https://doi.org/10.3390/app10082823 Hearing, V. J., & Jimenez, M. (1987). Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19, 1141-1147. https://doi. org/10.1016/0020-711X(87)90095-4 google scholar" />
Research Article
BibTex RIS Cite

Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species

Year 2023, Volume: 53 Issue: 2, 177 - 185, 30.08.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1024145

Abstract

Background and Aims: The importance of Hypericum species that are used traditionally against many diseases is increasing day by day.
Methods: In this study, the essential oil contents of Hypericum triquetrifolium, H. empetrifolium subsp. empetrifolium, and H. pruinatum species were determined with GC-MS/FID. This is the first study on the antioxidant, anticholinesterase, antiurease, antityrosinase, antielastase, and anticollagenase activities of these species. Also, in silico and in vitro enzyme inhibitory activities of the major compounds in the essential oil samples of the species have been evaluated. In addition, the cytotoxic effects of the essential oils were determined by the MTT method.
Results: According to GC-MS/FID results, the major compounds were determined as caryophyllene oxide (16.76%) for H. triquetrifolium, α-pinene (21.67%) for H. empetrifolium subsp. empetrifolium, and germacrene D (22.47%) for H. pruinatum. Especially, H. pruinatum sample showed a high cytotoxic effect (IC50: 34.78±0.22 and 29.06±0.40 µg/mL, respectively) on HT29 and MCF-7 cell lines. It was determined that the same sample showed a promising inhibitory activity on acetyl (18.33±2.79, 36.48±2.40, and 56.97±0.94, respectively) and butyryl (71.63±2.78, 73.88±1.16, and 56.97±0.97, respectively) cholinesterase enzymes.
Conclusion: Results of the in-vitro activity studies indicated that H. pruinatum essential oil could be used in the pharmaceutical industry.

