Research Article
BibTex RIS Cite

NON-ALKOLİK STEATOHEPATİT OLUŞTURULAN KOBAYLARDA S-ADENOZİLMETIYONİNİN KARACİĞER VE METABOLİK BOZUKLUKLAR ÜZERİNE ETKİSİ

Year 2025, Volume: 88 Issue: 1, 60 - 71, 31.01.2025
https://doi.org/10.26650/IUITFD.1498606

Abstract

Amaç: S-adenozilmetiyonin (SAM), antioksidan ve anti-enflamatuar etkilere ve hepatoprotektif potansiyele sahiptir. Bu çalışmada, yüksek yağ/kolesterollü diyet (YYKD) ile indüklenen non-alkolik steatohepatit (NASH) üzerinde SAM'ın terapötik etkinliği araştırılmıştır.
Gereç ve Yöntem: Bu çalışmada, NASH oluşturmak için kobaylara 10 hafta boyunca YYKD verildi. Hayvanlara, 10 haftalık YYKD uygulamasının son dört haftasında SAM (50 mg/kg, i.p) uygulandı. Serumda hepatik hasar belirteçleri, lipitler (total kolesterol ve trigliserit), inflamatuar sitokin (tümör nekroz faktörü-α ve interlökin-6) düzeyleri ve insülin direnci (HOMA-IR) ölçüldü. Ayrıca, karaciğerde hepatik lipitler, SAM ve sitokrom p450-2E1 (CYP2E1) düzeyleri, prooksidan parametreler (reaktif oksijen türleri, lipid peroksidleri ve protein karbonil) ve antioksidan parametreler (glutatyon düzeyleri ve antioksidan aktivite) ile birlikte fibrotik parametreler (α-düz kas aktin ve transforme edici büyüme faktör-β1 protein ekspresyonları ve hidroksiprolin düzeyleri) belirlendi. Steatozis, inflamasyon ve fibrozis skorları da histopatolojik olarak tespit edildi.
Bulgular: SAM tedavisi, YYKD ile indüklenen NASH'lı kobayların serumunda hepatik hasar belirteçleri, enflamatuar sitokinler düzeyleri ve HOMA-IR düzeylerinde azalmaya neden oldu. Ayrıca, trigliserit ve CYP2E1 düzeyleri ile fibroz belirteçlerindeki yüksek seviyelerin de SAM tedavisine bağlı olarak azaldığı tespit edildi. Bu tedavi, YYKD diyeti ile beslenen kobayların karaciğerinde SAM düzeylerindeki azalmayı, prooksidan ve antioksidan dengesindeki bozukluğu iyileştirdi, steatozis, inflamasyon ve fibrozis skorlarındaki artışları azalttı.
Sonuç: Bu sonuçlar, SAM'ın lipojenez, oksidatif stres, enflamasyon ve fibrozisi azaltarak YYKD ile indüklenen NASH'ta terapotik bir ajan olarak etkili olabileceğini göstermektedir.

