Research Article
BibTex RIS Cite
Year 2021, Volume: 80 Issue: 2, 97 - 106, 17.12.2021
https://doi.org/10.26650/EurJBiol.2021.1005264

Abstract

References

  • 1. Sanchez-Martı'n R, Querejeta JI, Voltas J, Ferrio JP, Prieto I, Verdu M, et al. Plant’s gypsum affinity shapes responses to specific edaph-ic constraints without limiting responses to other general con-straints. Plant Soil 2021; 462(1): 297-309. google scholar
  • 2. Hulshof CM, Spasojevic MJ. The edaphic control of plant diversi-ty. Glob Ecol Biogeogr 2020; 29(10): 1634-50. google scholar
  • 3. Bobo-Pinilla J, Salmerön-Sânchez E, Mota JF, Penas J. Genetic conservation strategies of endemic plants from edaphic habitat islands: The case of Jacobaea auricula (Asteraceae). J Nat Conserv 2021;61:126004. google scholar
  • 4. Blanco-Sanchez M, Moore MJ, Ramos-Munoz M, P^as B, Garda-Fernandez A, Prieto M, et al. Phylogeography of a gypsum endem-ic plant across its entire distribution range in the western Mediter-ranean. Am J Bot 2021; 108(3): 443-60. google scholar
  • 5. Cera A, Duplat E, Montserrat-Martf G, Gömez-Bolea A, Rodn-guez-Echeverna S, Palacio S. Seasonal variation in AMF colonisa-tion, soil and plant nutrient content in gypsum specialist and gen-eralist species growing in P-poor soils. Plant Soil 2021; 1-16. google scholar
  • 6. Ramon A, Caselle C, Bonetto SMR, Costanzo D, Alonso EE. Effect of microstructure and relative humidity on strength and creep of gypsum. Rock Mech Rock Eng 2021; 54: 4121-45. google scholar
  • 7. Ozel S. Identification and assessment of hazard of development in gypsum karst regions: Examples from Turkey. Tiefenbacher JP, editor. Natural Hazards Risk, Exposure, Response, and Resilience. London: Intech Press; 2019. p. 111-24. google scholar
  • 8. Denaeyer-De Smet S. Note on the chemical composition of salts secreted by various gypsohalophytic species of Spain. Bulletin de la Societe Royale de Botanique de Belgique 1970; 103: 273-78. google scholar
  • 9. Perez-Garcia FJ, Akhani H, Parsons RF, Silcock JL, Kurt L. Ozdeniz E, et al. A first inventory of gypsum flora in the Palearctic and Austra-lia. Mediterr Bot 2018; 39(1): 35-49. google scholar
  • 10. Sanchez AM, Alonso-Valiente P, Albert MJ, Escudero A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phe-notypic plasticity. Ann Bot 2017; 120(1): 135-46. google scholar
  • 11. Martm-Rodnguez I, Escudero A, Garda-Fernandez A. Limited effect of a highway barrier on the genetic structure of a gypsum soil spe-cialist. PeerJ 2021; 9:e10533. google scholar
  • 12. Cirrincione M, Saladini B, Brighenti V, Salamone S, Mandrioli R, Pol-lastro F, et al. Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance-infrared (ATR-FTIR) spectroscopy: A proof of concept. J Pharm Biomed Anal 2021; 204: 114270. google scholar
  • 13. Götz A, Nikzad-Langerodi R, Staedler Y, Bellaire A, Saukel J. Appar-ent penetration depth in attenuated total reflection Fourier-trans-form infrared (ATR-FTIR) spectroscopy of Allium cepa L. epidermis and cuticle. Spectrochim Acta A Mol Bio Spectrosc 2020; 224: 117460. google scholar
  • 14. Tiernan H, Byrne B, Kazarian SG. ATR-FTIR spectroscopy and spec-troscopic imaging for the analysis of biopharmaceuticals. Spectro-chim Acta A Mol Bio Spectrosc 2020; 241: 118636. google scholar
  • 15. Durak T, Depciuch J. Effect of plant sample preparation and mea-suring methods on ATR-FTIR spectra results. Environ Exp Bot 2020; 169: 103915. google scholar
  • 16. Muhammad S, Wuyts K, Nuyts G, De Wael K, Samson R. Charac-terization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability. Urban For Urban Green 2020; 47: 126557. google scholar
