Research Article
BibTex RIS Cite
Year 2021, Volume: 51 Issue: 1, 85 - 91, 30.04.2021

Abstract

References

  • Akhtar, T., Khan, M.A., Iqbal, J., Jones, P.G. & Hameed, S. (2014). A facile one-pot synthesis of 2-arylamino-5-aryloxylalkyl-1,3,4-oxadiazoles and their urease inhibition studies. Chemical Biology & Drug Design, 84, 92-98. https://doi.org/10.1111/cbdd.12297
  • Amtul, Z., Kausar, N., Follmer, C., Rozmahel, R.F., Atta-Ur-Rahman, Kazmi, S.A. ... Choudhary, M.I. (2006). Cysteine based novel noncompetitive inhibitors of urease(s)—Distinctive inhibition susceptibility of microbial and plant ureases. Bioorganic & Medicinal Chemistry, 14, 6737-6744. https://doi.org/10.1016/j.bmc.2006.05.078
  • Arshia, A., Khan, A., Khan, K.M. Saad, S. M., Siddiqui, S. J., Perveen, S., & Choudhary, M. I. (2016). Synthesis and urease inhibitory activities of benzophenone semicarbazones/thiosemicarbazones. Medicinal Chemistry Research, 25, 2666–2679. https://doi.org/10.1007/s00044-016-1673-0
  • Borg T.K. (2004). It's the matrix! ECM, proteases, and cancer. The American Journal of Pathology, 164, 1141–1142. https://doi.org/10.1016/S0002-9440(10)63201-4
  • Byrne, M.F. Mitchell, R.M., Stiffler, H., Jowell, P.S., Branch, M.S., Pappas, T.N... Baillie J. (2002). Canadian Journal of Gastroenterology and Hepatology, 16, 849-854.
  • Cheng, X.S., Zhang, J.C., You, Z.L., Wang, X., & Hai-Hua Li. (2014). Synthesis, structures, and Helicobacter Pylori urease inhibition of hydroxamate-coordinated oxovanadium complexes with benzohydrazone ligands. Transition Metal Chemistry, 39, 291–297. https://doi.org/10.1007/s11243-014-9802-4
  • Cox, G.M., Mukherjee, J., Cole, G.T., Casadevall, A., & Perfect, J.R. (2000). Urease as a virulence factor in experimental cryptococcosis. Infection and Immunity, 68, 443–448. https://doi.org/10.1128/iai.68.2.443-448.2000
  • Czerwonka, G., Arabski, M., Wąsik, S., Jabłońska-Wawrzycka, A., Rogala, P., & Kaca, W. (2014). Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative. Archives of Microbiology, 196, 169-177. doi: 10.1007/s00203-014-0952-8
  • Evans, S.A., Olson, S.T., & Shore, J. (1982). p-Aminobenzamidine as a fluorescent probe for the active site of serine proteases. Journal of Biological Chemistry, 257, 3014–3017. Frecer, V., Maliar, T. & Miertus, S. (2000). Protease inhibitors as anticancer drugs: Role of molecular modelling and combinatorial chemistry in drug design. International Journal of Medicine, Biology and the Environment, 28, 161-173.
  • Hanif, M., Shoaib, K., Saleem, M., Hasan Rama, N., Zaib, S., & Iqbal, J. (2012). Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives. International Scholarly Research Notices: Pharmacology, 928901. https://doi.org/10.5402/2012/928901
  • Inoue, K.I., Takano, H. (2010). Urinary trypsin inhibitor as a therapeutic option for endotoxin-related inflammatory disorders. Expert Opinion on Investigational Drugs, 19, 513-520. https://doi.org/10.1517/13543781003649533
  • Islam, M., Khan, A., Shehzad, M.T., Hameed, A., Ahmed, N., Halim, S.A. … Al-Harrasi, A. (2019). Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: In vitro and in silico studies. Bioorganic Chemistry, 87, 155-162. https://doi.org/10.1016/j.bioorg.2019.03.008
  • Kang, K., Kana, C., Yeung, A., & Liu, D. (2006). The immobilization of trypsin on soap-free P(MMA-EA-AA) latex particles. Materials Science and Engineering: C, 26, 664-669. https://doi.org/10.1016/j.msec.2005.07.020
  • Kanwal, Khan, M., Arshia, Khan, K. M., Parveen, S., Shaikh, M., Fatima, N., Choudhary, M. I. (2019). Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies, Bioorganic Chemistry, 83, 595-610. https://doi.org/10.1016/j.bioorg.2018.10.070
  • Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A. … Choudhary, M. I. (2010). Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. European Journal of Medicinal Chemistry, 45, 5200-5207. https://doi.org/10.1016/j.ejmech.2010.08.034.
