Research Article
BibTex RIS Cite

Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites

Year 2023, Volume: 53 Issue: 1, 51 - 57, 28.04.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1087126

Abstract

Background and Aims: Prangos Lindl. (Apiaceae) are abundant in coumarins. Previously, along with n-hexane(HEX), chloroform(CHCl3), and methanol(MeOH) extracts, 8 molecules named osthol(1), isoimperatorin(2), oxypeucedanin(3), 7-methoxy-isoarnottinin-4'-O-β-ᴅ-glucopyranoside(4), 7-methoxy-isoarnottinin-4'-O-rutinoside(5), oxypeucedanin hydrate-3'-O-β-ᴅ-glucopyranoside(6), 1-methylethyl-6-O-D-apio-β-ᴅ-furanosyl-β-ᴅ-glucopyranoside(7), and cnidioside A(8) were obtained from the roots of endemic Prangos heyniae H. Duman & M. F. Watson. 4 and 5 were reported as novel compounds. Coumarins are known for their neuroprotective properties. Tyrosinase and cholinesterase enzymes play a key role in the course of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease(AD), respectively. Therefore, we aimed to evaluate the antityrosinase and anticholinesterase effects of the extracts and compounds 1-8 from Prangos heyniae roots.
Methods: Tyrosinase and acetylcholinesterase-butyrylcholinesterase(AChE-BChE) inhibitory activities of the samples were evaluated spectrophotometrically. The screening of the samples was carried on at 1000 μg/mL. Results of triplicate analyses of the samples were given as IC50 values obtained through linear regression analysis. Kojic acid and galantamine were used as positive controls for antityrosinase and anticholinesterase experiments, respectively.
Results: Only MeOH extract showed antityrosinase activity with an IC50 value of 543.37±7.45 μg/mL. CHCl3 extract exhibited both AChE and BChE inhibitory activities with IC50 values of 273.92 ± 32.07 and 38.68±2.56 μg/mL, respectively. Among tested compounds, 6 showed a weak BChE-specific inhibitory activity (IC50= 91.93±3.86μg/mL) and managed to possess 40 times inferior activity than galantamine(IC50= 2.25 ± 0.05μg/mL).

Conclusion: The CHCl3 extract displayed a good BChE inhibitory activity. These findings suggested that Prangos heyniae

could be a valuable natural source to develop novel BChE inhibitors with further studies against AD.

Supporting Institution

TÜBİTAK

Project Number

219S127

Thanks

This study was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under Grant number: 219-S-127.

