Short Communication
BibTex RIS Cite

Identification of Fusarium graminearum and Fusarium culmorum Isolates via Conventional and Molecular Methods

Year 2022, Volume: 81 Issue: 1, 107 - 116, 30.06.2022
https://doi.org/10.26650/EurJBiol.2022.1078448

Abstract

Objective: Fusarium spp. cause Fusarium head blight (FHB) and crown rot (CR) diseases. They also have harmful effects on animal and human health through their mycotoxins. Within the scope of this study, F. graminearum and F. culmorum isolates were purified from wheat ears and stalks contaminated with phytopathogens, which had been collected from various regions of Turkey, were identified and characterized by conventional and molecular methods. Materials and Methods: Sixty-eight Fusarium samples were isolated by single spore analysis and classified according to their macroconidia shape and size. Morphologically characterized samples were verified by amplification of SCAR markers. Their mating types (MAT) and chemotypes were also determined through polymerase chain reaction (PCR). Results: Thirty-eight F. graminearum and 30 F. culmorum isolates were identified via amplification of UBC85 and OPT18 SCAR markers, respectively. All isolates were determined as trichothecene producers by amplification of the tri5 gene. All F. graminarum isolates carry both MAT-1 and MAT-2 loci, whereas 7 of F. culmorum isolates were also determined as MAT-1 and 23 of them as MAT-2 mating types. Deoxynivalenol production capacity of all isolates was identified by tri13 amplification for chemotype determination. Conclusion: Routine monitoring of phytopathogens and their mycotoxin levels is a requirement since their annual levels may vary depending on environmental factors. This work provides knowledge about the distribution of Fusarium spp. leading to FHB and CR in different regions of Turkey between 2010 and 2020. Also, their chemotypes were demonstrated. Our studies will contribute to disease profiling and it is the first step in disease management.

Supporting Institution

TÜBİTAK

Project Number

119Z366

Thanks

This work was supported by The Scientific and Technological Research Council of Turkey, Project No: 119Z366.

