Research Article
BibTex RIS Cite

EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL

Year 2023, Volume: 86 Issue: 1, 95 - 102, 31.01.2023
https://doi.org/10.26650/IUITFD.1197098

Abstract

Objective: Visceral leishmaniasis (VL) is an infection that can be fatal if left untreated. Treatment of VL is becoming increasingly difficult due to the development of resistance to some drugs used. We aimed to investigate the efficacy of tigecycline (Tig) and Reishi-Shiitake-Maitake (RSM) mushroom extract alone and in combination in BALB/c mice infected with the Leishmania donovani strain (ATCC 30030). Materials and Methods: To compare the treatment efficacy, the mice that were treated with amphotericin B (AMB) were used as the control group. BALB/c mice (n=40) were intravenously inoculated in the lateral vein of the tail with 107 stationary-phase L. donovani promastigotes in 100 μL of PBS. BALB/c mice were divided into 5 groups of 8. Tig group received 3.7 mg/kg tigecycline intraperitoneally for 5 days, RSM group received 10 mg/ kg RSM extract by oral gavage for 5 days while Tig+RSM group received the same doses of both drugs via the same routes. Also, the AMB group received 15mg/kg amphotericin B by oral gavage for 5 days. The spleen and liver of all mice that were sedated with ketamine were collected on the 12th day. Parasite load was determined by Leishman Donovan Unit (LDU) and quantitative RT-PCR. Results: When all groups were statistically evaluated according to LDU and RT-PCR findings, the lowest value was obtained in the AMB group compared to the value in the control group, while the second lowest value was obtained in the Tig+RSM group. The data obtained in the Tig+ RSM group were significantly lower macrothan the data in other groups, except for the AMB group. Conclusion: Our study suggested that the use of RSM extract together with tigecycline may be an alternative in the treatment of VL. Further studies using different doses and routes of administration are needed to evaluate the efficacy of this combination.

Supporting Institution

This study was supported by the Scientific Research Projects(BAP) Coordination Unit of Istanbul University

Project Number

20350

Thanks

This study was supported by the Scientific Research Projects(BAP) Coordination Unit of Istanbul University with the project no ID:20350.