Project Number

30446

References

  • Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010;16(11):1366-76. [CrossRef] google scholar
  • Mora SI, Garcia-Roman J, Gomez-Nanez I, Garcia-Roman R. Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector. Eur J Gastroenterol Hepatol 2018;30(8):893-900. [CrossRef] google scholar
  • Brown JM, Kuhlman C, Terneus MV, Labenski MT, Lamyaithong AB, Ball JG, et al. S-adenosyl-l-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry. Toxicol Appl Pharmacol 2014;281(2):174-84. [CrossRef] google scholar
  • Valdes S, Paredes SD, Garda Carreras C, Zuluaga P, Rancan L, Linillos-Pradillo B, et al. S-Adenosylmethionine decreases bacterial translocation, proinflammatory cytokines, oxidative stress and apoptosis markers in hepatic ischemia-reperfusion injury in Wistar rats. Antioxidants 2023;12(8):1539. [CrossRef] google scholar
  • Gong Z, Yan S, Zhang P, Huang Y, Wang L. Effects of S-adenosylmethionine on liver methionine metabolism and steatosis with ethanol-induced liver injury in rats. Hepatol Int 2008;2(3):346-52. [CrossRef] google scholar
  • Brzacki V, Mladenovic B, Dimic D, Jeremic L, Zivanovic D, Djukic D, et al. Comparison between the effects of selenomethionine and S-adenosylmethionine in preventing cholestasis-induced rat liver damage. Amino Acids 2019;51(5):795-803. [CrossRef] google scholar
  • Karaa A, Thompson KJ, McKillop IH, Clemens MG, Schrum LW. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model. Shock 2008;30(2):197-805. [CrossRef] google scholar
  • Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med 2015;240(6):809-20. [CrossRef] google scholar
  • Mato JM, Alonso C, Noureddin M, Lu SC. Biomarkers and subtypes of deranged lipid metabolism in nonalcoholic fatty liver disease. World J Gastroenterol 2019;25(24):3009-20. [CrossRef] google scholar
  • Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: Current and potential therapies. Life Sci 2013;92(2):114-8. [CrossRef] google scholar
  • Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int 2017;37(suppl 1):97-103. [CrossRef] google scholar
  • Wortham M, He L, Gyamfi M, Copple BL, Wan YJY. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig Dis Sci. 2008;53(10):2761-74. [CrossRef] google scholar
  • Bekyarova G, Tzaneva M, Bratoeva K, Kotzev I, Radanova M. Heme-oxygenase-1 upregulated by S-adenosylmethionine. Potential protection against non-alcoholic fatty liver induced by high fructose diet. Farmacia 2017;65:262-7. google scholar
  • Li Z, Wang F, Liang B, Su Y, Sun S, Xia S, et al. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020;5(1):280. [CrossRef] google scholar
  • Guo T, Dai Z, You K, Battaglia-Hsu SF, Feng J, Wang F, et al. S-adenosylmethionine upregulates the angiotensin receptor-binding protein ATRAP via the methylation of HuR in NAFLD. Cell Death Dis 2021;12(4):306. [CrossRef] google scholar
  • Oz HS, Im HJ, Chen TS, de Villiers WJ, McClain CJ. Glutathione-enhancing agents protect against steatohepatitis in a dietary model. J Biochem Mol Toxicol 2006;20(1):39-7. [CrossRef] google scholar
  • Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: A review of current evidence and clinical utility. J Hepatol 2012;57(5):1097-109. [CrossRef] google scholar
  • Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk-Tekkeşin M, Olgaç V, et al. Protective role of S-adenosylmethionine on high fat/high cholesterol diet induced hepatic and aortic lesions and oxidative stress in guinea pigs. Gen Physiol Biophys 2024;43(5):411-21. [CrossRef] google scholar
  • Kim SY, Hong SW, Kim MO, Kim HS, Jang JE, Leem J, et al. S-adenosyl methionine prevents endothelial dysfunction by inducing heme oxygenase-1 in vascular endothelial cells. Mol Cells 2013;36(4):376-84. [CrossRef] google scholar
  • Bingül İ, Aydın AF, Başaran-Küçükgergin C, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, et. al. High-fat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats. Int. Immunopharmacol 2016;39:199-207. [CrossRef] google scholar
  • Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27(5-6):612-6. [CrossRef] google scholar
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. [CrossRef] google scholar
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994;233:357-63. [CrossRef] google scholar
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882-8. google scholar
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’’: the FRAP assay. Anal Biochem 1996;239(1):70-6. [CrossRef] google scholar
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal. Biochem 1985;150:76-5. [CrossRef] google scholar
  • Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 2007;47(4):598-607. [CrossRef] google scholar
  • Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012;18(19):2300-8. [CrossRef] google scholar
  • Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, et al. Syneristic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 2013;57(1):81-2. [CrossRef] google scholar
  • Fukada A, Sasao M, Asakawa E, Narita S, Hisano M, Suruga K, et al. Dietary fat, cholesterol, and cholic acid affect the histopathologic severity of nonalcoholic steatohepatitis in Sprague-Dawley rats. Pathol Res Pract 2019;215(11):152599. [CrossRef] google scholar
  • Ipsen DH, Tveden-Nyborg P, Rolin B, Rakipovski G, Beck M, Mortensen LW, et al. High-fat but not sucrose intake is essential for induction of dyslipidemia and non-alcoholic steatohepatitis in guinea pigs. Nutr Metab 2016;13:51. [CrossRef] google scholar
  • DeOgburn R, Murillo AG, Fernandez ML. Guinea pigs as models for investigating non-alcoholic fatty liver disease. Integr Food Nutr Metab 2016;3:309-13. [CrossRef] google scholar
  • Ye P, Cheah IK, Halliwell B. High fat diets and pathology in the guinea pigs. Atherosclerosis or liver damage? Biochim Biophys Acta 2013;1832(2):355-64. [CrossRef] google scholar
  • Harjumaki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipd overload. Int J Mol Sci 2021;22(15):8221. [CrossRef] google scholar
  • Okada Y, Yamaguchi K, Nakajima T, Nishikawa T, Jo M, Mitsumoto Y, et al. Rosuvastatin ameliorates high-fat and high-cholesterol diet-induced nonalcoholic steatohepatitis in rats. Liver Int 2013;33(2):301-11. [CrossRef] google scholar
  • Ore A, Akinloye OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019;55(2):26. [CrossRef] google scholar
  • Cheng F, Yang Y, Yun S, Cao J, Chang M, Cheng Y, et al. Sparassis latifolia polysaccharide attenuates cholesterol in rats maintained on a high -fat, high-cholesterol diet. J Food Biochem 2023;2023:7473668. [CrossRef] google scholar
  • Ramani K, Lu SC. Methionine adenosyltransferases in liver health and diseases. Liver Res 2017;1(2):103-7. [CrossRef] google scholar
  • Vergani L, Baldini F, Khalil M, Voci A, Putignano P, Miraglia N. New perspectives of S-adenosylmethionine (SAMe) applications to attenuate fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Molecules 2020;25(18):4237. [CrossRef] google scholar
  • Wu Y, Ma KL, Zhang Y, Wen Y, Wang GH, Hu ZB, et al. Lipid disorder and intrahepatic-renin-angiotensin system activation synergically contribute to non-alcoholic fatty liver disease. Liver Int 2016;36(10):1525-34. [CrossRef] google scholar
  • Lieber CS, Leo MA, Cao Q, Mak KM, Ren C, Ponomarenko A, et al. The combination of S-adenosylmethionine and dilinoleoylphosphatidylcholine attenuates non-alcoholic steatohepatitis produced in rats by a high-fat diet. Nutr Res 2007;27(9):565-73. [CrossRef] google scholar

EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS

Year 2025, Volume: 88 Issue: 1, 60 - 71, 31.01.2025
https://doi.org/10.26650/IUITFD.1498606

Abstract

Objective: S-adenosylmethionine (SAM) has antioxidant and anti-inflammatory actions and hepatoprotective potential. In this study, the therapeutic effectiveness of SAM was investigated in high-fat/cholesterol diet (HFCD)-induced non-alcoholic steatohepatitis (NASH).
Material and Methods: In this study, guinea pigs were fed a HFCD for ten weeks to induce NASH. SAM (50 mg/kg, i.p.) was administered to the animals during the last four weeks of the 10-week HFCD regimen. Hepatic damage markers, lipid levels (total cholesterol and triglyceride), inflammatory cytokines (tu mour necrosis-α and interleukin-6) levels, and insulin resistance (HOMA-IR) were determined in the serum. Moreover, hepatic lip ids, SAM and cytochrome p450-2E1 (CYP2E1) levels, prooxidant parameters (reactive oxygen species, lipid peroxides and protein carbonyls) and antioxidant parameters (glutathione levels and antioxidant activity) together with fibrosis indicators (α-smooth muscle actin and transforming growth factor-β1 protein expres sions and hydroxyproline levels) were investigated in the liver. Steatosis, inflammation, and fibrosis scores were also detected histopathologically.
Result: SAM treatment diminished the increase in hepatic damage markers, inflammatory cytokine levels, and HOMA-IR levels in the serum of guinea pigs with HFCD-induced NASH. Elevated levels of hepatic triglyceride and CYP2E1 and fibrosis indicators were also detected to decrease due to SAM treatment. This treatment reduced the decrease in SAM levels, disturbance in the prooxidant and antioxidant balance, and diminished the increases in steatosis, inflammation, and fibrosis scores in the liver of guinea pigs fed the HFCD diet.
Conclusion: These results indicate that SAM may be effective in HFCD-induced NASH as a therapeutic agent by decreasing lipogenesis, oxidative stress, inflammation, and fibrosis.