  • Khan, M. K., Rahim, F., Khan, A., Shabeer, M., Hussain, S., Rehman, W. ... Choudhary, M.I. (2014a). Synthesis and structure–activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease, Bioorganic & Medicinal Chemistry, 22, 4119-4123. https://doi.org/10.1016/j.bmc.2014.05.057
  • Khan, K.M., Naz, F., Taha, M., Khan, A., Perveen, S., Choudhary, M.I., & Voelter, W. (2014b). Synthesis and in vitro urease inhibitory activity of N,N′-disubstituted thioureas, European Journal of Medicinal Chemistry, 74, 314-323. https://doi.org/10.1016/j.ejmech.2014.01.001.
  • Klomklao, S., Benjakul, S., Kishimura, H., & Chaijan, M. (2011). Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek), Food Chemistry, 129, 1348-1354. https://doi.org/10.1016/j.foodchem.2011.05.029
  • Kumar, S., & Kayastha, A.M. (2010). Soybean (Glycine max) urease: significance of sulfhydryl groups in urea catalysis. Plant Physiology and Biochemistry, 48, 746-750. doi: 10.1016/j.plaphy.2010.05.007
  • Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59, 9–21. https://doi.org/10.1016/j.molcatb.2009.01.003
  • Li, C., Huang, P., Wong, K., Xu, Y., Tan, L., Chen, H. … Xie, J. (2018). Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. Journal of Enzyme Inhibition and Medicinal Chemistry, 33, 1362-1375. https://doi.org/10.1080/14756366.2018.1501044
  • Li, W.Y., Ni, W.W., Ye, Y.X., Fang, H.L., Pan, X.M., He, J.L. … Zhu, H.L. (2020). N-monoarylacetothioureas as potent urease inhibitors: synthesis, SAR, and biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 35, 404-413. doi: 10.1080/14756366.2019.1706503
  • Liu, J.Q., Jiang, M.S., Luo, G.M., Yan, G.L., & Shen, J.C. (1998). Conversion of trypsin into a seleniumcontaining enzyme by using chemical mutation. Biotechnology Letters, 20, 693–696. https://doi.org/10.1023/A:1005378709179
  • Maliar, T., Jedinak, A., Kadrabova, J., & Sturdik, E. (2004). Structural aspects of flavonoids as trypsin inhibitors. European Journal of Medicinal Chemistry, 39, 241-248. doi: 10.1016/j.ejmech.2003.12.003
  • Mares-Guia, M. & Shaw, E.J. (1965). Studies on the active center of trypsin. The binding of amidines and guanidines as models of the substrate side chain. Journal of Biological Chemistry, 240, 1579–1585.
  • Markwardt, F., Landman, H., & Walsmann, P. (1968). Comparative studies on the inhibition of trypsin, plasmin and thrombin by derivatives of benzylamine and benzamidine. European Journal of Biochemistry, 6, 502–506. doi: 10.1111/j.1432-1033.1968.tb00473.x
  • Martínez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D. … Yin, Y. (2017). The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 49; 2091-2098. doi: 10.1007/s00726-017-2494-2
  • Mobley, H.L., Island, M.D., & Hausinger, R.P. (1995). Molecular biology of microbial ureases. Microbiological reviews, 59, 451–480.