References

  • Abbas-Mohammadi, M., Farimani, M. M., Salehi, P., Ebrahimi, S. N., Sonboli, A., Kelso, C., & Skropeta, D. (2018). Acetylcholines- terase-inhibitory activity of Iranian plants: Combined HPLC/bio- assay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. Journal of Pharmaceutical and Biomedical Analysis, 158, 471–479.
  • Ahmed, J., Güvenç, A., Küçükboyacı, N., Baldemir, A., & Coşkun, M. (2011). Total phenolic contents and antioxidant activities of Prangos Lindl.(Umbelliferae) species growing in Konya province (Turkey). Turkish Journal of Biology, 35(3), 353–360. https://doi. org/10.3906/biy-0809-23
  • Albayrak, G., Demir, S., Kose, F. A., & Baykan, S. (2021). New coumarin glycosides from endemic Prangos heyniae H. Duman & M.F. Watson. Natural Product Research, 1–13. https://doi.org/10.1080/14786419. 2021.1961138/SUPPL_FILE/GNPL_A_1961138_SM0346.DOCX
  • Albayrak, G., Demir, S., Koyu, H., & Baykan, S. (2022). Anticholinester- ase compounds from endemic Prangos uechtritzii. Chemistry & Bio- diversity, 19, e202200557. https://doi.org/10.1002/cbdv.202200557
  • Aytaç, Z., & Duman, H. (2016). Prangos abieticola (Apiaceae), a new species from south Anatolia, Turkey. Edinburgh Journal of Botany, 73(1), 125–131. https://doi.org/10.1017/S0960428615000293
  • Bahadori, M. B., Zengin, G., Bahadori, S., Maggi, F., & Dinparast, L. (2017). Chemical composition of essential oil, antioxidant, anti- diabetic, anti-obesity, and neuroprotective properties of Prangos gaubae. Natural Product Communications, 12(12), 1945–1948. https://doi.org/10.1177/1934578x1701201233
  • Başer, B., & Pehlivan, S. (2015). Türkiye’nin farklı bölgelerindeki Prangos Lindl . (Apiaceae) cinsine ait taksonların polenlerinin morfolojik farklılıkları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 4(2), 183–188. https://doi.org/10.17798/beufen.11965
  • Başer, K. H. C., Özek, T., Demirci, B., & Duman, H. (2000). Compo- sition of the essential oil of Prangos heyniae H. Duman et M. F. Watson, a new endemic from Turkey. Flavour and Fragrance Journal, 15(1), 47–49. https://doi.org/10.1002/(SICI)1099- 1026(200001/02)15:1<47::AID-FFJ869>3.0.CO;2-9
  • Behçet, L., Yapar, Y., & Olgun, Ş. (2019). Prangos aricakensis (Apiace- ae), a new species from eastern Turkey. Phytotaxa, 401(1), 55–63. https://doi.org/10.11646/phytotaxa.401.1.5
  • Bruno, M., Ilardi, V., Lupidi, G., Quassinti, L., Bramucci, M., Fiorini, D., … Maggi, F. (2021). Composition and biological activities of the essential oil from a Sicilian accession of Prangos ferulacea (L.) Lindl. Natural Product Research, 35(5), 733–743. https://doi.org/10.1080/14786419.2019.1598996
  • Bulut, G., Tuzlacı, E., Doğan, A., & Şenkardes, I. (2014). An ethno- pharmacological review on the Turkish Apiaceae species. Journal of Faculty Pharmacy of Istanbul University, 44(2), 163–179.
  • Chang, T. S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
  • Dall’Acqua, S., Sut, S., Zengin, G., Peron, G., Elbasan, F., Yildiztugay, E., … Mahomoodally, M. F. (2022). Phytochemical screening, anti- oxidant, and enzyme inhibitory properties of three Prangos species (P. heyniae, P. meliocarpoides var. meliocarpoides, and P. uechtritzii) depicted by comprehensive LC-MS and multivariate data analysis. Antioxidants, 11(9), 1712. https://doi.org/10.3390/antiox11091712
  • De Souza, L. G., Renn O B, M. N., & Figueroa-Villar, J. D. (2016). Cou- marins as cholinesterase inhibitors: A review. Chemico-Biological Interactions, 254, 11–23. https://doi.org/10.1016/j.cbi.2016.05.001
  • Doković, D. D., Bulatović, V. M., Božić, B. D., Kataranovski, M. V., Zrakić, 56 T. M., & Kovačević, N. N. (2004). 3,5-nonadiyne isolated from the rhi- zome of Cachrys ferulacea inhibits endogenous nitric oxide release by rat peritoneal macrophages. Chemical and Pharmaceutical Bul- letin, 52(7), 853–854. https://doi.org/10.1248/cpb.52.853
  • Duman, H., & Watson, M. F. (1999). Ekimia, a new genus of Umbel- liferae, and two new taxa of Prangos Lindl. (Umbelliferae) from southern Turkey. Edinburgh Journal of Botany, 56(2), 199–209. https://doi.org/10.1017/s0960428600001086
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetyl- cholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Erdogan Orhan, I., Orhan, G., & Gurkas, E. (2011). An overview on natural cholinesterase inhibitors - a multi-targeted drug class - and their mass production. Mini-Reviews in Medicinal Chemistry, 11(10), 836–842. https://doi.org/10.2174/138955711796575434