Ethical Statement

This study was approved by the Animal Care and Use Committee of Istanbul University (Approval no: 02.03.2108-2018/18).

Supporting Institution

The present work was supported by Research Fund of Istanbul University (Project No: 30446).

Project Number

30446

Thanks

We gratefully thank Mr. E. Paul Larkin from Atrium Innovation Inc. (USA) for supporting us in providing S-adenosylmethionine material.

References

  • Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010;16(11):1366-76. [CrossRef] google scholar
  • Mora SI, Garcia-Roman J, Gomez-Nanez I, Garcia-Roman R. Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector. Eur J Gastroenterol Hepatol 2018;30(8):893-900. [CrossRef] google scholar
  • Brown JM, Kuhlman C, Terneus MV, Labenski MT, Lamyaithong AB, Ball JG, et al. S-adenosyl-l-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry. Toxicol Appl Pharmacol 2014;281(2):174-84. [CrossRef] google scholar
  • Valdes S, Paredes SD, Garda Carreras C, Zuluaga P, Rancan L, Linillos-Pradillo B, et al. S-Adenosylmethionine decreases bacterial translocation, proinflammatory cytokines, oxidative stress and apoptosis markers in hepatic ischemia-reperfusion injury in Wistar rats. Antioxidants 2023;12(8):1539. [CrossRef] google scholar
  • Gong Z, Yan S, Zhang P, Huang Y, Wang L. Effects of S-adenosylmethionine on liver methionine metabolism and steatosis with ethanol-induced liver injury in rats. Hepatol Int 2008;2(3):346-52. [CrossRef] google scholar
  • Brzacki V, Mladenovic B, Dimic D, Jeremic L, Zivanovic D, Djukic D, et al. Comparison between the effects of selenomethionine and S-adenosylmethionine in preventing cholestasis-induced rat liver damage. Amino Acids 2019;51(5):795-803. [CrossRef] google scholar
  • Karaa A, Thompson KJ, McKillop IH, Clemens MG, Schrum LW. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model. Shock 2008;30(2):197-805. [CrossRef] google scholar
  • Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med 2015;240(6):809-20. [CrossRef] google scholar
  • Mato JM, Alonso C, Noureddin M, Lu SC. Biomarkers and subtypes of deranged lipid metabolism in nonalcoholic fatty liver disease. World J Gastroenterol 2019;25(24):3009-20. [CrossRef] google scholar
  • Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: Current and potential therapies. Life Sci 2013;92(2):114-8. [CrossRef] google scholar
  • Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int 2017;37(suppl 1):97-103. [CrossRef] google scholar
  • Wortham M, He L, Gyamfi M, Copple BL, Wan YJY. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig Dis Sci. 2008;53(10):2761-74. [CrossRef] google scholar
  • Bekyarova G, Tzaneva M, Bratoeva K, Kotzev I, Radanova M. Heme-oxygenase-1 upregulated by S-adenosylmethionine. Potential protection against non-alcoholic fatty liver induced by high fructose diet. Farmacia 2017;65:262-7. google scholar
  • Li Z, Wang F, Liang B, Su Y, Sun S, Xia S, et al. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020;5(1):280. [CrossRef] google scholar
  • Guo T, Dai Z, You K, Battaglia-Hsu SF, Feng J, Wang F, et al. S-adenosylmethionine upregulates the angiotensin receptor-binding protein ATRAP via the methylation of HuR in NAFLD. Cell Death Dis 2021;12(4):306. [CrossRef] google scholar
  • Oz HS, Im HJ, Chen TS, de Villiers WJ, McClain CJ. Glutathione-enhancing agents protect against steatohepatitis in a dietary model. J Biochem Mol Toxicol 2006;20(1):39-7. [CrossRef] google scholar
  • Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: A review of current evidence and clinical utility. J Hepatol 2012;57(5):1097-109. [CrossRef] google scholar
  • Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk-Tekkeşin M, Olgaç V, et al. Protective role of S-adenosylmethionine on high fat/high cholesterol diet induced hepatic and aortic lesions and oxidative stress in guinea pigs. Gen Physiol Biophys 2024;43(5):411-21. [CrossRef] google scholar