References

  • 1. Bottalico A. Fusarium diseases of cereals: species complex and re-lated mycotoxin profiles, in Europe. J Plant Pathol 1998; 80(2): 85103. google scholar
  • 2. Moretti, A. Taxonomy of Fusarium genus: A continuous fight be-tween lumpers and splitters. Zb Matice Srp Prir Nauk 2009; 117: 7-13. google scholar
  • 3. Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Van-denbroucke V, et al. The Impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 2014; 6(2): 430-52. google scholar
  • 4. LaMondia JA. Fusarium wilt of tobacco. Crop Prot 2015; 73: 73-7. google scholar
  • 5. Basallote-Ureba MJ, Vela-Delgado MD, Capote N, Melero-Vara JM, Lopez-Herrera CJ, Prados-Ligero AM, et al. Control of Fusarium wilt of carnation using organic amendments combined with soil so-larization, and report of associated Fusarium species in southern Spain. Crop Prot 2016; 89: 184-92. google scholar
  • 6. Tunali B, Ozseven I, Buyuk O, Erdurmus D, Demirci, A. Fusarium head blight and deoxynivalenol accumulation of wheat in Marmara region and reactions of wheat cultivars and lines to F. gramin-earum and F. culmorum. Plant Pathol J 2006; 5(2): 150-6. google scholar
  • 7. Yli-Mattila, T, Ramö S, Hietaniemi V, Hussien T, Carlobos-Lopez A, Cumagun C. Molecular quantification and genetic diversity of toxi-genic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms 2013; 1(1): 162-74. google scholar
  • 8. Pasquali M and Migheli Q. Genetic approaches to chemotype de-termination in type B-trichothecene producing Fusaria. Int J Food Microbiol 2014; 189: 164-82. google scholar
  • 9. Ölmez F and Tunali B. Fusarium species isolated from wheat sam-ples showing root and crown rot. Plant Prot Bull 2019; 59(3): 31-7. google scholar
  • 10. Yoruk E, Albayrak G, Sharifnabi B, Candar B. Molecular characteriza-tion of Fusarium graminearum and F. culmorum isolates of wheat, barley and maize using ISSR markers. Curr Opin Biotechnol 2011; 22: S132. google scholar
  • 11. Liu YY, Sun HY, Li W, Xia YL, Deng YY, Zhang AX, et al. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS One 2017; 12(3): e0174040. google scholar
  • 12. Bahadur A. Current status of Fusarium and their management strategies. Mirmajlessi SM editor. Fusarium - An Overview on Cur-rent Status of the Genus. IntechOpen Book Series; 2021. p.1-17. google scholar
  • 13. Chen Y, Kistler HC, Ma Z. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annu Rev Phytopathol 2019; 57: 15-39. google scholar
  • 14. Miller JD, Greenhalgh R, Wang YZ, Lu M. Trichothecene chemo-types of three Fusarium species. Mycologia 1991; 83: 121-30. google scholar
  • 15. Desjardins AE and Proctor RH. Molecular biology of Fusarium my-cotoxins. Int J Food Microbiol. 2007; 119(1-2): 47-50. google scholar
  • 16. Leslie JF and Summerell BA. Species descriptions. The Fusarium Laboratory Manual. John Wiley & Sons; 2006. p.158-80. google scholar
  • 17. Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D., et al. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 2015; 17(8): 2588-600. google scholar
  • 18. Pestka JJ and Smolinski AT. Deoxynivalenol: toxicology and poten-tial effects on humans. J Toxicol Environ Health - B 2005; 8(1): 39-69. google scholar
  • 19. Arunachalam C and Doohan FM. Trichothecene toxicity in eukary-otes: Cellular and molecular mechanisms in plants and animals. Toxicol Lett 2013; 217(2): 149-58. google scholar
  • 20. Yörük E and Albayrak G. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopatholo-gia 2012; 173(1): 53-61. google scholar
  • 21. Yörük E, Gazdağli A, Albayrak G. Class B trichothecene chemo-typing in Fusarium species by PCR assay. Genetika 2014; 46(3): 661-9. google scholar
  • 22. van der Lee T, Zhang H, van Diepeningen A, Waalwijk C. Biogeogra-phy of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(4): 453-60. google scholar
  • 23. Lacmanova I, Pazlarova J, Kostelanska M, Hajslova J. PCR-based identification of toxinogenic Fusarium species. Czech J Food Sci 2009; 27(Special Issue 2): 90-4. google scholar
  • 24. Booth C. Fusarium: laboratory guide to the identification of the major species. Commonwealth Mycological Institute, Kew, Surrey, England; 1977. p. 58. google scholar
  • 25. Niessen ML and Vogel RF. Group specific PCR-detection of poten-tial trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol 1998; 21(4): 618-31. google scholar
  • 26. Schilling AG, Möller EM and Geiger HH. Polymerase chain reac-tion-based assays for species-specific detection of Fusarium cul-morum, F. graminearum and F. aveneceaum. Mol Plant Pathol 1996; 86: 515-22. google scholar
  • 27. Kerenyi Z, Moretti A, Waalwijk C, Olah B, Hornok L. Mating type se-quences in asexually reproducing Fusarium species. Appl Environ Microbiol 2004; 70(8): 4419-23. google scholar