References

  • 1. Wamai RG, Khan J, McGloin J, Zigaggi G. Visceral leishmaniasis: a global overview. J Glob Healty Sci 2020;2(1):e3. [CrossRef] google scholar
  • 2. World Health Organisation. Leishmaniasis. Turkey Leishmaniasis Country Profiles [İnternet]. Geneva: WHO [erişim 14 Aralık 2019]. https:// www.who.int/leishmaniasis/ burden/Leishmaniasis_Turkey/en/. google scholar
  • 3. Köse H, Temoçin F. Türkiye’den bildirilmiş erişkin viseral layşmanyaz olgularının havuz analizi yöntemiyle değerlendirilmesi. Klimik Derg 2020;33(2):157-62. google scholar
  • 4. Alves F,Bilbe G,Blesson S, Goyal V, Monnerat S et al. Recent development of visceral leishmaniasis treatments: Successes, pitfalls, and perspectives. Clin Microbiol Rev 2018;31(4):e00048-18. [CrossRef] google scholar
  • 5. Rusu A,Buta EL. The development or third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 2021;13(12)1-30. [CrossRef] google scholar
  • 6. Sahu R,Walker LA, Tekwani BL. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic combination with chloroquine. Malar J 2014;13(414):1-7. [CrossRef] google scholar
  • 7. Torres-Guerrero E,Quintanilla-Cedllo MR, Ruiz-Esmenjaud J,Arenas R.Leishmaniasis: a review. F1000Res 2017;6(750):1-15. [CrossRef] google scholar
  • 8. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016;9(118):1-13. [CrossRef] google scholar
  • 9. Isaka M, Sappan M, Choowong W, Boonpratuang T, Choeyklin R, Feng T, et al. Antimalarial lanostane triterpenoids from cultivated fruiting bodies of the basidiomycete Ganoderma sp. J Antibiot (Tokyo) 2020;73(10):702-10. [CrossRef] google scholar
  • 10. Wang X, Lin Z. Immunomodulating Effect of Ganoderma (Lingzhi) and possible mechanism. Adv Exp Med Biol 2019;1182:1-37. [CrossRef] google scholar
  • 11. Meng LZ, Xie J, Lv GP, Hu DJ, Zhao J, Duan Za et al. A comparative study on Immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi) . Nutr Cancer 2014;66(7):1124-31. [CrossRef] google scholar
  • 12. Chen S, Liu C, Huang X, Hu L, Huang Y, Chen H, et al. Comparison of immunomodulatory effects of three polysaccharide fractions from Lentinula edodes water extracts. J Funct Foods 2020;66(103791 ):1-6. [CrossRef] google scholar
  • 13. Wang T,He H, Liu X, Liu C, Liang Y, Mei Y.Mycelial polysaccharides of Lentinus edodes (shiitake mushroom) in submerged culture exert immunoenhancing effect on macrophage cells via MAPK pathway. Int J Biol Macromol 2019;1(130 ):745-54. [CrossRef] google scholar
  • 14. Wu JY, Siu KC, Geng P.Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods 2021;10(95)1-28. [CrossRef] google scholar
  • 15. Seo YR, Patel DK, Shin WC, Sim WS, Lee OH, Lim KT. Structural elucidation and immune-enhancing effects of novel polysaccharide from Grifola frondosa. BioMed Res Int 2019;3;1-7. [CrossRef] google scholar
  • 16. Gökmen AA, Öncel K, Özdemir OA, Pektaş B, Çavuş İ, Güngör S, et al. Kutanöz leyşmanyazis tanısında alternatif bifazik nutrient besiyeri*. Mikrobiyol Bul 2015;49(2):266-71. [CrossRef] google scholar
  • 17. Katakura K. An experimental challenge model of visceral leishmaniasis by Leishmania donovani promastigotes in mice. Parasitol Int 2016;65:603-6. [CrossRef] google scholar
  • 18. Ribatski - Silva D,Bassi CL, Gasquez Martin TO, Alves-Junior E,Gomes LT, Fernandes Rontes CJ. In vitro antimalarial activity of tigecycline against Plasmodium falciparum culture-adapted reference strains and clinical isolates from the Brazilian Amazon. Rev Soc Bras Med Trop 2014;47(1):110-2. [CrossRef] google scholar
  • 19. Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. Tetracyclines Specifically Target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2006;50(9):3124-31. [CrossRef] google scholar
  • 20. Koehne E, Kreidenweiss A, Adegbite BR, Manego RZ, McCall MBB, Mambo-Ngoma G, et al. In vitro activity of eravacycline, a novel synthetic halogenated tetracycline, against the malaria parasite Plasmodium falciparum. J Glob Antimicrob Resist 2021;24:93-7. [CrossRef] google scholar
  • 21. Mukherjee A, Sadhukhan GC. Anti-malarial drug design by targeting apicoplasts: New perspectives. J Pharmacopuncture 2016;19(1):7-15. [CrossRef] google scholar