  • Fais, A., Corda, M., Era, B., Fadda, M. B., Matos, M. J., Santana, L., … Delogu, G. (2009). Tyrosinase inhibitor activity of coumarin- resveratrol hybrids. Molecules, 14(7), 2514–2520.
  • Farkhad, N. K., Farokhi, F., & Tukmacki, A. (2012). Hydro-alcoholic extract of the root of Prangos ferulacea (L.) Lindl can improve se- rum glucose and lipids in alloxan-induced diabetic rats. Avicenna Journal of Phytomedicine, 2(4), 179.
  • Farokhi, F., Farkhad, N. K., & Togmechi, A. (2012). Preventive effects of Prangos ferulacea (L.) Lindle on liver damage of diabetic rats in- duced by alloxan. Avicenna Journal of Phytomedicine, 2(2), 63–71.
  • Farooq, S., Dangroo, N. A., Priya, D., Banday, J. A., Sangwan, P. L., Qurishi, M. A., … Saxena, A. K. (2014). Isolation, cytotoxicity evalu- ation and HPLC-quantification of the chemical constituents from Prangos pabularia. PloS One, 9(10), e108713. https://doi. org/10.1371/journal.pone.0108713
  • Granica, S., Kiss, A. K., Jarończyk, M., Maurin, J. K., Mazurek, A. P., & Czarnocki, Z. (2013). Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors. Archiv Der Pharmazie, 346(11), 775–782. https://doi. org/10.1002/ardp.201300259
  • Greig, N. H., Lahiri, D. K., & Sambamurti, K. (2002). Butyrylcholines- terase: An important new target in Alzheimer’s disease therapy. International Psychogeriatrics, 14(SUPPL. 1), 77–91. https://doi. org/10.1017/S1041610203008676
  • Greig, N. H., Utsuki, T., Yu, Q., Zhu, X., Holloway, H. W., Perry, T.,… Lahiri, D. K. (2001). A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Cur- rent Medical Research and Opinion, 17(3), 159–165. https://doi. org/10.1185/0300799039117057
  • Karahisar, E., Köse, Y. B., İşcan, G., Kürkçüoğlu, M., & Tugay, O. (2022). Chemical composition and anticandidal activity of essential oils obtained from different parts of Prangos heyniae H. Duman & M.
  • F. Watson. Records of Natural Products, 16(1), 84–91. https://doi. org/10.25135/rnp.256.21.03.2017
  • Karakaya, S., Bingol, Z., Koca, M., Dagoglu, S., Pınar, N. M., Demirci, B., … Sytar, O. (2020). Identification of non-alkaloid natural com- pounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharmaceutical Journal, 28(1), 1–14. https://doi.org/10.1016/j. jsps.2019.11.001
  • Kogure, K., Yamauchi, I., Tokumura, A., Kondou, K., Tanaka, N., Takaishi, Y., & Fukuzawa, K. (2004). Novel antioxidants isolated from plants of the genera Ferula, Inula, Prangos and Rheum col- lected in Uzbekistan. Phytomedicine, 11(7–8), 645–651. https:// doi.org/10.1016/j.phymed.2003.09.004
  • Koyu, H., Kazan, A., Demir, S., Haznedaroglu, M. Z., & Yesil-Celiktas, O. (2018). Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with iso- lation of bioactive constituents. Food Chemistry, 248, 183–191. https://doi.org/10.1016/J.FOODCHEM.2017.12.049
  • Lyskov, D. F., Degtjareva, G. V., Samigullin, T. H., & Pimenov, M. G. (2017). The revision of Prangos subsections Koelzella and Fedtschenkoana (Apiaceae) with some notes to phylogeny and biogeography of the genus: Molecular and morphological evi- dences. Plant Systematics and Evolution, 303(7), 815–826. https:// doi.org/10.1007/s00606-017-1412-0
  • Massumi, M. A., Fazeli, M. R., Alavi, S. H. R., & Ajani, Y. (2007). Chemi- cal constituents and antibacterial activity of essential oil of Pran- gos ferulacea (L.) Lindl. fruits. Iranian Journal of Pharmaceutical Sciences, 3(3), 171–176.
  • Menemen, Y. (2012). Türkiye bitkileri listesi:(damarlı bitkiler) (1st ed.; A. Guner, ed.). İstanbul: Nezahat Gökyiğit Botanik Bahçesi Yayınları.
  • Mottaghipisheh, J., Kiss, T., Tóth, B., & Csupor, D. (2020). The Prangos genus: A comprehensive review on traditional use, phytochem- istry, and pharmacological activities. Phytochemistry Reviews, 19, 1449–1470. https://doi.org/10.1007/s11101-020-09688-3
  • Öke-Altuntaş, F., Aslım, B., Duman, H., Gülpınar, A. R., & Kartal, M. (2015). The relative contributions of chlorogenic acid and rutin to antioxidant activities of two endemic Prangos (Umbelliferae) species (P.heynia and P.denticulata). Journal of Food Biochemistry, 39(4), 409–416. https://doi.org/10.1111/jfbc.12137
  • Orhan, I. E., Tosun, F., Senol Deniz, F. S., Eren, G., Mıhoğlugil, F., Akal- gan, D., & Miski, M. (2021). Butyrylcholinesterase-inhibiting natu- ral coumarin molecules as potential leads. Phytochemistry Letters, 44, 48–54. https://doi.org/10.1016/J.PHYTOL.2021.05.001
  • Özbek, H., Güvenalp, Z., Yılmaz, G., Yerdelen, K., Kazaz, C., & Demirezer, Ö. L. (2018). In vitro anticholinesterase activity and molecular docking studies of coumarin derivatives isolated from roots of Heptaptera cilicica. Medicinal Chemistry Research, 27(2), 538–545. https://doi.org/10.1007/s00044-017-2080-x