  • 17. Ordoudi SA, Papapostolou M, Kokkini S, Tsimidou MZ. Diagnostic potential of FTIR fingerprinting in botanical origin evaluation of Laurus nobilis L. essential oil is supported by GC-FID-MS data. Mol-ecules 2020; 25(3): 583. google scholar
  • 18. Skotti E, Pappas C, Kaiafa M, Lappa IK, Tsitsigiannis Dİ, Giotis C, et al. Discrimination and quantification of aflatoxins in Pistachia vera seeds using FTIR-DRIFT spectroscopy after their treatment by Greek medicinal and aromatic plants extracts. Food Science and Engineering 2020; 1(1): 45-57. google scholar
  • 19. Palacio S, Aitkenhead M, Escudero A, Montserrat-Martf G, Maestro M, Robertson AJ. Gypsophile chemistry unveiled: Fourier trans-form infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One 2014; 9(9): e107285. google scholar
  • 20. Nikalje GC, Kumar J, Nikam TD, Suprasanna P. FT-IR profiling re-veals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.) L. Biotechnol Rep 2019; 23: e00352. google scholar
  • 21. Paiva EAS. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytol 2019; 223(4): 1707-11. google scholar
  • 22. Escudero A, Palacio S, Maestre FT, Luzuriaga AL. Plant life on gyp-sum: a review of its multiple facets. Biol Rev 2015; 90(1): 1-18. google scholar
  • 23. Rosa-Tilapa D, Maceda A, Terrazas T. Characterization of biominer-als in Cacteae species by FTIR. Crystals 2020; 10(6): 432. google scholar
  • 24. Skinner HCW. Biominerals. Mineral Mag 2005; 69(5): 621-41. google scholar
  • 25. Davis PH. Flora of Turkey and the East Aegean Islands Vol. I-IX. Ed-inburgh: Edinburgh University Press; 1965-1985. google scholar
  • 26. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands (Suppl. 1) Vol. X. Edinburgh: Edinburgh University Press; 1988. google scholar
  • 27. Ekim T, Koyuncu M, Vural M, Duman H, Aytaç Z, Adıgüzel N. Red data book of Turkish plants (Pteridophyta and Spermatophyta). Turkish Association for the Conservation of Nature & Van Centen-nial University. Ankara: Barışcan Publishing; 2000. google scholar
  • 28. Richards L. Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory. Agriculture Handbook. Wash-ington: U.S. Department of Agriculture Publishing; 1954. google scholar
  • 29. Gee GW, Bauder JW. Partical-size analysis. Klute A, editor. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. USA: SSSA Press; 1986. p. 383-411. google scholar
  • 30. Bower CA, Reitemeier RF, Fireman M. Exchangeable cation analysis of saline and alkali soils. Soil Sci 1952; 73(4): 251-62. google scholar
  • 31. Porta J.Tecnicasy Experimentos en Edafologia. Barcelona: Col.legi Oficial d’Enginyers Agronoms de Catalunya; 2005. google scholar
  • 32. Nedyalkova L, Lothenbach B, Renaudin G, Mader U, Tits J. Effect of redox conditions on the structure and solubility of sulfur-and selenium-AFm phases. Cem Concr Res 2019; 123: 105803. google scholar
  • 33. Ashfaq MY, Al-Ghouti MA, Da’na D, Qiblawey, H, Zouari N. Effect of concentration of calcium and sulfate ions on gypsum scaling of re-verse osmosis membrane, mechanistic study. J Mater Res Technol 2020; 9(6): 13459-73. google scholar
  • 34. Jha MK, Van Nguyen N, Lee JC, Jeong J, Yoo JM. Adsorption of cop-per from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120. J Hazard Mater 2009; 164(2-3): 94853. google scholar
  • 35. Huang Y, Wang L, Chao Y, Nawawi DS, Akiyama T, Yokoyama T, Mat-sumoto Y. Analysis of lignin aromatic structure in wood based on the IR spectrum. J Wood Chem Technol 2012; 32(4): 294-303. google scholar
  • 36. Boeriu CG, Bravo D, Gosselink RJ, Van Dam JE. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crops Prod 2004; 20(2): 205-18. google scholar