  • 22. de Carvalho LP, Kridenweiss A, Held J. Drug repurposing: a review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules 2021;26(2304):1-19 [CrossRef] google scholar
  • 23. Held J, Zanger P, Issifou S, Kremsner PG, Mordmüller B. In vitro activity of tigecycline in Plasmodium falciparum culture-adapted strains and clinical isolates from Gabon. Int J Antimicrob Agents 2010;35(6):587-9. [CrossRef] google scholar
  • 24. Maldonado E, Morales-Pison S,Urbina F,Solari A. Molecular and Functional Characteristics of DNA Polymerase BetaLike Enzymes From Trypanosomatids. Front Cell Infect Microbiol 2021;11(670564):1-15. [CrossRef] google scholar
  • 25. Dumas C, Oualette M, Tovar J, Cunningam ML, Fairlamb AH, Tamar S, et al. Distruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J 1997;16 (10):2590-98. [CrossRef] google scholar
  • 26. Nettey H, Allotey-Babington GL, Nguessan BB, Atrane B,Tagoe M, Ababio A et al. Screening of Anti-Infectives against Leishmania donovani. Adv Microbiol 2016;6:13-22. [CrossRef] google scholar
  • 27. Oluba OM , Olusola AO, Fagbohunka BS, Onyeneke E. Antimalarial and hepatoprotective effects of crude ethanolic extract of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P.Karst. (higher Basidiomycetes), in Plasmodium berghei-infected mice. Int J Med Mushrooms 2012;14(5):459-66. [CrossRef] google scholar
  • 28. Adams M, Cristen M, Plitzko I, Zimmermann S, Brun R et al. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J Nat Prod. 2010;73(5):897-900. [CrossRef] google scholar
  • 29. Seberi S, Yegdaneh A, Chabavizadeh J, Muhammet A. Evaluation of Antileishmanial Effect of Hydroalcoholic Extract of Ganoderma lucidum on Leishmania Major in Vitro. J Isfahan Medi School 2020;36(511):1628-34. google scholar
  • 30. Loyd AL, Richter BS, Jusino MA, Truong C, Smith ME, et al. Identifying the “Mushroom of Immortality”: Assessing the Ganoderma Species Composition in Commercial Reishi Products. Front Microbiol 2018;16(9):1557. [CrossRef] google scholar
  • 31. Habijanic J, Berovic M, Boh B, Plankl M, Wraber B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-a, IL-12, IFN-y, IL-2, IL-4, IL-10 and IL-17. N Biotechnol 2014;32(1):85-95. [CrossRef] google scholar
  • 32. Samant M,Sahu U,Pandey SC, Khare P. Role of cytokines in experimental and human visceral leishmaniasis, Front Cell Infect Microbiol 2021;11(624009):1-18. [CrossRef] google scholar
  • 33. Xiaoshuang D, Stanilka JM, Rowe CA, Esteves EA, Nieves Jr C. Consuming Lentinula edodes (Shiitake) mushrooms daily Improves human immunity: A randomized dietary Intervention in healthy young adults. J Am Coll Nutr 2015;34(6):478-87. [CrossRef] google scholar
  • 34. Crespo H, Guillen H, De Pablo-Maiso L, Gomez-Arrebola C, Rodriguez G, et al. Lentinula edodes P—glucan enriched diet induces pro- and anti-inflammatory macrophages in rabbit. Food Nutr Res 2017;61(1):1412791. [CrossRef] google scholar
  • 35. Goldman R, Jaffe CL. Administration of beta-glucan following Leishmania major infection suppresses disease progression in mice. Parasite Immunol 1991;13(2):137-45. [CrossRef] google scholar
  • 36. Al Tuwaijri AS, Mahmoud AA, Al Mafleh A, Al Khuwaitir SA. Effect of glucan on Leishmania major infection in BALB/c mice. J Med Microbiol 1987;23(4):363-5. [CrossRef] google scholar
  • 37. Ghosh K, Sharma G, Saha A, Kar S, Das PK, Ukil A. Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines. J Infect Dis 2013;15;207(6):1016-25. [CrossRef] google scholar
  • 38. Sandvik A, Wang YY, Morton HC, Aasen AO, Wang JE, Johansen FE. Oral and systemic administration of P-glucan protects against lipopolysaccharide-induced shock and organ injury in rats. Clin Exp Immunol 2007;148(1):168-77. [CrossRef] google scholar
  • 39. Meng M, Guo M, Feng C, Wang R, Cheng D, Wang C. Water-soluble polysaccharides from Grifola frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal transduction pathways. Food Funct 2019;10:4998-5007. [CrossRef] google scholar
  • 40. Sultana SS, Ghosh J, Chakraborty S, Mukherjee D, Dey S, Mallick S, et al. Selective in vitro inhibition of Leishmania donovani by a semi-purified fraction of wild mushroom Grifola frondosa. Exp Parasitol 2018;192:73-84. [CrossRef] google scholar