  • 28. Chandler EA, Simpson DR, Thomsett MA, Nicholson, P. Develop-ment of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium gramin-earum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol 2003; 62(6): 355-67. google scholar
  • 29. Harris SD. Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 2005; 97(4): 880-7. google scholar
  • 30. Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev 1994; 7(4):479-504. google scholar
  • 31. Abedi-Tizaki M and Sabbagh SK. Morphological and molecular identification of Fusarium head blight isolates from wheat in north of Iran. Aust J Crop Sci 2012; 6(9):1356-61. google scholar
  • 32. Doohan FM, Parry DW, Jenkinson P, Nicholson P. The use of species specific PCR assays to analyse Fusarium ear blight of wheat. Plant Pathol 1998; 47: 197-205. google scholar
  • 33. Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fu-sarium head blight of winter wheat. Appl. Environ. Microbiol 2001; 67: 1575-80. google scholar
  • 34. Niessen L, Schmidt H, Vogel RF. The use of tri5 gene sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. International Journal of Food Microbiology 2004; 95(3): 305-19. google scholar
  • 35. Brancao MF, Bianchi VJ,de FariasCRJ,dos SantosJ, Rosseto EA.Car-acterizaçâo genetica de Fusarium graminearum Schwabe atraves de tecnicas moleculares. Curr Agric Sci Technol 2008; 14(3). google scholar
  • 36. Agodi A, Barchitta M, Ferrante M, Sciacca S, Niessen L. Detection of trichothecene producing Fusarium spp. by PCR: adaptation, valida-tion and application to fast food. Ital J Public Health 2005; 2(1). google scholar
  • 37. Leslie JF and Summerell BA. An Overview of Fusarium. Brown DW & Proctor RH, editors. Fusarium: Genomics, Molecular and Cellular Biology. Caister Academic Press; 2013.p.1-9. google scholar
  • 38. Wallace MM and Covert SF. Molecular mating type assay for Fusar-ium circinatum. Appl Environ Microbiol. 2000; 66(12):5506-8. google scholar
  • 39. Albayrak G, Yörük E, Gazdağli A, Sharifnabi B. Genetic diversity among Fusarium graminearum and F. culmorum isolates based on ISSR markers. Arch Biol Sci 2016; 68(2):333-43. google scholar
  • 40. Toth B, Mesterhazy Â, Nicholson P, Teren J, Varga J. Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. In Molecular Diversity and PCR-de-tection of Toxigenic Fusarium Species and Ochratoxigenic Fungi Springer, Dordrecht; 2004. p.587-99. google scholar
  • 41. Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 2003; 539:105-10. google scholar
  • 42. Li HP, Wu AB, Zhao CS, Scholten O, Löffler H, Liao YC. Develop-ment of a generic PCR detection of deoxynivalenol- and nivale-nol-chemotypes of Fusarium graminearum. FEMS Microbiol Lett 2005; 243:505-11. google scholar
  • 43. Brown DW, Dyer RB, McCormik SP, Kendra DF, Planttner RD. Func-tional demarcation of the Fusarium core trichothecene gene clus-ter. Fungal Genet Biol. 2004; 41:454-62. google scholar
  • 44. Lee T, Han YK, Kim KH, Yun SH, Lee YW. Tri13 and Tri7 determine de-oxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 2002; 68(5):2148-54. google scholar
  • 45. Jennings P, Coates ME, Walsh K, Turner JA, Nicholson P. Determina-tion of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol 2004; 53:643-52. google scholar
  • 46. Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P. Deter-mination of deoxynivalenol and nivalenol chemotypes of Fusari-um culmorum isolates from England and Wales by PCR assay. Plant Pathol 2004; 53:182-90. google scholar
  • 47. Haratian M, Sharifnabi B, Alizadeh A, Safaie N. PCR analysis of the Tri13 gene to determine the genetic potential of Fusarium gramin-earum isolates from Iran to produce nivalenol and deoxynivalenol. Mycopathologia 2008; 166:109-16. google scholar
  • 48. Tunali B, Nicol J, Erol FY, Altıparmak G. Pathogenicity of Turkish crown and head scab isolates on stem bases on winter wheat un-der greenhouse conditions. Plant Pathol J 2006; 5(2):143-9. google scholar
  • 49. Tunali B, Özseven İ, Büyük O, Erdurmus D, Demirci A. Fusarium head blight and deoxynivalenol accumulation of wheat in Marmara region and reactions of wheat cultivars and lines to F. gramin-earum and F. culmorum. Plant Pathol J 2006; 5(2):150-6. google scholar
  • 50. Mert-Türk F and Gencer R Distribution of the 3-AcDON, 15-AcDON, and NIV chemotypes of Fusarium culmorum in the North-West of Turkey. Plant Prot Sci 2013; 49(2):57-64. google scholar
  • 51. Tok FM and Arslan M. Distribution and genetic chemotyping of Fusarium graminearum and Fusarium culmorum populations in wheat fields in the eastern Mediterranean region of Turkey. Bio-technol Biotechnol Equip 2016; 30(2):254-60. google scholar
Year 2022, Volume: 81 Issue: 1, 107 - 116, 30.06.2022
https://doi.org/10.26650/EurJBiol.2022.1078448

