new and unique species of the genus Aphanius (Teleostei: Cyprinodontidae) from Southern Iran: a case of regressive evolution. Zool Anz 2014; 253(4): 327-37. 29. Kamal S, Bakhtiyari M, Abdoli A, Eagderi S, Karami M. Life-history variations of killifish (Aphanius sophiae) populations in two environmentally different habitats in central Iran J Appl Ichthyol 2009; 25(4): 474-8. 30. Coad BW. Freshwater Fishes of Iran. www.briancoad.com. Retrieved on 1 June 2017. 31. Rohlf F. TPSDIG, version 1.40. A program for digitizing ‘landmarks’ and outlines for geometric morphometric analyses. Stony Brook, NY: Department of Ecology and Evolution, State University of New York. 32. Rohlf F.J. tpsSmall. Program for digitizing landmarks and outlines for geometric morphometric analyses, version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook, 2003. 33. Rohlf FJ. Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 1999; 16(2): 197-223. 34. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 2011(2); 11: 353-7. 35. Allendorf F.W. Conservation biology of fishes. Conserv Biol 1998; 2(2): 145-8. 36. Wimberger PH. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linnean Soc 1992; 45(3): 197-218. 37. Keast A, Webb D. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J Fish Res Board Can 1966; 23(12): 1845-74. 38. Gatz Jr AJ. Community organization in fishes as indicated by morphological features. Ecology 1979; 60: 711-18. 39. Motta PJ, Clifton KB, Hernandez P, Eggold BT. Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization. In: Ecomorphology of fishes: Springer 1995; 37-60. 40. Eagderi S, Poorbagher H, Parsazade F, Mousavi-Sabet H. Effects of rearing temperature on the body shape of swordtail (Xiphophorus hellerii) during the early development using geometric morphometrics. Poeciliid Research 2015; 5(1): 24-30. 41. Ayala MAD, López-Albors O, Gil F, Garcı’a-Alcázar A, Abellán E, Alarcón JA, et al. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 2001; 202: 359-70. 42. Walker JA. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L (Gasterosteidae) body shape. Biol J Linnean Soc 1997; 61(8): 3-50. 43. Spoljaric MA, Reimchen TE. 10 000 years later: evolution of body shape in Haida Gwaii three spined stickleback. J Fish Biol 2007; 70: 1484-503. 44. Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, et al. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 2009; 212(12): 1781-93. 45. Webb PW. Body form, locomotion and foraging in aquatic vertebrates. Am Zool 1984; 24: 107-20.
There are 1 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hadi Poorbagher This is me

Soheil Eagderi

Aref Pirbeigi This is me

Publication Date June 1, 2017
Submission Date July 20, 2017
Published in Issue Year 2017 Volume: 76 Issue: 1

Cite

AMA Poorbagher H, Eagderi S, Pirbeigi A. Temperature-Induced Phenotypic Plasticity in Aphanius arakensis Teimori, Esmaeili, Gholami, Zarei, & Reichenbacher, 2012 (Teleostei: Aphaniidae). Eur J Biol. June 2017;76(1):1-6. doi:10.5152/EurJBiol.2017.1701