References

  • Akdeniz, M., Yilmaz, M. A., Ertas, A., Yener, I., Firat, M., Aydin, F., & Kolak, U. (2020). Method validation of 15 phytochemicals in Hy-pericum lysimachioides var. spathulatum by LC-MS/MS, and fatty acid, essential oil, and aroma profiles with biological activities. Journal of Food Measurement and Characterization, 14, 3194-3205. https://doi.org/10.1007/s11694-020-00562-6 google scholar
  • Al-Snafi, A. E. (2018). Chemical constituents and pharmacologi-cal effects of Hypericum triquetrifolium. Indo American Journal of Pharmaceutical Sciences, 5, 1757-1765. https://doi.org/10.5281/ zenodo.1210525 google scholar
  • Apak, R., Guclu, K., Ozyurek, M., & Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981. https://doi.org/10.1021/jf048741x google scholar
  • Babacan, E.Y., Aytac, Z., & Pinar, M. (2017). Hypericum ekerii (Hy-pericaceae) a new species from Turkey. Pakistan Journal of Botany, 49, 1763-1768. google scholar
  • Bakir, D., Akdeniz, M., Ertas, A., Yilmaz, M. A., Yener, I., Firat, M., & Kolak, U. (2020). A GC-MS method validation for quantitative investiga-tion of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. Journal of Food Biochemistry, 44, e13350. https://doi.org/10.1111/jfbc.13350 google scholar
  • Baytop, T. (1984). Treatment with plants in Turkey, Istanbul University Publications, Istanbul, Turkey, 3255. google scholar
  • Bertoli, A., Menichini, F., Mazzetti, M., Spinelli, G., & Morelli, I. (2003). Volatile constituents of the leaves and flowers of Hyperi-cum triquetrifolium Turra. Flavour and Fragrance Journal, 18, 91-94. https://doi.org/10.1002/ffj.1161 google scholar
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi. org/10.1038/1811199a0 google scholar
  • Carletti, E., Colletier, J. P., Dupeux, F., Trovaslet, M., Masson, P., & Nachon, F. (2010). Structural evidence that human acetylcholin-esterase inhibited by tabun ages through O-dealkylation. Journal of Medicinal Chemistry, 53, 4002-4008. https://doi.org/10.1021/ jm901853b google scholar
  • Carletti, E., Colletier, J. P., Schopfer, L. M., Santoni, G., & Masson, P. (2013). Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chemical Research in Toxicol-ogy, 26, 280-289. https://doi.org/10.1021/tx3004505 google scholar
  • Cirak, C., & Bertoli, A. (2013). Aromatic profiling of wild and rare spe-cies growing in Turkey: Hypericum aviculariifolium Jaub. And Spach subsp. Depilatum (Freyn and Bornm.) Robson var. Depilatum and Hypericum pruinatum Boiss. And Bal. Natural Product Research, 27, 100-107. https://doi.org/10.1080/14786419.2012.660633 google scholar
  • Deri, B., Kanteev, M., Goldfeder, M., Lecina, D., Guallar, V., Adir, N., & Fishman, A. (2016). The unravelling of the complex pattern of tyrosinase inhibition. Scientific Reports, 6, 34993. google scholar
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcho-linesterase activity. Biochemical Pharmacology, 7, 88-95. https:// doi.org/10.1016/0006-2952(61)90145-9 google scholar
  • Ertas, A., & Yener, I. (2020). A comprehensive study on chemical and biological profiles of three herbal teas in Anatolia; rosmarinic and chlorogenic acids. South African Journal of Botany, 130, 274281. https://doi.org/10.1016/j.sajb.2020.01.008 google scholar
  • Ertas, A., Cakırca, H., Yener, I., Akdeniz, M., Fırat, M., Topcu, G., & Ko-lak, U. (2021). Bioguided fraction and isolation of secondary me-tabolites from Salvia cerino-pruinosa Rech. F. var. Cerino-pruinosa. Records of Natural Products, 15, 585-592. https://doi.org/10.25135/ rnp.248.21.01.1933 google scholar
  • Grafakou, M. E., Diamanti, A., Antaloudaki, E., Kypriotakis, Z., Ciric, A., Sokovic, M., & Skaltsa, H. (2020). Chemical composition and antimicrobial activity of the essential oils of three closely related Hypericum species growing Wild on the Island of Crete, Greece. Applied Sciences, 10, 2823. https://doi.org/10.3390/app10082823">https://doi.org/10.3390/app10082823 Hearing, V. J., & Jimenez, M. (1987). Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19, 1141-1147. https://doi. org/10.1016/0020-711X(87)90095-4 google scholar
  • Hina, Z., Ghazala, H. R., Arfa, K., Huma, S., Sabiha, T., & Ajmal, K. (2015). Anti-urease activity of Mimusops elengi Linn (Sapotace-ae). European Journal of Medicinal Plants, 6, 223-230. https://doi. org/10.9734/EJMP/2015/12240 google scholar
  • Karatoprak, G. S., Yucel, C., Kaytan, H.C., Ilgun, S., Safak, E. K., & Ko-sar, M. (2019). Antioxidant and cytotoxic activities of aerial and underground parts of Hypericum scabrum L. Iranian Journal of Science and Technology, Transactions A: Science, 43, 2107-2113 https://doi.org/10.1007/s40995-019-00717-1 google scholar