  • Mosolov, V.V. & Valueva, T.A. (2005). Proteinase inhibitors and their function in plants: a review. Applied Biochemistry and Microbiology, 1, 227-246. https://doi.org/10.1007/s10438-005-0040-6
  • Onoda, Y., Takido, M., Magaribuchi, T., & Tamaki, H. (1990). Effects of 12-sulfodehydroabietic acid monosodium salt (ta-2711), a new anti-ulcer agent, on gastric mucosal lesions induced by necrotizing agents and gastric mucosal defensive factors in rats, The Japanese Journal of Pharmacology, 52, 631-638. https://doi.org/10.1254/jjp.52.631
  • Patra, R.C., Swarup, D., Dwivedi, S.K. (2001). Antioxidant effects of α tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology, 162, 81–88. doi: 10.1016/s0300-483x(01)00345-6
  • Pervez, H., Chohan, Z.H., Ramzan, M., Nasim, F.H, & Khan, K.M. (2009). Synthesis and biological evaluation of some new N4-substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 437–446. https://doi.org/10.1080/14756360802188420
  • Pervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N., & Naseer, M. M. (2018). Synthesis, crystal structure, molecular docking studies and bio-evaluation of some N4-benzyl-substituted isatin- 3-thiosemicarbazones as urease and glycation inhibitors. Heterocyclic Communications, 24, 51-58. doi: https://doi.org/10.1515/hc-2017-0148
  • Ragsdale S.W. (2009). Nickel-based enzyme systems. Journal of Biological Chemistry, 284, 18571-18575. doi: 10.1074/jbc.R900020200
  • Rawlings, N.D. & Barrett, A.J. (1994). Families of serine peptidases, Methods in Enzymology, 24, 19–61. doi: 10.1016/0076-6879(94)44004-2
  • Ribeiro, J. K., Cunha, D.D., Fook, J. M., & Sales, M.P. (2010). New properties of the soybean trypsin inhibitor: Inhibition of human neutrophil elastase and its effect on acute pulmonary injury. European Journal of Pharmacology, 644, 238-244. doi: 10.1016/j.ejphar.2010.06.067
  • Rohn, S., Rawel, H.M., Kroll, J. (2002). Inhibitory effects of plant phenols on the activity of selected enzymes, Journal of Agricultural and Food Chemistry, 50, 3566-3571. doi: 10.1021/jf011714b
  • Ruan, J. J., Chen, H., Shao, J. R., Wu, Q. & Han, X.Y. (2011). An antifungal peptide from Fagopurum tataricum seeds. Peptides, 32, 1151-1158. https://doi.org/10.1016/j.peptides.2011.03.015
  • Saeed, A., Ur-Rehman, S., Channar, P., Larik, F., Abbas, Q., Hassan, M. ... Seo, S.Y. (2017). Jack bean urease inhibitors, and antioxidant activity based on palmitic acid derived 1-acyl-3- arylthioureas: synthesis, kinetic mechanism and molecular docking studies. Drug Research, 67, 596–605. doi: 10.1055/s-0043-113832
  • Shahwar, D., Raza, M.A., Rehman, S.U., Abbasi, M.A., & Rahman, A.U. (2012). An investigation of phenolic compounds from plant sources as trypsin inhibitors, Natural Product Research: Formerly Natural Product Letters, 26, 1087-1093.