Abstract

Project Number

119Z366

References

  • 1. Bottalico A. Fusarium diseases of cereals: species complex and re-lated mycotoxin profiles, in Europe. J Plant Pathol 1998; 80(2): 85103. google scholar
  • 2. Moretti, A. Taxonomy of Fusarium genus: A continuous fight be-tween lumpers and splitters. Zb Matice Srp Prir Nauk 2009; 117: 7-13. google scholar
  • 3. Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Van-denbroucke V, et al. The Impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 2014; 6(2): 430-52. google scholar
  • 4. LaMondia JA. Fusarium wilt of tobacco. Crop Prot 2015; 73: 73-7. google scholar
  • 5. Basallote-Ureba MJ, Vela-Delgado MD, Capote N, Melero-Vara JM, Lopez-Herrera CJ, Prados-Ligero AM, et al. Control of Fusarium wilt of carnation using organic amendments combined with soil so-larization, and report of associated Fusarium species in southern Spain. Crop Prot 2016; 89: 184-92. google scholar
  • 6. Tunali B, Ozseven I, Buyuk O, Erdurmus D, Demirci, A. Fusarium head blight and deoxynivalenol accumulation of wheat in Marmara region and reactions of wheat cultivars and lines to F. gramin-earum and F. culmorum. Plant Pathol J 2006; 5(2): 150-6. google scholar
  • 7. Yli-Mattila, T, Ramö S, Hietaniemi V, Hussien T, Carlobos-Lopez A, Cumagun C. Molecular quantification and genetic diversity of toxi-genic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms 2013; 1(1): 162-74. google scholar
  • 8. Pasquali M and Migheli Q. Genetic approaches to chemotype de-termination in type B-trichothecene producing Fusaria. Int J Food Microbiol 2014; 189: 164-82. google scholar
  • 9. Ölmez F and Tunali B. Fusarium species isolated from wheat sam-ples showing root and crown rot. Plant Prot Bull 2019; 59(3): 31-7. google scholar
  • 10. Yoruk E, Albayrak G, Sharifnabi B, Candar B. Molecular characteriza-tion of Fusarium graminearum and F. culmorum isolates of wheat, barley and maize using ISSR markers. Curr Opin Biotechnol 2011; 22: S132. google scholar
  • 11. Liu YY, Sun HY, Li W, Xia YL, Deng YY, Zhang AX, et al. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS One 2017; 12(3): e0174040. google scholar
  • 12. Bahadur A. Current status of Fusarium and their management strategies. Mirmajlessi SM editor. Fusarium - An Overview on Cur-rent Status of the Genus. IntechOpen Book Series; 2021. p.1-17. google scholar
  • 13. Chen Y, Kistler HC, Ma Z. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annu Rev Phytopathol 2019; 57: 15-39. google scholar
  • 14. Miller JD, Greenhalgh R, Wang YZ, Lu M. Trichothecene chemo-types of three Fusarium species. Mycologia 1991; 83: 121-30. google scholar
  • 15. Desjardins AE and Proctor RH. Molecular biology of Fusarium my-cotoxins. Int J Food Microbiol. 2007; 119(1-2): 47-50. google scholar
  • 16. Leslie JF and Summerell BA. Species descriptions. The Fusarium Laboratory Manual. John Wiley & Sons; 2006. p.158-80. google scholar
  • 17. Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D., et al. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 2015; 17(8): 2588-600. google scholar
  • 18. Pestka JJ and Smolinski AT. Deoxynivalenol: toxicology and poten-tial effects on humans. J Toxicol Environ Health - B 2005; 8(1): 39-69. google scholar
  • 19. Arunachalam C and Doohan FM. Trichothecene toxicity in eukary-otes: Cellular and molecular mechanisms in plants and animals. Toxicol Lett 2013; 217(2): 149-58. google scholar