VİSERAL LAYŞMANYAZ MODELİ OLUŞTURULAN FARELERDE TİGESİKLİN VE REİSHİ SHİİTAKE MAİTAKE MANTAR EKSTRESİNİN TEDAVİ ETKİNLİĞİNİN DEĞERLENDİRİLMESİ

Year 2023, Volume: 86 Issue: 1, 95 - 102, 31.01.2023
https://doi.org/10.26650/IUITFD.1197098

Abstract

Amaç: Viseral layşmanyaz (VL) tropikal ve subtropikal bölgelerde yayılım gösteren, tedavi edilmediğinde ölümcül olabilen bir enfeksiyondur. VL tedavisi kullanılan bazı ilaçlara direnç gelişimi nedeni ile giderek güçleşmektedir. Çalışmamızda Leishmania donovani (ATCC 30030) suşu ile viseral layşmanyaz modeli oluşturulan BALB/c farelerde, tigesiklin (Tig), Reishi-Shiitake-Maitake (RSM) mantar ekstresi ve her iki ilacın birlikte tedavi etkinliğinin araştırılması amaçlanmıştır. Gereç ve Yöntem: Tedavi etkinliğinin karşılaştırılmasında amfoterisin B (AMB) ile tedavi edilen fare grubu kullanılmıştır. BALB/c farelerine (n=40), 100 μL PBS içinde 107 strasyoner fazlı L.donovani promastigotları kuyruğun lateral damarına intravenöz yolla verildi. BALB/c fareler sekizli 5 gruba ayrıldı. Tig grubuna 5 gün intraperitonal yoldan 3.7 mg/kg tigesiklin, RSM grubuna 5 gün oral gavaj ile 10 mg/kg RSM ekstresi, Tig+RSM grubuna aynı yol, gün ve dozlarda tigesiklin ve RSM ekstresi, AMB grubuna 5 gün OG ile 15 mg/kg amfoterisin B verilmiş, kontrol grubuna hiçbir işlem yapılmamıştır. On ikinci günde ketamin ile sedatize edilen farelerin dalak ve karaciğeri alınmıştır. Parazit yükü Leishman Donovan Unit (LDU) ve kantitatif RT-PCR ile belirlenmiştir. Bulgular: Tüm gruplar, LDU ve RT-RCR bulgularına göre istatistiksel olarak değerlendirildiğinde, kontrol grubuna göre en düşük değer AMB grubunda elde edilirken (p<0,001), ikinci en düşük değer Tig+RSM grubunda elde edilmiştir (p<0,001). Tig+RSM grubunda elde edilen değerler AMB grubu hariç olmak üzere diğer gruplardan anlamlı ölçüde düşük bulunmuştur. Sonuç: Çalışma bulgularımız tigesiklin ile birlikte RSM ekstresinin kullanılmasının VL tedavisinde alternatif olabileceğini göstermekle birlikte, farklı doz ve veriliş yollarının denendiği yeni çalışmalarla desteklenmesi gerektiğini düşündürmüştür. Anahtar Kelimeler: Viseral layşmanyaz, tigesiklin, reishi shiitake maitake, tedavi