  • Shehzad, M.T., Khan, A., Islam, M., Hameed, A., Khiat, M., Halim, S.A. … Shafiq, Z. (2020). Synthesis and urease inhibitory activity of 1,4-benzodioxane-based thiosemicarbazones: Biochemical and computational approach. Journal of Molecular Structure, 1209, 127922. https://doi.org/10.1016/j.molstruc.2020.127922
  • Taha, M., Ismail, N.H., Baharudin, M. S., Lalani, S., Mehboob, S., Khan, K.M. ... Choudhary, I. (2015). Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 24, 1310–1324. https://doi.org/10.1007/s00044-014-1213-8
  • Taha, M., Shah, S.A.A., Khan, A., Arshad, F., Ismail, N.H., Afifi, M., & Choudhary, M.I. (2019). Synthesis of 3,4,5-trihydroxybenzohydrazone and evaluation of their urease inhibition potential, Arabian Journal of Chemistry, 12, 2973-2982. https://doi.org/10.1016/j.arabjc.2015.06.036
  • Tossi, A., Bonin, I. & Anthceva, N. (2000). Aspartic protease inhibitors. An integrated approach for the design and synthesis of diaminodiol-based peptidomimetics. European Journal of Biochemistry, 267, 1715–1722. https://doi.org/10.1046/j.1432-1327.2000.01164.x
  • Toyota, E., Chinen, C., Sekizaki, H., Itoh, K., & Tanizawa, K. (1996). Application of spontaneous Schiff base copper chelates formation process to the design of a trypsin inhibitor. Chemical and Pharmaceutical Bulletin, 44, 1104–1106. https://doi.org/10.1248/cpb.44.1104
  • Toyota, E., Ng, K.K., Sekizaki, H., Itoh, K., Tanizawa, K., & James, M.N.G. (2001). X-ray crystallographic analyses of complexes between bovine b-trypsin and schiff base copper(II) or iron(III) chelates. Journal of Molecular Biology, 305, 471–479. doi: 10.1006/jmbi.2000.4303
  • VanderJagt, D., Freiberger, C., Vu, H.T., Mounkaila, G., Glew R.S. & Glew R.H. (2000). The trypsin inhibitor content of 61 wild edible plant foods of Niger. Plant Foods for Human Nutrition, 55, 335–346. https://doi.org/10.1023/A:1008136100545
  • Venkatesin, R. & Sundanam, R.V. (1998). Modulation of stability properties of bovine trypsin after in vitro structural changes with a variety of chemical modifiers. Protein Engineering, 11, 691–698. doi: 10.1093/protein/11.8.691
  • Xiao, Z., Ma, T.W., Fu, W.C., Peng, X.C., Zhang, A.H., Zhu, H.L. (2010). The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 45, 5064-5070. https://doi.org/10.1016/j.ejmech.2010.08.01

In vitro urease and trypsin inhibitory activities of some sulfur compounds

Year 2021, Volume: 51 Issue: 1, 85 - 91, 30.04.2021

Abstract

Background and Aims: Organosulfur compounds modulate the activities of plurality of metabolic enzymes, especially those that activate (cytochrome P450s) or detoxify (glutathione-S-transferases) carcinogens. They also inhibit the formation of DNA adducts in different target tissues. The aim of the present study was to investigate the effect of some sulfur compounds on urease and trypsin activities in vitro. Methods: In the present study, the inhibitory effect of sulfur compounds on the activities urease and trypsin were determined according to the method of Hanif et al. (2012) and Ribeiro et al. (2010), respectively. Results: In comparison to the reference standard thiourea (IC50= 53.81±0.68 μg/mL), S-allyl-L-cysteine (IC50= 0.88±0.01 μg/ mL) and D, L-methionine (IC50= 0.91±0.02 μg/mL) had the highest urease inhibitor activity, corresponding to the lowest IC50 values among the sulfur compounds. Among the sulfur compounds used in this study, D,L-methionine (IC50= 0.13±0.01 mg/ mL) exhibited the lowest IC50 value for trypsin inhibitor, though its activity was less than that of tannic acid which was used as a standard (IC50= 0.06±0.01 mg/mL). Conclusion: The present outcome suggests that sulfur compounds are potential inhibitors of urease and trypsin activities, and may find importance in medicine and agriculture.