  • Özek, G., Bedir, E., Tabanca, N., Ali, A., Khan, I. A., Duran, A., … Özek, T. (2018). Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils. Open Chemistry, 1(2), 122–135. https://doi.org/10.1515/chem-2018-0051
  • Özek, G., Özek, T., Işcan, G., Başer, K. H. C., Hamzaoglu, E., & Duran, A. (2007). Comparison of hydrodistillation and microdistillation methods for the analysis of fruit volatiles of Prangos pabularia Lindl., and evaluation of its antimicrobial activity. South African Journal of Botany, 73(4), 563–569. https://doi.org/10.1016/j.sajb.2007.05.002
  • Palmioli, A., Bertuzzi, S., De Luigi, A., Colombo, L., La Ferla, B., Salmona, M., … Airoldi, C. (2019). bioNMR-based identifica- tion of natural anti-Aβ compounds in Peucedanum ostruthium. Bioorganic Chemistry, 83, 76–86. https://doi.org/10.1016/J. BIOORG.2018.10.016
  • Sevin, G., Alan, E., Demir, S., Albayrak, G., Demiroz, T., Yetik-Ana- cak, G., & Baykan, S. (2022). Comparative evaluation of relaxant effects of three prangos species on mouse corpus cavernosum: Chemical characterization and the relaxant mechanisms of ac- tion of P. pabularia and (+)-oxypeucedanin. Journal of Ethnophar- macology, 284(March 2021), 114823. https://doi.org/10.1016/j. jep.2021.114823
  • Shokoohinia, Y., Sajjadi, S. E., Gholamzadeh, S., Fattahi, A., & Beh- bahani, M. (2014). Antiviral and cytotoxic evaluation of coumarins from Prangos ferulacea. Pharmaceutical Biology, 52(12), 1543– 1549. https://doi.org/10.3109/13880209.2014.907322
  • Shu, P., Li, J., Fei, Y., Zhu, H., Yu, M., Liu, A., … Xu, Z. (2020). Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. Jour- nal of Natural Medicines, 74(2), 456–462. https://doi.org/10.1007/ s11418-019-01375-8
  • So, Y. K., & Young, C. K. (2007). Neuroprotective coumarins from the root of Angelica gigas: Structure-activity relationships. Ar- chives of Pharmacal Research, 30(11), 1368–1373. https://doi. org/10.1007/bf02977358
  • Tada, Y., Shikishima, Y., Takaishi, Y., Shibata, H., Higuti, T., Honda, G., … Ashurmetov, O. (2002). Coumarins and γ-pyrone deriva- tives from Prangos pabularia: Antibacterial activity and inhibition of cytokine release. Phytochemistry, 59(6), 649–654. https://doi. org/10.1016/S0031-9422(02)00023-7
  • Ulubelen, A., Topcu, G., Tan, N., Ölçal, S., Johansson, C., Üçer, M., … Tamer, Ş. (1995). Biological activities of a Turkish medicinal plant, Prangos platychlaena. Journal of Ethnopharmacology, 45(3), 193–197. https://doi.org/10.1016/0378-8741(94)01215-L
  • Walsh, R., Rockwood, K., Martin, E., & Darvesh, S. (2011). Syner- gistic inhibition of butyrylcholinesterase by galantamine and citalopram. Biochimica et Biophysica Acta - General Subjects, 1810, 1230–1235. https://doi.org/10.1016/j.bbagen.2011.08.010
  • Wszelaki, N., Paradowska, K., Jamróz, M. K., Granica, S., & Kiss, A. K. (2011). Bioactivity-guided fractionation for the butyrylcholin- esterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits. Journal of Agricultural and Food Chemistry, 59(17), 9186–9193. https://doi.org/10.1021/jf201971s
  • Youkwan, J., Sutthivaiyakit, S., & Sutthivaiyakit, P. (2010). Citruso- sides A-D and furanocoumarins with cholinesterase inhibitory activity from the fruit peels of Citrus hystrix. Journal of Natural Products, 73(11), 1879–1883. https://doi.org/10.1021/np100531x
  • Zahri, S., Razavi, S. M., Niri, F. H., & Mohammadi, S. (2009). Induc- tion of programmed cell death by Prangos uloptera, a medicinal plant. Biological Research, 42(4), 517–522. https://doi.org/10.4067/ S0716-97602009000400013
  • Zengin, G., Mahomoodally, M. F., Yıldıztugay, E., Jugreet, S., Khan, S. U., Dall’Acqua, S., … Montesano, D. (2022). Chemical compo- sition, biological activities and in silico analysis of essential oils of three endemic Prangos species from Turkey. Molecules 2022, Vol. 27, Page 1676, 27(5), 1676. https://doi.org/10.3390/MOL- ECULES27051676
  • Zengin, G., Sinan, K. I., Ak, G., Mahomoodally, M. F., Paksoy, M. Y., Picot-Allain, C., … Custodio, L. (2020). Chemical profile, antioxi- dant, antimicrobial, enzyme inhibitory, and cytotoxicity of seven Apiaceae species from Turkey: A comparative study. Industrial Crops and Products, 153, 112572. https://doi.org/10.1016/j.ind- crop.2020.112572
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767
Year 2023, Volume: 53 Issue: 1, 51 - 57, 28.04.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1087126