  • Kim SY, Hong SW, Kim MO, Kim HS, Jang JE, Leem J, et al. S-adenosyl methionine prevents endothelial dysfunction by inducing heme oxygenase-1 in vascular endothelial cells. Mol Cells 2013;36(4):376-84. [CrossRef] google scholar
  • Bingül İ, Aydın AF, Başaran-Küçükgergin C, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, et. al. High-fat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats. Int. Immunopharmacol 2016;39:199-207. [CrossRef] google scholar
  • Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27(5-6):612-6. [CrossRef] google scholar
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. [CrossRef] google scholar
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994;233:357-63. [CrossRef] google scholar
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882-8. google scholar
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’’: the FRAP assay. Anal Biochem 1996;239(1):70-6. [CrossRef] google scholar
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal. Biochem 1985;150:76-5. [CrossRef] google scholar
  • Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 2007;47(4):598-607. [CrossRef] google scholar
  • Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012;18(19):2300-8. [CrossRef] google scholar
  • Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, et al. Syneristic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 2013;57(1):81-2. [CrossRef] google scholar
  • Fukada A, Sasao M, Asakawa E, Narita S, Hisano M, Suruga K, et al. Dietary fat, cholesterol, and cholic acid affect the histopathologic severity of nonalcoholic steatohepatitis in Sprague-Dawley rats. Pathol Res Pract 2019;215(11):152599. [CrossRef] google scholar
  • Ipsen DH, Tveden-Nyborg P, Rolin B, Rakipovski G, Beck M, Mortensen LW, et al. High-fat but not sucrose intake is essential for induction of dyslipidemia and non-alcoholic steatohepatitis in guinea pigs. Nutr Metab 2016;13:51. [CrossRef] google scholar
  • DeOgburn R, Murillo AG, Fernandez ML. Guinea pigs as models for investigating non-alcoholic fatty liver disease. Integr Food Nutr Metab 2016;3:309-13. [CrossRef] google scholar
  • Ye P, Cheah IK, Halliwell B. High fat diets and pathology in the guinea pigs. Atherosclerosis or liver damage? Biochim Biophys Acta 2013;1832(2):355-64. [CrossRef] google scholar
  • Harjumaki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipd overload. Int J Mol Sci 2021;22(15):8221. [CrossRef] google scholar
  • Okada Y, Yamaguchi K, Nakajima T, Nishikawa T, Jo M, Mitsumoto Y, et al. Rosuvastatin ameliorates high-fat and high-cholesterol diet-induced nonalcoholic steatohepatitis in rats. Liver Int 2013;33(2):301-11. [CrossRef] google scholar
  • Ore A, Akinloye OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019;55(2):26. [CrossRef] google scholar
  • Cheng F, Yang Y, Yun S, Cao J, Chang M, Cheng Y, et al. Sparassis latifolia polysaccharide attenuates cholesterol in rats maintained on a high -fat, high-cholesterol diet. J Food Biochem 2023;2023:7473668. [CrossRef] google scholar
  • Ramani K, Lu SC. Methionine adenosyltransferases in liver health and diseases. Liver Res 2017;1(2):103-7. [CrossRef] google scholar
  • Vergani L, Baldini F, Khalil M, Voci A, Putignano P, Miraglia N. New perspectives of S-adenosylmethionine (SAMe) applications to attenuate fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Molecules 2020;25(18):4237. [CrossRef] google scholar
  • Wu Y, Ma KL, Zhang Y, Wen Y, Wang GH, Hu ZB, et al. Lipid disorder and intrahepatic-renin-angiotensin system activation synergically contribute to non-alcoholic fatty liver disease. Liver Int 2016;36(10):1525-34. [CrossRef] google scholar
  • Lieber CS, Leo MA, Cao Q, Mak KM, Ren C, Ponomarenko A, et al. The combination of S-adenosylmethionine and dilinoleoylphosphatidylcholine attenuates non-alcoholic steatohepatitis produced in rats by a high-fat diet. Nutr Res 2007;27(9):565-73. [CrossRef] google scholar
There are 41 citations in total.