References

  • Akhtar, T., Khan, M.A., Iqbal, J., Jones, P.G. & Hameed, S. (2014). A facile one-pot synthesis of 2-arylamino-5-aryloxylalkyl-1,3,4-oxadiazoles and their urease inhibition studies. Chemical Biology & Drug Design, 84, 92-98. https://doi.org/10.1111/cbdd.12297
  • Amtul, Z., Kausar, N., Follmer, C., Rozmahel, R.F., Atta-Ur-Rahman, Kazmi, S.A. ... Choudhary, M.I. (2006). Cysteine based novel noncompetitive inhibitors of urease(s)—Distinctive inhibition susceptibility of microbial and plant ureases. Bioorganic & Medicinal Chemistry, 14, 6737-6744. https://doi.org/10.1016/j.bmc.2006.05.078
  • Arshia, A., Khan, A., Khan, K.M. Saad, S. M., Siddiqui, S. J., Perveen, S., & Choudhary, M. I. (2016). Synthesis and urease inhibitory activities of benzophenone semicarbazones/thiosemicarbazones. Medicinal Chemistry Research, 25, 2666–2679. https://doi.org/10.1007/s00044-016-1673-0
  • Borg T.K. (2004). It's the matrix! ECM, proteases, and cancer. The American Journal of Pathology, 164, 1141–1142. https://doi.org/10.1016/S0002-9440(10)63201-4
  • Byrne, M.F. Mitchell, R.M., Stiffler, H., Jowell, P.S., Branch, M.S., Pappas, T.N... Baillie J. (2002). Canadian Journal of Gastroenterology and Hepatology, 16, 849-854.
  • Cheng, X.S., Zhang, J.C., You, Z.L., Wang, X., & Hai-Hua Li. (2014). Synthesis, structures, and Helicobacter Pylori urease inhibition of hydroxamate-coordinated oxovanadium complexes with benzohydrazone ligands. Transition Metal Chemistry, 39, 291–297. https://doi.org/10.1007/s11243-014-9802-4
  • Cox, G.M., Mukherjee, J., Cole, G.T., Casadevall, A., & Perfect, J.R. (2000). Urease as a virulence factor in experimental cryptococcosis. Infection and Immunity, 68, 443–448. https://doi.org/10.1128/iai.68.2.443-448.2000
  • Czerwonka, G., Arabski, M., Wąsik, S., Jabłońska-Wawrzycka, A., Rogala, P., & Kaca, W. (2014). Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative. Archives of Microbiology, 196, 169-177. doi: 10.1007/s00203-014-0952-8
  • Evans, S.A., Olson, S.T., & Shore, J. (1982). p-Aminobenzamidine as a fluorescent probe for the active site of serine proteases. Journal of Biological Chemistry, 257, 3014–3017. Frecer, V., Maliar, T. & Miertus, S. (2000). Protease inhibitors as anticancer drugs: Role of molecular modelling and combinatorial chemistry in drug design. International Journal of Medicine, Biology and the Environment, 28, 161-173.
  • Hanif, M., Shoaib, K., Saleem, M., Hasan Rama, N., Zaib, S., & Iqbal, J. (2012). Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives. International Scholarly Research Notices: Pharmacology, 928901. https://doi.org/10.5402/2012/928901
  • Inoue, K.I., Takano, H. (2010). Urinary trypsin inhibitor as a therapeutic option for endotoxin-related inflammatory disorders. Expert Opinion on Investigational Drugs, 19, 513-520. https://doi.org/10.1517/13543781003649533
  • Islam, M., Khan, A., Shehzad, M.T., Hameed, A., Ahmed, N., Halim, S.A. … Al-Harrasi, A. (2019). Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: In vitro and in silico studies. Bioorganic Chemistry, 87, 155-162. https://doi.org/10.1016/j.bioorg.2019.03.008
  • Kang, K., Kana, C., Yeung, A., & Liu, D. (2006). The immobilization of trypsin on soap-free P(MMA-EA-AA) latex particles. Materials Science and Engineering: C, 26, 664-669. https://doi.org/10.1016/j.msec.2005.07.020
  • Kanwal, Khan, M., Arshia, Khan, K. M., Parveen, S., Shaikh, M., Fatima, N., Choudhary, M. I. (2019). Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies, Bioorganic Chemistry, 83, 595-610. https://doi.org/10.1016/j.bioorg.2018.10.070
  • Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A. … Choudhary, M. I. (2010). Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. European Journal of Medicinal Chemistry, 45, 5200-5207. https://doi.org/10.1016/j.ejmech.2010.08.034.