  • 20. Yörük E and Albayrak G. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopatholo-gia 2012; 173(1): 53-61. google scholar
  • 21. Yörük E, Gazdağli A, Albayrak G. Class B trichothecene chemo-typing in Fusarium species by PCR assay. Genetika 2014; 46(3): 661-9. google scholar
  • 22. van der Lee T, Zhang H, van Diepeningen A, Waalwijk C. Biogeogra-phy of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(4): 453-60. google scholar
  • 23. Lacmanova I, Pazlarova J, Kostelanska M, Hajslova J. PCR-based identification of toxinogenic Fusarium species. Czech J Food Sci 2009; 27(Special Issue 2): 90-4. google scholar
  • 24. Booth C. Fusarium: laboratory guide to the identification of the major species. Commonwealth Mycological Institute, Kew, Surrey, England; 1977. p. 58. google scholar
  • 25. Niessen ML and Vogel RF. Group specific PCR-detection of poten-tial trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol 1998; 21(4): 618-31. google scholar
  • 26. Schilling AG, Möller EM and Geiger HH. Polymerase chain reac-tion-based assays for species-specific detection of Fusarium cul-morum, F. graminearum and F. aveneceaum. Mol Plant Pathol 1996; 86: 515-22. google scholar
  • 27. Kerenyi Z, Moretti A, Waalwijk C, Olah B, Hornok L. Mating type se-quences in asexually reproducing Fusarium species. Appl Environ Microbiol 2004; 70(8): 4419-23. google scholar
  • 28. Chandler EA, Simpson DR, Thomsett MA, Nicholson, P. Develop-ment of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium gramin-earum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol 2003; 62(6): 355-67. google scholar
  • 29. Harris SD. Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 2005; 97(4): 880-7. google scholar
  • 30. Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev 1994; 7(4):479-504. google scholar
  • 31. Abedi-Tizaki M and Sabbagh SK. Morphological and molecular identification of Fusarium head blight isolates from wheat in north of Iran. Aust J Crop Sci 2012; 6(9):1356-61. google scholar
  • 32. Doohan FM, Parry DW, Jenkinson P, Nicholson P. The use of species specific PCR assays to analyse Fusarium ear blight of wheat. Plant Pathol 1998; 47: 197-205. google scholar
  • 33. Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fu-sarium head blight of winter wheat. Appl. Environ. Microbiol 2001; 67: 1575-80. google scholar
  • 34. Niessen L, Schmidt H, Vogel RF. The use of tri5 gene sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. International Journal of Food Microbiology 2004; 95(3): 305-19. google scholar
  • 35. Brancao MF, Bianchi VJ,de FariasCRJ,dos SantosJ, Rosseto EA.Car-acterizaçâo genetica de Fusarium graminearum Schwabe atraves de tecnicas moleculares. Curr Agric Sci Technol 2008; 14(3). google scholar
  • 36. Agodi A, Barchitta M, Ferrante M, Sciacca S, Niessen L. Detection of trichothecene producing Fusarium spp. by PCR: adaptation, valida-tion and application to fast food. Ital J Public Health 2005; 2(1). google scholar
  • 37. Leslie JF and Summerell BA. An Overview of Fusarium. Brown DW & Proctor RH, editors. Fusarium: Genomics, Molecular and Cellular Biology. Caister Academic Press; 2013.p.1-9. google scholar
  • 38. Wallace MM and Covert SF. Molecular mating type assay for Fusar-ium circinatum. Appl Environ Microbiol. 2000; 66(12):5506-8. google scholar
  • 39. Albayrak G, Yörük E, Gazdağli A, Sharifnabi B. Genetic diversity among Fusarium graminearum and F. culmorum isolates based on ISSR markers. Arch Biol Sci 2016; 68(2):333-43. google scholar