  • 37. Sonker AK, Rathore K, Teotia AK, Kumar A, Verma V. Rapid synthesis of high strength cellulose-poly (vinyl alcohol) (PVA) biocompati-ble composite films via microwave crosslinking. J Appl Polym Sci 2019; 136(17): 47393. google scholar
  • 38. Bolukbasi A, Kurt L, Palacio S. Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical compo-sition of gypsum plants from Turkey. Plant Biol 2016; 18(2): 271-79. google scholar
  • 39. Kayabaş A, Kurt A. Is the substrate an important factor in the in-vestigation of gypsophile endemism? Proceedings of the 2nd In-ternational Symposium on Biodiversity Research; 2020 November 18-20; Rize, Turkey. pp. 189-207. google scholar
  • 40. Duvigneaud P, Denaeyer-De Smet S. Essai de classification chimique (elements mineraux) des plantes gypsicoles du bassin de l’Ebre. Bulletin de la Societe Royale de Botanique de Belgique 1968; 101: 279-91. google scholar
  • 41. He H, Bleby TM, Veneklaas EJ, Lambers H, Kuo J. Precipitation of calcium, magnesium, strontium and barium in tissues of four Aca-cia species (Leguminosae: Mimosoideae). PLoS One 2012; 7(7): e41563. google scholar
  • 42. Mota JF, Sola AJ, Dana ED, Jimenez-Sanchez ML. Plant succession in abandoned gypsum quarries in SE Spain. Phytocoenologia 2003; 33(1): 13-28. google scholar
  • 43. Palacio S, Escudero A, Montserrat-Martf G, Maestro M, Milla R, Albert MJ. Plants living on gypsum: Beyond the specialist model. Ann Bot 2007; 99(2): 333-43. google scholar
  • 44. Baize D. Guide des analyses courantes en pedologie. Paris: Inra Press; 1988. google scholar
  • 45. Gharaibeh MA, Albalasmeh AA, Pratt C, El Hanandeh A. Estimation of exchangeable sodium percentage from sodium adsorption ratio of salt-affected soils using traditional and dilution extracts, saturation percentage, electrical conductivity, and generalized re-gression neural networks. Catena 2021; 205: 105466. google scholar
  • 46. Paliwal KV, Gandhi AP. Effect of salinity, SAR, Ca: Mg ratio in irriga-tion water, and soil texture on the predictability of exchangeable sodium percentage. Soil Sci 1976; 122(2): 85-90. google scholar
  • 47. Frenkel H, Alperovitch N. The effect of mineral weathering and soil solution concentration on ESR-SAR relationships ofarid and semi-arid zone soils from Israel. J Soil Sci 1984; 35(3): 367-72. google scholar
  • 48. Rengasamy P, Greene RSB, Ford GW, Mehanni AH. Identifica-tion of dispersive behaviour and the management of red-brown earths. Soil Res 1984; 22(4): 413-31. google scholar
  • 49. Ghafoor A, Muhammed S, Ahmad N, Mian MA. Indices for the esti-mation of ESP from SAR of soil solution. Pak J Sci 1988; 39:40. google scholar
  • 50. Mohamed DM, Ibrahim SI, Elamin EA. Variability and correlation between exchangeable sodium percentage and sodium adsorp-tion ratio in Vertisols of Sudan. Commun Soil Sci Plant Anal 2008; 39(19-20): 2827-38. google scholar
  • 51. Seilsepour M, Rashidi M, Khabbaz BG. Prediction of soil exchange-able sodium percentage based on soil sodium adsorption ra-tio. Am Eurasian J Agric Environ Sci 2009; 5(1): 1-4. google scholar
  • 52. Chi CM, Zhao CW, Sun XJ, Wang ZC. Estimating exchangeable sodi-um percentage from sodium adsorption ratio of salt-affected soil in the Songnen Plain of Northeast China. Pedosphere 2011; 21(2): 271-76. google scholar
  • 53. Hazelton P, Murphy B. Soil chemical properties. Interpreting soil test results? What do all the numbers mean? Australia; 2007. p. 106-13. google scholar
  • 54. Northcote KH, Skene JKM. Australian soils with saline and sodic properties. Canberra: Csiro Press; 1972. google scholar
  • 55. Taşdelen K, Demir Y. Determination of salinity and sodicity condi-tions of rice growing areas with geographical information systems in Terme Plain. Anadolu Journal of Agricultural Sciences 2020; 35(2): 175-84. google scholar