  • Khan, M. K., Rahim, F., Khan, A., Shabeer, M., Hussain, S., Rehman, W. ... Choudhary, M.I. (2014a). Synthesis and structure–activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease, Bioorganic & Medicinal Chemistry, 22, 4119-4123. https://doi.org/10.1016/j.bmc.2014.05.057
  • Khan, K.M., Naz, F., Taha, M., Khan, A., Perveen, S., Choudhary, M.I., & Voelter, W. (2014b). Synthesis and in vitro urease inhibitory activity of N,N′-disubstituted thioureas, European Journal of Medicinal Chemistry, 74, 314-323. https://doi.org/10.1016/j.ejmech.2014.01.001.
  • Klomklao, S., Benjakul, S., Kishimura, H., & Chaijan, M. (2011). Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek), Food Chemistry, 129, 1348-1354. https://doi.org/10.1016/j.foodchem.2011.05.029
  • Kumar, S., & Kayastha, A.M. (2010). Soybean (Glycine max) urease: significance of sulfhydryl groups in urea catalysis. Plant Physiology and Biochemistry, 48, 746-750. doi: 10.1016/j.plaphy.2010.05.007
  • Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59, 9–21. https://doi.org/10.1016/j.molcatb.2009.01.003
  • Li, C., Huang, P., Wong, K., Xu, Y., Tan, L., Chen, H. … Xie, J. (2018). Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. Journal of Enzyme Inhibition and Medicinal Chemistry, 33, 1362-1375. https://doi.org/10.1080/14756366.2018.1501044
  • Li, W.Y., Ni, W.W., Ye, Y.X., Fang, H.L., Pan, X.M., He, J.L. … Zhu, H.L. (2020). N-monoarylacetothioureas as potent urease inhibitors: synthesis, SAR, and biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 35, 404-413. doi: 10.1080/14756366.2019.1706503
  • Liu, J.Q., Jiang, M.S., Luo, G.M., Yan, G.L., & Shen, J.C. (1998). Conversion of trypsin into a seleniumcontaining enzyme by using chemical mutation. Biotechnology Letters, 20, 693–696. https://doi.org/10.1023/A:1005378709179
  • Maliar, T., Jedinak, A., Kadrabova, J., & Sturdik, E. (2004). Structural aspects of flavonoids as trypsin inhibitors. European Journal of Medicinal Chemistry, 39, 241-248. doi: 10.1016/j.ejmech.2003.12.003
  • Mares-Guia, M. & Shaw, E.J. (1965). Studies on the active center of trypsin. The binding of amidines and guanidines as models of the substrate side chain. Journal of Biological Chemistry, 240, 1579–1585.
  • Markwardt, F., Landman, H., & Walsmann, P. (1968). Comparative studies on the inhibition of trypsin, plasmin and thrombin by derivatives of benzylamine and benzamidine. European Journal of Biochemistry, 6, 502–506. doi: 10.1111/j.1432-1033.1968.tb00473.x
  • Martínez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D. … Yin, Y. (2017). The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 49; 2091-2098. doi: 10.1007/s00726-017-2494-2
  • Mobley, H.L., Island, M.D., & Hausinger, R.P. (1995). Molecular biology of microbial ureases. Microbiological reviews, 59, 451–480.