Project Number

20350

References

  • 1. Wamai RG, Khan J, McGloin J, Zigaggi G. Visceral leishmaniasis: a global overview. J Glob Healty Sci 2020;2(1):e3. [CrossRef] google scholar
  • 2. World Health Organisation. Leishmaniasis. Turkey Leishmaniasis Country Profiles [İnternet]. Geneva: WHO [erişim 14 Aralık 2019]. https:// www.who.int/leishmaniasis/ burden/Leishmaniasis_Turkey/en/. google scholar
  • 3. Köse H, Temoçin F. Türkiye’den bildirilmiş erişkin viseral layşmanyaz olgularının havuz analizi yöntemiyle değerlendirilmesi. Klimik Derg 2020;33(2):157-62. google scholar
  • 4. Alves F,Bilbe G,Blesson S, Goyal V, Monnerat S et al. Recent development of visceral leishmaniasis treatments: Successes, pitfalls, and perspectives. Clin Microbiol Rev 2018;31(4):e00048-18. [CrossRef] google scholar
  • 5. Rusu A,Buta EL. The development or third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 2021;13(12)1-30. [CrossRef] google scholar
  • 6. Sahu R,Walker LA, Tekwani BL. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic combination with chloroquine. Malar J 2014;13(414):1-7. [CrossRef] google scholar
  • 7. Torres-Guerrero E,Quintanilla-Cedllo MR, Ruiz-Esmenjaud J,Arenas R.Leishmaniasis: a review. F1000Res 2017;6(750):1-15. [CrossRef] google scholar
  • 8. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016;9(118):1-13. [CrossRef] google scholar
  • 9. Isaka M, Sappan M, Choowong W, Boonpratuang T, Choeyklin R, Feng T, et al. Antimalarial lanostane triterpenoids from cultivated fruiting bodies of the basidiomycete Ganoderma sp. J Antibiot (Tokyo) 2020;73(10):702-10. [CrossRef] google scholar
  • 10. Wang X, Lin Z. Immunomodulating Effect of Ganoderma (Lingzhi) and possible mechanism. Adv Exp Med Biol 2019;1182:1-37. [CrossRef] google scholar
  • 11. Meng LZ, Xie J, Lv GP, Hu DJ, Zhao J, Duan Za et al. A comparative study on Immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi) . Nutr Cancer 2014;66(7):1124-31. [CrossRef] google scholar
  • 12. Chen S, Liu C, Huang X, Hu L, Huang Y, Chen H, et al. Comparison of immunomodulatory effects of three polysaccharide fractions from Lentinula edodes water extracts. J Funct Foods 2020;66(103791 ):1-6. [CrossRef] google scholar
  • 13. Wang T,He H, Liu X, Liu C, Liang Y, Mei Y.Mycelial polysaccharides of Lentinus edodes (shiitake mushroom) in submerged culture exert immunoenhancing effect on macrophage cells via MAPK pathway. Int J Biol Macromol 2019;1(130 ):745-54. [CrossRef] google scholar
  • 14. Wu JY, Siu KC, Geng P.Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods 2021;10(95)1-28. [CrossRef] google scholar
  • 15. Seo YR, Patel DK, Shin WC, Sim WS, Lee OH, Lim KT. Structural elucidation and immune-enhancing effects of novel polysaccharide from Grifola frondosa. BioMed Res Int 2019;3;1-7. [CrossRef] google scholar
  • 16. Gökmen AA, Öncel K, Özdemir OA, Pektaş B, Çavuş İ, Güngör S, et al. Kutanöz leyşmanyazis tanısında alternatif bifazik nutrient besiyeri*. Mikrobiyol Bul 2015;49(2):266-71. [CrossRef] google scholar
  • 17. Katakura K. An experimental challenge model of visceral leishmaniasis by Leishmania donovani promastigotes in mice. Parasitol Int 2016;65:603-6. [CrossRef] google scholar
  • 18. Ribatski - Silva D,Bassi CL, Gasquez Martin TO, Alves-Junior E,Gomes LT, Fernandes Rontes CJ. In vitro antimalarial activity of tigecycline against Plasmodium falciparum culture-adapted reference strains and clinical isolates from the Brazilian Amazon. Rev Soc Bras Med Trop 2014;47(1):110-2. [CrossRef] google scholar
  • 19. Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. Tetracyclines Specifically Target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2006;50(9):3124-31. [CrossRef] google scholar
  • 20. Koehne E, Kreidenweiss A, Adegbite BR, Manego RZ, McCall MBB, Mambo-Ngoma G, et al. In vitro activity of eravacycline, a novel synthetic halogenated tetracycline, against the malaria parasite Plasmodium falciparum. J Glob Antimicrob Resist 2021;24:93-7. [CrossRef] google scholar
  • 21. Mukherjee A, Sadhukhan GC. Anti-malarial drug design by targeting apicoplasts: New perspectives. J Pharmacopuncture 2016;19(1):7-15. [CrossRef] google scholar