Biochemical Fingerprints of Some Endemic Plants Growing in Gypsum Soils: Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopic Study

Year 2021, Volume: 80 Issue: 2, 97 - 106, 17.12.2021
https://doi.org/10.26650/EurJBiol.2021.1005264

Abstract

Objective: The aim of this study is to reveal the biochemical fingerprints of Achillea gypsicola Hub.-Mor., Alyssum nezaketiae Aytaç & H.Duman, Onobrychis germanicopolitana Hub.-Mor. & Simon, Paracaryum paphlagonicum (Bornm.) R.Mill and Thymus leucostomus Hausskn. et Velen. grown in extreme gypsum habitats with the Attenuated total reflection-Fourier transform infrared (ATR-FTIR) technique, and to determine the differences and densities of organic and inorganic compounds reflected by extreme environmental conditions.

Materials and Methods: Using ATR-FTIR spectra, the chemical content of endemic plants was elucidated. In addition, band intensities were calculated using the ATR-FTIR spectra. By doing soil analysis, the physical and chemical properties of the regions where the plants grow were tried to be understood.

Results: As a result of the detailed analysis of the ATR-FTIR spectra, it was understood that the chemical substance content was similar, but the amount was different from plant to plant, regardless of soil. These results showed that the same plant species contain different amounts of chemicals.

Conclusion: FTIR spectroscopy is an effective tool that reveals the biochemical fingerprints of plants by contributing to the determination of organic and inorganic compounds in the structures of plants grown on gypsum substrates. Our results provided evidence for the presence of sulfate from organic molecules and the presence of gypsum and calcium oxalate from inorganic compounds. This study, which is the first to determine the biochemical fingerprints of plants growing in gypsum habitats in Turkey, will enrich the generality of future studies and the interpretation of other gypsophytes in the world.