Abstract

Project Number

219S127

References

  • Abbas-Mohammadi, M., Farimani, M. M., Salehi, P., Ebrahimi, S. N., Sonboli, A., Kelso, C., & Skropeta, D. (2018). Acetylcholines- terase-inhibitory activity of Iranian plants: Combined HPLC/bio- assay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. Journal of Pharmaceutical and Biomedical Analysis, 158, 471–479.
  • Ahmed, J., Güvenç, A., Küçükboyacı, N., Baldemir, A., & Coşkun, M. (2011). Total phenolic contents and antioxidant activities of Prangos Lindl.(Umbelliferae) species growing in Konya province (Turkey). Turkish Journal of Biology, 35(3), 353–360. https://doi. org/10.3906/biy-0809-23
  • Albayrak, G., Demir, S., Kose, F. A., & Baykan, S. (2021). New coumarin glycosides from endemic Prangos heyniae H. Duman & M.F. Watson. Natural Product Research, 1–13. https://doi.org/10.1080/14786419. 2021.1961138/SUPPL_FILE/GNPL_A_1961138_SM0346.DOCX
  • Albayrak, G., Demir, S., Koyu, H., & Baykan, S. (2022). Anticholinester- ase compounds from endemic Prangos uechtritzii. Chemistry & Bio- diversity, 19, e202200557. https://doi.org/10.1002/cbdv.202200557
  • Aytaç, Z., & Duman, H. (2016). Prangos abieticola (Apiaceae), a new species from south Anatolia, Turkey. Edinburgh Journal of Botany, 73(1), 125–131. https://doi.org/10.1017/S0960428615000293
  • Bahadori, M. B., Zengin, G., Bahadori, S., Maggi, F., & Dinparast, L. (2017). Chemical composition of essential oil, antioxidant, anti- diabetic, anti-obesity, and neuroprotective properties of Prangos gaubae. Natural Product Communications, 12(12), 1945–1948. https://doi.org/10.1177/1934578x1701201233
  • Başer, B., & Pehlivan, S. (2015). Türkiye’nin farklı bölgelerindeki Prangos Lindl . (Apiaceae) cinsine ait taksonların polenlerinin morfolojik farklılıkları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 4(2), 183–188. https://doi.org/10.17798/beufen.11965
  • Başer, K. H. C., Özek, T., Demirci, B., & Duman, H. (2000). Compo- sition of the essential oil of Prangos heyniae H. Duman et M. F. Watson, a new endemic from Turkey. Flavour and Fragrance Journal, 15(1), 47–49. https://doi.org/10.1002/(SICI)1099- 1026(200001/02)15:1<47::AID-FFJ869>3.0.CO;2-9
  • Behçet, L., Yapar, Y., & Olgun, Ş. (2019). Prangos aricakensis (Apiace- ae), a new species from eastern Turkey. Phytotaxa, 401(1), 55–63. https://doi.org/10.11646/phytotaxa.401.1.5
  • Bruno, M., Ilardi, V., Lupidi, G., Quassinti, L., Bramucci, M., Fiorini, D., … Maggi, F. (2021). Composition and biological activities of the essential oil from a Sicilian accession of Prangos ferulacea (L.) Lindl. Natural Product Research, 35(5), 733–743. https://doi.org/10.1080/14786419.2019.1598996
  • Bulut, G., Tuzlacı, E., Doğan, A., & Şenkardes, I. (2014). An ethno- pharmacological review on the Turkish Apiaceae species. Journal of Faculty Pharmacy of Istanbul University, 44(2), 163–179.
  • Chang, T. S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
  • Dall’Acqua, S., Sut, S., Zengin, G., Peron, G., Elbasan, F., Yildiztugay, E., … Mahomoodally, M. F. (2022). Phytochemical screening, anti- oxidant, and enzyme inhibitory properties of three Prangos species (P. heyniae, P. meliocarpoides var. meliocarpoides, and P. uechtritzii) depicted by comprehensive LC-MS and multivariate data analysis. Antioxidants, 11(9), 1712. https://doi.org/10.3390/antiox11091712
  • De Souza, L. G., Renn O B, M. N., & Figueroa-Villar, J. D. (2016). Cou- marins as cholinesterase inhibitors: A review. Chemico-Biological Interactions, 254, 11–23. https://doi.org/10.1016/j.cbi.2016.05.001
  • Doković, D. D., Bulatović, V. M., Božić, B. D., Kataranovski, M. V., Zrakić, 56 T. M., & Kovačević, N. N. (2004). 3,5-nonadiyne isolated from the rhi- zome of Cachrys ferulacea inhibits endogenous nitric oxide release by rat peritoneal macrophages. Chemical and Pharmaceutical Bul- letin, 52(7), 853–854. https://doi.org/10.1248/cpb.52.853
  • Duman, H., & Watson, M. F. (1999). Ekimia, a new genus of Umbel- liferae, and two new taxa of Prangos Lindl. (Umbelliferae) from southern Turkey. Edinburgh Journal of Botany, 56(2), 199–209. https://doi.org/10.1017/s0960428600001086
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetyl- cholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Erdogan Orhan, I., Orhan, G., & Gurkas, E. (2011). An overview on natural cholinesterase inhibitors - a multi-targeted drug class - and their mass production. Mini-Reviews in Medicinal Chemistry, 11(10), 836–842. https://doi.org/10.2174/138955711796575434