  • 22. de Carvalho LP, Kridenweiss A, Held J. Drug repurposing: a review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules 2021;26(2304):1-19 [CrossRef] google scholar
  • 23. Held J, Zanger P, Issifou S, Kremsner PG, Mordmüller B. In vitro activity of tigecycline in Plasmodium falciparum culture-adapted strains and clinical isolates from Gabon. Int J Antimicrob Agents 2010;35(6):587-9. [CrossRef] google scholar
  • 24. Maldonado E, Morales-Pison S,Urbina F,Solari A. Molecular and Functional Characteristics of DNA Polymerase BetaLike Enzymes From Trypanosomatids. Front Cell Infect Microbiol 2021;11(670564):1-15. [CrossRef] google scholar
  • 25. Dumas C, Oualette M, Tovar J, Cunningam ML, Fairlamb AH, Tamar S, et al. Distruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J 1997;16 (10):2590-98. [CrossRef] google scholar
  • 26. Nettey H, Allotey-Babington GL, Nguessan BB, Atrane B,Tagoe M, Ababio A et al. Screening of Anti-Infectives against Leishmania donovani. Adv Microbiol 2016;6:13-22. [CrossRef] google scholar
  • 27. Oluba OM , Olusola AO, Fagbohunka BS, Onyeneke E. Antimalarial and hepatoprotective effects of crude ethanolic extract of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P.Karst. (higher Basidiomycetes), in Plasmodium berghei-infected mice. Int J Med Mushrooms 2012;14(5):459-66. [CrossRef] google scholar
  • 28. Adams M, Cristen M, Plitzko I, Zimmermann S, Brun R et al. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J Nat Prod. 2010;73(5):897-900. [CrossRef] google scholar
  • 29. Seberi S, Yegdaneh A, Chabavizadeh J, Muhammet A. Evaluation of Antileishmanial Effect of Hydroalcoholic Extract of Ganoderma lucidum on Leishmania Major in Vitro. J Isfahan Medi School 2020;36(511):1628-34. google scholar
  • 30. Loyd AL, Richter BS, Jusino MA, Truong C, Smith ME, et al. Identifying the “Mushroom of Immortality”: Assessing the Ganoderma Species Composition in Commercial Reishi Products. Front Microbiol 2018;16(9):1557. [CrossRef] google scholar
  • 31. Habijanic J, Berovic M, Boh B, Plankl M, Wraber B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-a, IL-12, IFN-y, IL-2, IL-4, IL-10 and IL-17. N Biotechnol 2014;32(1):85-95. [CrossRef] google scholar
  • 32. Samant M,Sahu U,Pandey SC, Khare P. Role of cytokines in experimental and human visceral leishmaniasis, Front Cell Infect Microbiol 2021;11(624009):1-18. [CrossRef] google scholar
  • 33. Xiaoshuang D, Stanilka JM, Rowe CA, Esteves EA, Nieves Jr C. Consuming Lentinula edodes (Shiitake) mushrooms daily Improves human immunity: A randomized dietary Intervention in healthy young adults. J Am Coll Nutr 2015;34(6):478-87. [CrossRef] google scholar
  • 34. Crespo H, Guillen H, De Pablo-Maiso L, Gomez-Arrebola C, Rodriguez G, et al. Lentinula edodes P—glucan enriched diet induces pro- and anti-inflammatory macrophages in rabbit. Food Nutr Res 2017;61(1):1412791. [CrossRef] google scholar
  • 35. Goldman R, Jaffe CL. Administration of beta-glucan following Leishmania major infection suppresses disease progression in mice. Parasite Immunol 1991;13(2):137-45. [CrossRef] google scholar
  • 36. Al Tuwaijri AS, Mahmoud AA, Al Mafleh A, Al Khuwaitir SA. Effect of glucan on Leishmania major infection in BALB/c mice. J Med Microbiol 1987;23(4):363-5. [CrossRef] google scholar
  • 37. Ghosh K, Sharma G, Saha A, Kar S, Das PK, Ukil A. Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines. J Infect Dis 2013;15;207(6):1016-25. [CrossRef] google scholar
  • 38. Sandvik A, Wang YY, Morton HC, Aasen AO, Wang JE, Johansen FE. Oral and systemic administration of P-glucan protects against lipopolysaccharide-induced shock and organ injury in rats. Clin Exp Immunol 2007;148(1):168-77. [CrossRef] google scholar
  • 39. Meng M, Guo M, Feng C, Wang R, Cheng D, Wang C. Water-soluble polysaccharides from Grifola frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal transduction pathways. Food Funct 2019;10:4998-5007. [CrossRef] google scholar
  • 40. Sultana SS, Ghosh J, Chakraborty S, Mukherjee D, Dey S, Mallick S, et al. Selective in vitro inhibition of Leishmania donovani by a semi-purified fraction of wild mushroom Grifola frondosa. Exp Parasitol 2018;192:73-84. [CrossRef] google scholar
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Özden Boral 0000-0001-7144-1418