References

  • 1. Sanchez-Martı'n R, Querejeta JI, Voltas J, Ferrio JP, Prieto I, Verdu M, et al. Plant’s gypsum affinity shapes responses to specific edaph-ic constraints without limiting responses to other general con-straints. Plant Soil 2021; 462(1): 297-309. google scholar
  • 2. Hulshof CM, Spasojevic MJ. The edaphic control of plant diversi-ty. Glob Ecol Biogeogr 2020; 29(10): 1634-50. google scholar
  • 3. Bobo-Pinilla J, Salmerön-Sânchez E, Mota JF, Penas J. Genetic conservation strategies of endemic plants from edaphic habitat islands: The case of Jacobaea auricula (Asteraceae). J Nat Conserv 2021;61:126004. google scholar
  • 4. Blanco-Sanchez M, Moore MJ, Ramos-Munoz M, P^as B, Garda-Fernandez A, Prieto M, et al. Phylogeography of a gypsum endem-ic plant across its entire distribution range in the western Mediter-ranean. Am J Bot 2021; 108(3): 443-60. google scholar
  • 5. Cera A, Duplat E, Montserrat-Martf G, Gömez-Bolea A, Rodn-guez-Echeverna S, Palacio S. Seasonal variation in AMF colonisa-tion, soil and plant nutrient content in gypsum specialist and gen-eralist species growing in P-poor soils. Plant Soil 2021; 1-16. google scholar
  • 6. Ramon A, Caselle C, Bonetto SMR, Costanzo D, Alonso EE. Effect of microstructure and relative humidity on strength and creep of gypsum. Rock Mech Rock Eng 2021; 54: 4121-45. google scholar
  • 7. Ozel S. Identification and assessment of hazard of development in gypsum karst regions: Examples from Turkey. Tiefenbacher JP, editor. Natural Hazards Risk, Exposure, Response, and Resilience. London: Intech Press; 2019. p. 111-24. google scholar
  • 8. Denaeyer-De Smet S. Note on the chemical composition of salts secreted by various gypsohalophytic species of Spain. Bulletin de la Societe Royale de Botanique de Belgique 1970; 103: 273-78. google scholar
  • 9. Perez-Garcia FJ, Akhani H, Parsons RF, Silcock JL, Kurt L. Ozdeniz E, et al. A first inventory of gypsum flora in the Palearctic and Austra-lia. Mediterr Bot 2018; 39(1): 35-49. google scholar
  • 10. Sanchez AM, Alonso-Valiente P, Albert MJ, Escudero A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phe-notypic plasticity. Ann Bot 2017; 120(1): 135-46. google scholar
  • 11. Martm-Rodnguez I, Escudero A, Garda-Fernandez A. Limited effect of a highway barrier on the genetic structure of a gypsum soil spe-cialist. PeerJ 2021; 9:e10533. google scholar
  • 12. Cirrincione M, Saladini B, Brighenti V, Salamone S, Mandrioli R, Pol-lastro F, et al. Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance-infrared (ATR-FTIR) spectroscopy: A proof of concept. J Pharm Biomed Anal 2021; 204: 114270. google scholar
  • 13. Götz A, Nikzad-Langerodi R, Staedler Y, Bellaire A, Saukel J. Appar-ent penetration depth in attenuated total reflection Fourier-trans-form infrared (ATR-FTIR) spectroscopy of Allium cepa L. epidermis and cuticle. Spectrochim Acta A Mol Bio Spectrosc 2020; 224: 117460. google scholar
  • 14. Tiernan H, Byrne B, Kazarian SG. ATR-FTIR spectroscopy and spec-troscopic imaging for the analysis of biopharmaceuticals. Spectro-chim Acta A Mol Bio Spectrosc 2020; 241: 118636. google scholar
  • 15. Durak T, Depciuch J. Effect of plant sample preparation and mea-suring methods on ATR-FTIR spectra results. Environ Exp Bot 2020; 169: 103915. google scholar
  • 16. Muhammad S, Wuyts K, Nuyts G, De Wael K, Samson R. Charac-terization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability. Urban For Urban Green 2020; 47: 126557. google scholar
  • 17. Ordoudi SA, Papapostolou M, Kokkini S, Tsimidou MZ. Diagnostic potential of FTIR fingerprinting in botanical origin evaluation of Laurus nobilis L. essential oil is supported by GC-FID-MS data. Mol-ecules 2020; 25(3): 583. google scholar