  • Fais, A., Corda, M., Era, B., Fadda, M. B., Matos, M. J., Santana, L., … Delogu, G. (2009). Tyrosinase inhibitor activity of coumarin- resveratrol hybrids. Molecules, 14(7), 2514–2520.
  • Farkhad, N. K., Farokhi, F., & Tukmacki, A. (2012). Hydro-alcoholic extract of the root of Prangos ferulacea (L.) Lindl can improve se- rum glucose and lipids in alloxan-induced diabetic rats. Avicenna Journal of Phytomedicine, 2(4), 179.
  • Farokhi, F., Farkhad, N. K., & Togmechi, A. (2012). Preventive effects of Prangos ferulacea (L.) Lindle on liver damage of diabetic rats in- duced by alloxan. Avicenna Journal of Phytomedicine, 2(2), 63–71.
  • Farooq, S., Dangroo, N. A., Priya, D., Banday, J. A., Sangwan, P. L., Qurishi, M. A., … Saxena, A. K. (2014). Isolation, cytotoxicity evalu- ation and HPLC-quantification of the chemical constituents from Prangos pabularia. PloS One, 9(10), e108713. https://doi. org/10.1371/journal.pone.0108713
  • Granica, S., Kiss, A. K., Jarończyk, M., Maurin, J. K., Mazurek, A. P., & Czarnocki, Z. (2013). Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors. Archiv Der Pharmazie, 346(11), 775–782. https://doi. org/10.1002/ardp.201300259
  • Greig, N. H., Lahiri, D. K., & Sambamurti, K. (2002). Butyrylcholines- terase: An important new target in Alzheimer’s disease therapy. International Psychogeriatrics, 14(SUPPL. 1), 77–91. https://doi. org/10.1017/S1041610203008676
  • Greig, N. H., Utsuki, T., Yu, Q., Zhu, X., Holloway, H. W., Perry, T.,… Lahiri, D. K. (2001). A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Cur- rent Medical Research and Opinion, 17(3), 159–165. https://doi. org/10.1185/0300799039117057
  • Karahisar, E., Köse, Y. B., İşcan, G., Kürkçüoğlu, M., & Tugay, O. (2022). Chemical composition and anticandidal activity of essential oils obtained from different parts of Prangos heyniae H. Duman & M.
  • F. Watson. Records of Natural Products, 16(1), 84–91. https://doi. org/10.25135/rnp.256.21.03.2017
  • Karakaya, S., Bingol, Z., Koca, M., Dagoglu, S., Pınar, N. M., Demirci, B., … Sytar, O. (2020). Identification of non-alkaloid natural com- pounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharmaceutical Journal, 28(1), 1–14. https://doi.org/10.1016/j. jsps.2019.11.001
  • Kogure, K., Yamauchi, I., Tokumura, A., Kondou, K., Tanaka, N., Takaishi, Y., & Fukuzawa, K. (2004). Novel antioxidants isolated from plants of the genera Ferula, Inula, Prangos and Rheum col- lected in Uzbekistan. Phytomedicine, 11(7–8), 645–651. https:// doi.org/10.1016/j.phymed.2003.09.004
  • Koyu, H., Kazan, A., Demir, S., Haznedaroglu, M. Z., & Yesil-Celiktas, O. (2018). Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with iso- lation of bioactive constituents. Food Chemistry, 248, 183–191. https://doi.org/10.1016/J.FOODCHEM.2017.12.049
  • Lyskov, D. F., Degtjareva, G. V., Samigullin, T. H., & Pimenov, M. G. (2017). The revision of Prangos subsections Koelzella and Fedtschenkoana (Apiaceae) with some notes to phylogeny and biogeography of the genus: Molecular and morphological evi- dences. Plant Systematics and Evolution, 303(7), 815–826. https:// doi.org/10.1007/s00606-017-1412-0
  • Massumi, M. A., Fazeli, M. R., Alavi, S. H. R., & Ajani, Y. (2007). Chemi- cal constituents and antibacterial activity of essential oil of Pran- gos ferulacea (L.) Lindl. fruits. Iranian Journal of Pharmaceutical Sciences, 3(3), 171–176.
  • Menemen, Y. (2012). Türkiye bitkileri listesi:(damarlı bitkiler) (1st ed.; A. Guner, ed.). İstanbul: Nezahat Gökyiğit Botanik Bahçesi Yayınları.
  • Mottaghipisheh, J., Kiss, T., Tóth, B., & Csupor, D. (2020). The Prangos genus: A comprehensive review on traditional use, phytochem- istry, and pharmacological activities. Phytochemistry Reviews, 19, 1449–1470. https://doi.org/10.1007/s11101-020-09688-3
  • Öke-Altuntaş, F., Aslım, B., Duman, H., Gülpınar, A. R., & Kartal, M. (2015). The relative contributions of chlorogenic acid and rutin to antioxidant activities of two endemic Prangos (Umbelliferae) species (P.heynia and P.denticulata). Journal of Food Biochemistry, 39(4), 409–416. https://doi.org/10.1111/jfbc.12137
  • Orhan, I. E., Tosun, F., Senol Deniz, F. S., Eren, G., Mıhoğlugil, F., Akal- gan, D., & Miski, M. (2021). Butyrylcholinesterase-inhibiting natu- ral coumarin molecules as potential leads. Phytochemistry Letters, 44, 48–54. https://doi.org/10.1016/J.PHYTOL.2021.05.001
  • Özbek, H., Güvenalp, Z., Yılmaz, G., Yerdelen, K., Kazaz, C., & Demirezer, Ö. L. (2018). In vitro anticholinesterase activity and molecular docking studies of coumarin derivatives isolated from roots of Heptaptera cilicica. Medicinal Chemistry Research, 27(2), 538–545. https://doi.org/10.1007/s00044-017-2080-x