Deniz Gözde Çelik 0000-0002-9887-0332

Halim İşsever 0000-0002-5435-706X

Project Number 20350
Publication Date January 31, 2023
Submission Date October 31, 2022
Published in Issue Year 2023 Volume: 86 Issue: 1

Cite

APA Boral, Ö., Çelik, D. G., & İşsever, H. (2023). EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL. Journal of Istanbul Faculty of Medicine, 86(1), 95-102. https://doi.org/10.26650/IUITFD.1197098
AMA Boral Ö, Çelik DG, İşsever H. EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL. İst Tıp Fak Derg. January 2023;86(1):95-102. doi:10.26650/IUITFD.1197098
Chicago Boral, Özden, Deniz Gözde Çelik, and Halim İşsever. “EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL”. Journal of Istanbul Faculty of Medicine 86, no. 1 (January 2023): 95-102. https://doi.org/10.26650/IUITFD.1197098.
EndNote Boral Ö, Çelik DG, İşsever H (January 1, 2023) EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL. Journal of Istanbul Faculty of Medicine 86 1 95–102.
IEEE Ö. Boral, D. G. Çelik, and H. İşsever, “EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL”, İst Tıp Fak Derg, vol. 86, no. 1, pp. 95–102, 2023, doi: 10.26650/IUITFD.1197098.
ISNAD Boral, Özden et al. “EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL”. Journal of Istanbul Faculty of Medicine 86/1 (January 2023), 95-102. https://doi.org/10.26650/IUITFD.1197098.
JAMA Boral Ö, Çelik DG, İşsever H. EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL. İst Tıp Fak Derg. 2023;86:95–102.
MLA Boral, Özden et al. “EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL”. Journal of Istanbul Faculty of Medicine, vol. 86, no. 1, 2023, pp. 95-102, doi:10.26650/IUITFD.1197098.
Vancouver Boral Ö, Çelik DG, İşsever H. EVALUATION OF THE TREATMENT EFFICACY OF TIGECYCLINE AND REISHI SHIITAKE MAITAKE MUSHROOM EXTRACT IN MICE WITH THE VISCERAL LEISHMANIASIS MODEL. İst Tıp Fak Derg. 2023;86(1):95-102.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61