  • Mosolov, V.V. & Valueva, T.A. (2005). Proteinase inhibitors and their function in plants: a review. Applied Biochemistry and Microbiology, 1, 227-246. https://doi.org/10.1007/s10438-005-0040-6
  • Onoda, Y., Takido, M., Magaribuchi, T., & Tamaki, H. (1990). Effects of 12-sulfodehydroabietic acid monosodium salt (ta-2711), a new anti-ulcer agent, on gastric mucosal lesions induced by necrotizing agents and gastric mucosal defensive factors in rats, The Japanese Journal of Pharmacology, 52, 631-638. https://doi.org/10.1254/jjp.52.631
  • Patra, R.C., Swarup, D., Dwivedi, S.K. (2001). Antioxidant effects of α tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology, 162, 81–88. doi: 10.1016/s0300-483x(01)00345-6
  • Pervez, H., Chohan, Z.H., Ramzan, M., Nasim, F.H, & Khan, K.M. (2009). Synthesis and biological evaluation of some new N4-substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 437–446. https://doi.org/10.1080/14756360802188420
  • Pervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N., & Naseer, M. M. (2018). Synthesis, crystal structure, molecular docking studies and bio-evaluation of some N4-benzyl-substituted isatin- 3-thiosemicarbazones as urease and glycation inhibitors. Heterocyclic Communications, 24, 51-58. doi: https://doi.org/10.1515/hc-2017-0148
  • Ragsdale S.W. (2009). Nickel-based enzyme systems. Journal of Biological Chemistry, 284, 18571-18575. doi: 10.1074/jbc.R900020200
  • Rawlings, N.D. & Barrett, A.J. (1994). Families of serine peptidases, Methods in Enzymology, 24, 19–61. doi: 10.1016/0076-6879(94)44004-2
  • Ribeiro, J. K., Cunha, D.D., Fook, J. M., & Sales, M.P. (2010). New properties of the soybean trypsin inhibitor: Inhibition of human neutrophil elastase and its effect on acute pulmonary injury. European Journal of Pharmacology, 644, 238-244. doi: 10.1016/j.ejphar.2010.06.067
  • Rohn, S., Rawel, H.M., Kroll, J. (2002). Inhibitory effects of plant phenols on the activity of selected enzymes, Journal of Agricultural and Food Chemistry, 50, 3566-3571. doi: 10.1021/jf011714b
  • Ruan, J. J., Chen, H., Shao, J. R., Wu, Q. & Han, X.Y. (2011). An antifungal peptide from Fagopurum tataricum seeds. Peptides, 32, 1151-1158. https://doi.org/10.1016/j.peptides.2011.03.015
  • Saeed, A., Ur-Rehman, S., Channar, P., Larik, F., Abbas, Q., Hassan, M. ... Seo, S.Y. (2017). Jack bean urease inhibitors, and antioxidant activity based on palmitic acid derived 1-acyl-3- arylthioureas: synthesis, kinetic mechanism and molecular docking studies. Drug Research, 67, 596–605. doi: 10.1055/s-0043-113832
  • Shahwar, D., Raza, M.A., Rehman, S.U., Abbasi, M.A., & Rahman, A.U. (2012). An investigation of phenolic compounds from plant sources as trypsin inhibitors, Natural Product Research: Formerly Natural Product Letters, 26, 1087-1093.