  • Özek, G., Bedir, E., Tabanca, N., Ali, A., Khan, I. A., Duran, A., … Özek, T. (2018). Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils. Open Chemistry, 1(2), 122–135. https://doi.org/10.1515/chem-2018-0051
  • Özek, G., Özek, T., Işcan, G., Başer, K. H. C., Hamzaoglu, E., & Duran, A. (2007). Comparison of hydrodistillation and microdistillation methods for the analysis of fruit volatiles of Prangos pabularia Lindl., and evaluation of its antimicrobial activity. South African Journal of Botany, 73(4), 563–569. https://doi.org/10.1016/j.sajb.2007.05.002
  • Palmioli, A., Bertuzzi, S., De Luigi, A., Colombo, L., La Ferla, B., Salmona, M., … Airoldi, C. (2019). bioNMR-based identifica- tion of natural anti-Aβ compounds in Peucedanum ostruthium. Bioorganic Chemistry, 83, 76–86. https://doi.org/10.1016/J. BIOORG.2018.10.016
  • Sevin, G., Alan, E., Demir, S., Albayrak, G., Demiroz, T., Yetik-Ana- cak, G., & Baykan, S. (2022). Comparative evaluation of relaxant effects of three prangos species on mouse corpus cavernosum: Chemical characterization and the relaxant mechanisms of ac- tion of P. pabularia and (+)-oxypeucedanin. Journal of Ethnophar- macology, 284(March 2021), 114823. https://doi.org/10.1016/j. jep.2021.114823
  • Shokoohinia, Y., Sajjadi, S. E., Gholamzadeh, S., Fattahi, A., & Beh- bahani, M. (2014). Antiviral and cytotoxic evaluation of coumarins from Prangos ferulacea. Pharmaceutical Biology, 52(12), 1543– 1549. https://doi.org/10.3109/13880209.2014.907322
  • Shu, P., Li, J., Fei, Y., Zhu, H., Yu, M., Liu, A., … Xu, Z. (2020). Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. Jour- nal of Natural Medicines, 74(2), 456–462. https://doi.org/10.1007/ s11418-019-01375-8
  • So, Y. K., & Young, C. K. (2007). Neuroprotective coumarins from the root of Angelica gigas: Structure-activity relationships. Ar- chives of Pharmacal Research, 30(11), 1368–1373. https://doi. org/10.1007/bf02977358
  • Tada, Y., Shikishima, Y., Takaishi, Y., Shibata, H., Higuti, T., Honda, G., … Ashurmetov, O. (2002). Coumarins and γ-pyrone deriva- tives from Prangos pabularia: Antibacterial activity and inhibition of cytokine release. Phytochemistry, 59(6), 649–654. https://doi. org/10.1016/S0031-9422(02)00023-7
  • Ulubelen, A., Topcu, G., Tan, N., Ölçal, S., Johansson, C., Üçer, M., … Tamer, Ş. (1995). Biological activities of a Turkish medicinal plant, Prangos platychlaena. Journal of Ethnopharmacology, 45(3), 193–197. https://doi.org/10.1016/0378-8741(94)01215-L
  • Walsh, R., Rockwood, K., Martin, E., & Darvesh, S. (2011). Syner- gistic inhibition of butyrylcholinesterase by galantamine and citalopram. Biochimica et Biophysica Acta - General Subjects, 1810, 1230–1235. https://doi.org/10.1016/j.bbagen.2011.08.010
  • Wszelaki, N., Paradowska, K., Jamróz, M. K., Granica, S., & Kiss, A. K. (2011). Bioactivity-guided fractionation for the butyrylcholin- esterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits. Journal of Agricultural and Food Chemistry, 59(17), 9186–9193. https://doi.org/10.1021/jf201971s
  • Youkwan, J., Sutthivaiyakit, S., & Sutthivaiyakit, P. (2010). Citruso- sides A-D and furanocoumarins with cholinesterase inhibitory activity from the fruit peels of Citrus hystrix. Journal of Natural Products, 73(11), 1879–1883. https://doi.org/10.1021/np100531x
  • Zahri, S., Razavi, S. M., Niri, F. H., & Mohammadi, S. (2009). Induc- tion of programmed cell death by Prangos uloptera, a medicinal plant. Biological Research, 42(4), 517–522. https://doi.org/10.4067/ S0716-97602009000400013
  • Zengin, G., Mahomoodally, M. F., Yıldıztugay, E., Jugreet, S., Khan, S. U., Dall’Acqua, S., … Montesano, D. (2022). Chemical compo- sition, biological activities and in silico analysis of essential oils of three endemic Prangos species from Turkey. Molecules 2022, Vol. 27, Page 1676, 27(5), 1676. https://doi.org/10.3390/MOL- ECULES27051676
  • Zengin, G., Sinan, K. I., Ak, G., Mahomoodally, M. F., Paksoy, M. Y., Picot-Allain, C., … Custodio, L. (2020). Chemical profile, antioxi- dant, antimicrobial, enzyme inhibitory, and cytotoxicity of seven Apiaceae species from Turkey: A comparative study. Industrial Crops and Products, 153, 112572. https://doi.org/10.1016/j.ind- crop.2020.112572
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767
There are 53 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Gökay Albayrak 0000-0002-5729-0796