  • 18. Skotti E, Pappas C, Kaiafa M, Lappa IK, Tsitsigiannis Dİ, Giotis C, et al. Discrimination and quantification of aflatoxins in Pistachia vera seeds using FTIR-DRIFT spectroscopy after their treatment by Greek medicinal and aromatic plants extracts. Food Science and Engineering 2020; 1(1): 45-57. google scholar
  • 19. Palacio S, Aitkenhead M, Escudero A, Montserrat-Martf G, Maestro M, Robertson AJ. Gypsophile chemistry unveiled: Fourier trans-form infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One 2014; 9(9): e107285. google scholar
  • 20. Nikalje GC, Kumar J, Nikam TD, Suprasanna P. FT-IR profiling re-veals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.) L. Biotechnol Rep 2019; 23: e00352. google scholar
  • 21. Paiva EAS. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytol 2019; 223(4): 1707-11. google scholar
  • 22. Escudero A, Palacio S, Maestre FT, Luzuriaga AL. Plant life on gyp-sum: a review of its multiple facets. Biol Rev 2015; 90(1): 1-18. google scholar
  • 23. Rosa-Tilapa D, Maceda A, Terrazas T. Characterization of biominer-als in Cacteae species by FTIR. Crystals 2020; 10(6): 432. google scholar
  • 24. Skinner HCW. Biominerals. Mineral Mag 2005; 69(5): 621-41. google scholar
  • 25. Davis PH. Flora of Turkey and the East Aegean Islands Vol. I-IX. Ed-inburgh: Edinburgh University Press; 1965-1985. google scholar
  • 26. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands (Suppl. 1) Vol. X. Edinburgh: Edinburgh University Press; 1988. google scholar
  • 27. Ekim T, Koyuncu M, Vural M, Duman H, Aytaç Z, Adıgüzel N. Red data book of Turkish plants (Pteridophyta and Spermatophyta). Turkish Association for the Conservation of Nature & Van Centen-nial University. Ankara: Barışcan Publishing; 2000. google scholar
  • 28. Richards L. Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory. Agriculture Handbook. Wash-ington: U.S. Department of Agriculture Publishing; 1954. google scholar
  • 29. Gee GW, Bauder JW. Partical-size analysis. Klute A, editor. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. USA: SSSA Press; 1986. p. 383-411. google scholar
  • 30. Bower CA, Reitemeier RF, Fireman M. Exchangeable cation analysis of saline and alkali soils. Soil Sci 1952; 73(4): 251-62. google scholar
  • 31. Porta J.Tecnicasy Experimentos en Edafologia. Barcelona: Col.legi Oficial d’Enginyers Agronoms de Catalunya; 2005. google scholar
  • 32. Nedyalkova L, Lothenbach B, Renaudin G, Mader U, Tits J. Effect of redox conditions on the structure and solubility of sulfur-and selenium-AFm phases. Cem Concr Res 2019; 123: 105803. google scholar
  • 33. Ashfaq MY, Al-Ghouti MA, Da’na D, Qiblawey, H, Zouari N. Effect of concentration of calcium and sulfate ions on gypsum scaling of re-verse osmosis membrane, mechanistic study. J Mater Res Technol 2020; 9(6): 13459-73. google scholar
  • 34. Jha MK, Van Nguyen N, Lee JC, Jeong J, Yoo JM. Adsorption of cop-per from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120. J Hazard Mater 2009; 164(2-3): 94853. google scholar
  • 35. Huang Y, Wang L, Chao Y, Nawawi DS, Akiyama T, Yokoyama T, Mat-sumoto Y. Analysis of lignin aromatic structure in wood based on the IR spectrum. J Wood Chem Technol 2012; 32(4): 294-303. google scholar
  • 36. Boeriu CG, Bravo D, Gosselink RJ, Van Dam JE. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crops Prod 2004; 20(2): 205-18. google scholar
  • 37. Sonker AK, Rathore K, Teotia AK, Kumar A, Verma V. Rapid synthesis of high strength cellulose-poly (vinyl alcohol) (PVA) biocompati-ble composite films via microwave crosslinking. J Appl Polym Sci 2019; 136(17): 47393. google scholar
  • 38. Bolukbasi A, Kurt L, Palacio S. Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical compo-sition of gypsum plants from Turkey. Plant Biol 2016; 18(2): 271-79. google scholar