  • Shehzad, M.T., Khan, A., Islam, M., Hameed, A., Khiat, M., Halim, S.A. … Shafiq, Z. (2020). Synthesis and urease inhibitory activity of 1,4-benzodioxane-based thiosemicarbazones: Biochemical and computational approach. Journal of Molecular Structure, 1209, 127922. https://doi.org/10.1016/j.molstruc.2020.127922
  • Taha, M., Ismail, N.H., Baharudin, M. S., Lalani, S., Mehboob, S., Khan, K.M. ... Choudhary, I. (2015). Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 24, 1310–1324. https://doi.org/10.1007/s00044-014-1213-8
  • Taha, M., Shah, S.A.A., Khan, A., Arshad, F., Ismail, N.H., Afifi, M., & Choudhary, M.I. (2019). Synthesis of 3,4,5-trihydroxybenzohydrazone and evaluation of their urease inhibition potential, Arabian Journal of Chemistry, 12, 2973-2982. https://doi.org/10.1016/j.arabjc.2015.06.036
  • Tossi, A., Bonin, I. & Anthceva, N. (2000). Aspartic protease inhibitors. An integrated approach for the design and synthesis of diaminodiol-based peptidomimetics. European Journal of Biochemistry, 267, 1715–1722. https://doi.org/10.1046/j.1432-1327.2000.01164.x
  • Toyota, E., Chinen, C., Sekizaki, H., Itoh, K., & Tanizawa, K. (1996). Application of spontaneous Schiff base copper chelates formation process to the design of a trypsin inhibitor. Chemical and Pharmaceutical Bulletin, 44, 1104–1106. https://doi.org/10.1248/cpb.44.1104
  • Toyota, E., Ng, K.K., Sekizaki, H., Itoh, K., Tanizawa, K., & James, M.N.G. (2001). X-ray crystallographic analyses of complexes between bovine b-trypsin and schiff base copper(II) or iron(III) chelates. Journal of Molecular Biology, 305, 471–479. doi: 10.1006/jmbi.2000.4303
  • VanderJagt, D., Freiberger, C., Vu, H.T., Mounkaila, G., Glew R.S. & Glew R.H. (2000). The trypsin inhibitor content of 61 wild edible plant foods of Niger. Plant Foods for Human Nutrition, 55, 335–346. https://doi.org/10.1023/A:1008136100545
  • Venkatesin, R. & Sundanam, R.V. (1998). Modulation of stability properties of bovine trypsin after in vitro structural changes with a variety of chemical modifiers. Protein Engineering, 11, 691–698. doi: 10.1093/protein/11.8.691
  • Xiao, Z., Ma, T.W., Fu, W.C., Peng, X.C., Zhang, A.H., Zhu, H.L. (2010). The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 45, 5064-5070. https://doi.org/10.1016/j.ejmech.2010.08.01
There are 49 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Article
Authors

Eda Dağsuyu This is me 0000-0003-0395-1058

Refiye Yanardağ 0000-0003-4185-4363

Publication Date April 30, 2021
Submission Date December 21, 2020
Published in Issue Year 2021 Volume: 51 Issue: 1

Cite

APA Dağsuyu, E., & Yanardağ, R. (2021). In vitro urease and trypsin inhibitory activities of some sulfur compounds. İstanbul Journal of Pharmacy, 51(1), 85-91.
AMA Dağsuyu E, Yanardağ R. In vitro urease and trypsin inhibitory activities of some sulfur compounds. iujp. April 2021;51(1):85-91.
Chicago Dağsuyu, Eda, and Refiye Yanardağ. “In Vitro Urease and Trypsin Inhibitory Activities of Some Sulfur Compounds”. İstanbul Journal of Pharmacy 51, no. 1 (April 2021): 85-91.
EndNote Dağsuyu E, Yanardağ R (April 1, 2021) In vitro urease and trypsin inhibitory activities of some sulfur compounds. İstanbul Journal of Pharmacy 51 1 85–91.
IEEE E. Dağsuyu and R. Yanardağ, “In vitro urease and trypsin inhibitory activities of some sulfur compounds”, iujp, vol. 51, no. 1, pp. 85–91, 2021.
ISNAD Dağsuyu, Eda - Yanardağ, Refiye. “In Vitro Urease and Trypsin Inhibitory Activities of Some Sulfur Compounds”. İstanbul Journal of Pharmacy 51/1 (April 2021), 85-91.
JAMA Dağsuyu E, Yanardağ R. In vitro urease and trypsin inhibitory activities of some sulfur compounds. iujp. 2021;51:85–91.
MLA Dağsuyu, Eda and Refiye Yanardağ. “In Vitro Urease and Trypsin Inhibitory Activities of Some Sulfur Compounds”. İstanbul Journal of Pharmacy, vol. 51, no. 1, 2021, pp. 85-91.
Vancouver Dağsuyu E, Yanardağ R. In vitro urease and trypsin inhibitory activities of some sulfur compounds. iujp. 2021;51(1):85-91.