Details

Primary Language English
Subjects Health Services and Systems (Other)
Journal Section RESEARCH
Authors

İlknur Bingül 0000-0002-6432-3541

Canan Küçükgergin 0000-0002-1797-5889

Abdurrahman Fatih Aydın 0000-0002-3336-4332

Aydın Çevik 0000-0001-9321-9818

Merva Soluk Tekkeşin 0000-0002-7178-3335

Vakur Olgaç 0000-0003-0497-0314

Semra Doğru Abbasoğlu 0000-0003-3467-9763

Müjdat Uysal 0000-0002-8802-8766

Project Number 30446
Publication Date January 31, 2025
Submission Date June 10, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025 Volume: 88 Issue: 1

Cite

APA Bingül, İ., Küçükgergin, C., Aydın, A. F., Çevik, A., et al. (2025). EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS. Journal of Istanbul Faculty of Medicine, 88(1), 60-71. https://doi.org/10.26650/IUITFD.1498606
AMA Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk Tekkeşin M, Olgaç V, Doğru Abbasoğlu S, Uysal M. EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS. İst Tıp Fak Derg. January 2025;88(1):60-71. doi:10.26650/IUITFD.1498606
Chicago Bingül, İlknur, Canan Küçükgergin, Abdurrahman Fatih Aydın, Aydın Çevik, Merva Soluk Tekkeşin, Vakur Olgaç, Semra Doğru Abbasoğlu, and Müjdat Uysal. “EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS”. Journal of Istanbul Faculty of Medicine 88, no. 1 (January 2025): 60-71. https://doi.org/10.26650/IUITFD.1498606.
EndNote Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk Tekkeşin M, Olgaç V, Doğru Abbasoğlu S, Uysal M (January 1, 2025) EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS. Journal of Istanbul Faculty of Medicine 88 1 60–71.
IEEE İ. Bingül, C. Küçükgergin, A. F. Aydın, A. Çevik, M. Soluk Tekkeşin, V. Olgaç, S. Doğru Abbasoğlu, and M. Uysal, “EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS”, İst Tıp Fak Derg, vol. 88, no. 1, pp. 60–71, 2025, doi: 10.26650/IUITFD.1498606.
ISNAD Bingül, İlknur et al. “EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS”. Journal of Istanbul Faculty of Medicine 88/1 (January 2025), 60-71. https://doi.org/10.26650/IUITFD.1498606.
JAMA Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk Tekkeşin M, Olgaç V, Doğru Abbasoğlu S, Uysal M. EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS. İst Tıp Fak Derg. 2025;88:60–71.
MLA Bingül, İlknur et al. “EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS”. Journal of Istanbul Faculty of Medicine, vol. 88, no. 1, 2025, pp. 60-71, doi:10.26650/IUITFD.1498606.
Vancouver Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk Tekkeşin M, Olgaç V, Doğru Abbasoğlu S, Uysal M. EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS. İst Tıp Fak Derg. 2025;88(1):60-71.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61