  • 40. Toth B, Mesterhazy Â, Nicholson P, Teren J, Varga J. Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. In Molecular Diversity and PCR-de-tection of Toxigenic Fusarium Species and Ochratoxigenic Fungi Springer, Dordrecht; 2004. p.587-99. google scholar
  • 41. Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 2003; 539:105-10. google scholar
  • 42. Li HP, Wu AB, Zhao CS, Scholten O, Löffler H, Liao YC. Develop-ment of a generic PCR detection of deoxynivalenol- and nivale-nol-chemotypes of Fusarium graminearum. FEMS Microbiol Lett 2005; 243:505-11. google scholar
  • 43. Brown DW, Dyer RB, McCormik SP, Kendra DF, Planttner RD. Func-tional demarcation of the Fusarium core trichothecene gene clus-ter. Fungal Genet Biol. 2004; 41:454-62. google scholar
  • 44. Lee T, Han YK, Kim KH, Yun SH, Lee YW. Tri13 and Tri7 determine de-oxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 2002; 68(5):2148-54. google scholar
  • 45. Jennings P, Coates ME, Walsh K, Turner JA, Nicholson P. Determina-tion of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol 2004; 53:643-52. google scholar
  • 46. Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P. Deter-mination of deoxynivalenol and nivalenol chemotypes of Fusari-um culmorum isolates from England and Wales by PCR assay. Plant Pathol 2004; 53:182-90. google scholar
  • 47. Haratian M, Sharifnabi B, Alizadeh A, Safaie N. PCR analysis of the Tri13 gene to determine the genetic potential of Fusarium gramin-earum isolates from Iran to produce nivalenol and deoxynivalenol. Mycopathologia 2008; 166:109-16. google scholar
  • 48. Tunali B, Nicol J, Erol FY, Altıparmak G. Pathogenicity of Turkish crown and head scab isolates on stem bases on winter wheat un-der greenhouse conditions. Plant Pathol J 2006; 5(2):143-9. google scholar
  • 49. Tunali B, Özseven İ, Büyük O, Erdurmus D, Demirci A. Fusarium head blight and deoxynivalenol accumulation of wheat in Marmara region and reactions of wheat cultivars and lines to F. gramin-earum and F. culmorum. Plant Pathol J 2006; 5(2):150-6. google scholar
  • 50. Mert-Türk F and Gencer R Distribution of the 3-AcDON, 15-AcDON, and NIV chemotypes of Fusarium culmorum in the North-West of Turkey. Plant Prot Sci 2013; 49(2):57-64. google scholar
  • 51. Tok FM and Arslan M. Distribution and genetic chemotyping of Fusarium graminearum and Fusarium culmorum populations in wheat fields in the eastern Mediterranean region of Turkey. Bio-technol Biotechnol Equip 2016; 30(2):254-60. google scholar
There are 51 citations in total.

Details

Primary Language English
Journal Section Short Communication
Authors

Beliz Yüksektepe This is me 0000-0001-7703-2981

Özlem Sefer This is me 0000-0002-2711-5938

Gülin İnci Varol This is me 0000-0003-0091-1245

Tuğba Teker 0000-0001-9892-8429

Mehmet Arslan 0000-0003-0613-8978

Büşra Nur Çetin This is me 0000-0002-3917-867X

Figen Mert 0000-0002-1603-0226

Emre Yörük 0000-0003-2770-0157

Gülruh Albayrak 0000-0002-4499-8912

Project Number 119Z366
Publication Date June 30, 2022
Submission Date February 24, 2022
Published in Issue Year 2022 Volume: 81 Issue: 1

Cite

AMA Yüksektepe B, Sefer Ö, Varol Gİ, Teker T, Arslan M, Çetin BN, Mert F, Yörük E, Albayrak G. Identification of Fusarium graminearum and Fusarium culmorum Isolates via Conventional and Molecular Methods. Eur J Biol. June 2022;81(1):107-116. doi:10.26650/EurJBiol.2022.1078448