  • 39. Kayabaş A, Kurt A. Is the substrate an important factor in the in-vestigation of gypsophile endemism? Proceedings of the 2nd In-ternational Symposium on Biodiversity Research; 2020 November 18-20; Rize, Turkey. pp. 189-207. google scholar
  • 40. Duvigneaud P, Denaeyer-De Smet S. Essai de classification chimique (elements mineraux) des plantes gypsicoles du bassin de l’Ebre. Bulletin de la Societe Royale de Botanique de Belgique 1968; 101: 279-91. google scholar
  • 41. He H, Bleby TM, Veneklaas EJ, Lambers H, Kuo J. Precipitation of calcium, magnesium, strontium and barium in tissues of four Aca-cia species (Leguminosae: Mimosoideae). PLoS One 2012; 7(7): e41563. google scholar
  • 42. Mota JF, Sola AJ, Dana ED, Jimenez-Sanchez ML. Plant succession in abandoned gypsum quarries in SE Spain. Phytocoenologia 2003; 33(1): 13-28. google scholar
  • 43. Palacio S, Escudero A, Montserrat-Martf G, Maestro M, Milla R, Albert MJ. Plants living on gypsum: Beyond the specialist model. Ann Bot 2007; 99(2): 333-43. google scholar
  • 44. Baize D. Guide des analyses courantes en pedologie. Paris: Inra Press; 1988. google scholar
  • 45. Gharaibeh MA, Albalasmeh AA, Pratt C, El Hanandeh A. Estimation of exchangeable sodium percentage from sodium adsorption ratio of salt-affected soils using traditional and dilution extracts, saturation percentage, electrical conductivity, and generalized re-gression neural networks. Catena 2021; 205: 105466. google scholar
  • 46. Paliwal KV, Gandhi AP. Effect of salinity, SAR, Ca: Mg ratio in irriga-tion water, and soil texture on the predictability of exchangeable sodium percentage. Soil Sci 1976; 122(2): 85-90. google scholar
  • 47. Frenkel H, Alperovitch N. The effect of mineral weathering and soil solution concentration on ESR-SAR relationships ofarid and semi-arid zone soils from Israel. J Soil Sci 1984; 35(3): 367-72. google scholar
  • 48. Rengasamy P, Greene RSB, Ford GW, Mehanni AH. Identifica-tion of dispersive behaviour and the management of red-brown earths. Soil Res 1984; 22(4): 413-31. google scholar
  • 49. Ghafoor A, Muhammed S, Ahmad N, Mian MA. Indices for the esti-mation of ESP from SAR of soil solution. Pak J Sci 1988; 39:40. google scholar
  • 50. Mohamed DM, Ibrahim SI, Elamin EA. Variability and correlation between exchangeable sodium percentage and sodium adsorp-tion ratio in Vertisols of Sudan. Commun Soil Sci Plant Anal 2008; 39(19-20): 2827-38. google scholar
  • 51. Seilsepour M, Rashidi M, Khabbaz BG. Prediction of soil exchange-able sodium percentage based on soil sodium adsorption ra-tio. Am Eurasian J Agric Environ Sci 2009; 5(1): 1-4. google scholar
  • 52. Chi CM, Zhao CW, Sun XJ, Wang ZC. Estimating exchangeable sodi-um percentage from sodium adsorption ratio of salt-affected soil in the Songnen Plain of Northeast China. Pedosphere 2011; 21(2): 271-76. google scholar
  • 53. Hazelton P, Murphy B. Soil chemical properties. Interpreting soil test results? What do all the numbers mean? Australia; 2007. p. 106-13. google scholar
  • 54. Northcote KH, Skene JKM. Australian soils with saline and sodic properties. Canberra: Csiro Press; 1972. google scholar
  • 55. Taşdelen K, Demir Y. Determination of salinity and sodicity condi-tions of rice growing areas with geographical information systems in Terme Plain. Anadolu Journal of Agricultural Sciences 2020; 35(2): 175-84. google scholar
There are 55 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ayşenur Kayabaş 0000-0003-3555-4399

Ertan Yildirim 0000-0002-4083-3408

Publication Date December 17, 2021
Submission Date October 6, 2021
Published in Issue Year 2021 Volume: 80 Issue: 2

Cite

AMA Kayabaş A, Yildirim E. Biochemical Fingerprints of Some Endemic Plants Growing in Gypsum Soils: Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopic Study. Eur J Biol. December 2021;80(2):97-106. doi:10.26650/EurJBiol.2021.1005264