Serdar Demir This is me 0000-0001-6572-8818

Halil Koyu 0000-0002-5491-9894

Sura Baykan This is me 0000-0002-3624-4811

Project Number 219S127
Publication Date April 28, 2023
Submission Date March 13, 2022
Published in Issue Year 2023 Volume: 53 Issue: 1

Cite

APA Albayrak, G., Demir, S., Koyu, H., Baykan, S. (2023). Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites. İstanbul Journal of Pharmacy, 53(1), 51-57. https://doi.org/10.26650/IstanbulJPharm.2023.1087126
AMA Albayrak G, Demir S, Koyu H, Baykan S. Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites. iujp. April 2023;53(1):51-57. doi:10.26650/IstanbulJPharm.2023.1087126
Chicago Albayrak, Gökay, Serdar Demir, Halil Koyu, and Sura Baykan. “Anticholinesterase and Antityrosinase Activities of Endemic Prangos Heyniae H. Duman & M. F. Watson and Its Metabolites”. İstanbul Journal of Pharmacy 53, no. 1 (April 2023): 51-57. https://doi.org/10.26650/IstanbulJPharm.2023.1087126.
EndNote Albayrak G, Demir S, Koyu H, Baykan S (April 1, 2023) Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites. İstanbul Journal of Pharmacy 53 1 51–57.
IEEE G. Albayrak, S. Demir, H. Koyu, and S. Baykan, “Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites”, iujp, vol. 53, no. 1, pp. 51–57, 2023, doi: 10.26650/IstanbulJPharm.2023.1087126.
ISNAD Albayrak, Gökay et al. “Anticholinesterase and Antityrosinase Activities of Endemic Prangos Heyniae H. Duman & M. F. Watson and Its Metabolites”. İstanbul Journal of Pharmacy 53/1 (April 2023), 51-57. https://doi.org/10.26650/IstanbulJPharm.2023.1087126.
JAMA Albayrak G, Demir S, Koyu H, Baykan S. Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites. iujp. 2023;53:51–57.
MLA Albayrak, Gökay et al. “Anticholinesterase and Antityrosinase Activities of Endemic Prangos Heyniae H. Duman & M. F. Watson and Its Metabolites”. İstanbul Journal of Pharmacy, vol. 53, no. 1, 2023, pp. 51-57, doi:10.26650/IstanbulJPharm.2023.1087126.
Vancouver Albayrak G, Demir S, Koyu H, Baykan S. Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & M. F. Watson and its metabolites. iujp. 2023;53(1):51-7.