  • Kohno, T., Hochigai, H., Yamashita, E., Tsukihara, T., & Kanaoka, M. (2006). Crystal structures of the catalytic domain of human stromely-sin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453. Biochemical and Biophysical Research Communi-cations, 344, 315-322. https://doi.org/10.1016/j.bbrc.2006.03.098 google scholar
  • Kraunsoe, J. A. E., Claridge, T. D. W., & Lowe, G. (1996). Inhibition of human leukocyte and porcine pancreatic elastase by homo-logues of bovine pancreatic trypsin inhibitor. Biochemistry, 35, 9090-9096. https://doi.org/10.1021/bi953013b google scholar
  • Lang, P. T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S. ... Kuntz, I. (2007). DOCK 6.1. University of California, San Francisco. http://dock.compbio.ucsf.edu/ google scholar
  • Mojarraba, M., Langzian, M.S., Emamic, S.A., Asilic, J., & Tayarani-Naja-ranb, Z. (2013). In vitro anti-proliferative and apoptotic activity of differ-ent fractions of Artemisia armeniaca. Revista Brasileira de Farmacogno-sia, 23,783-7888. https://doi.org/10.1590/S0102-695X2013000500010 google scholar
  • Nakanishi, I., Kinoshita, T., Sato, A., & Tada, T. (2020). Structure of porcine pancreatic elastase complexed with FR901277, a novel macrocyclic inhibitor of elastases, at 1.6Â resolution. Biopolymers 53, 434-445. https://doi.org/10.1002/(SICI)1097-0282(20000415)53:5<434::AID-BIP7>3.0.CO;2-5 google scholar
  • Petrakis, P. V. Couladis, M., Couladis, M., & Roussis, V. (2005). A method for detecting the biosystematic significance of the es-sential oil composition: The case of five Hellenic Hypericum L. spe-cies. Biochemical Systematics and Ecology, 33, 873-898. https://doi. org/10.1016/j.bse.2005.02.002 google scholar
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Ev-ans, C. (1999). Antioxidant activity applying an improved ABTS radi-cal cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3 google scholar
  • Sajjadi, S. E., Mehregan, I., & Taheri, M. (2015). Essential oil com-position of Hypericum triquetrifolium Turra growing wild in Iran. Research in Pharmaceutical Sciences, 10, 90-94. google scholar
  • Silva, A. R., Taofiq, O., Ferreira, I. C. F. R., & Barros, L. (2021). Hypericum genus cosmeceutical application: A decade comprehensive review on its multifunctional biological properties. Industrial Crops and Prod-ucts, 159, 113053. https://doi.org/10.1016/j.indcrop.2020.113053 google scholar
  • Tahir, N. A. R., Azeez, H. A., Muhammad, K. A., Faqe, S. A., & Omer, D. A. (2019). Exploring of bioactive compounds in essential oil acquired from the stem and root derivatives of Hypericum triquet-rifolium callus cultures. Natural Product Research, 33, 1504-1508. https://doi.org/10.1080/14786419.2017.1419228 google scholar
  • Thring, T. S. A., Hili, P., & Naughton, D.P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine, 9, 1-11. https://doi. org/10.1186/1472-6882-9-27 google scholar
  • Volz, H.P. (1997) Controlled clinical trials of Hypericum extracts in depressed patients: An overview. Pharmacopsychiatry, 30, 72-76. https://doi.org/10.1055/s-2007-979522 google scholar
  • Yener, I., Ozhan Kocakaya, S., Ertas, A., Ercan, B., Kaplaner, E., Var-han Oral, E., Yilmaz-Ozden, T., Yilmaz, M. A., Ozturk, M., & Kolak, U. (2020). Selective in vitro and in silico enzymes inhibitory ac-tivities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chemistry, 327, 127045. https://doi. org/10.1016/j.foodchem.2020.127045 google scholar
  • Yener, I., Tokul-Olmez, O., Ertas, A., Yilmaz, M. A., Firat, M., Irtegun-Kandemir, S., Ozturk, M., Kolak, U., & Temel, H. (2018). A detailed study on chemical and biological profile of nine Euphorbia spe-cies from Turkey with chemometric approach: Remarkable cy-totoxicity of E. fistulasa and promising tannic acid content of E. eriophora. Industrial Crops and Products, 123, 442-453. https://doi. org/10.1016/j.indcrop.2018.07.007 google scholar
Year 2023, Volume: 53 Issue: 2, 177 - 185, 30.08.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1024145

Abstract

References

  • Akdeniz, M., Yilmaz, M. A., Ertas, A., Yener, I., Firat, M., Aydin, F., & Kolak, U. (2020). Method validation of 15 phytochemicals in Hy-pericum lysimachioides var. spathulatum by LC-MS/MS, and fatty acid, essential oil, and aroma profiles with biological activities. Journal of Food Measurement and Characterization, 14, 3194-3205. https://doi.org/10.1007/s11694-020-00562-6 google scholar
  • Al-Snafi, A. E. (2018). Chemical constituents and pharmacologi-cal effects of Hypericum triquetrifolium. Indo American Journal of Pharmaceutical Sciences, 5, 1757-1765. https://doi.org/10.5281/ zenodo.1210525 google scholar
  • Apak, R., Guclu, K., Ozyurek, M., & Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981. https://doi.org/10.1021/jf048741x google scholar
  • Babacan, E.Y., Aytac, Z., & Pinar, M. (2017). Hypericum ekerii (Hy-pericaceae) a new species from Turkey. Pakistan Journal of Botany, 49, 1763-1768. google scholar
  • Bakir, D., Akdeniz, M., Ertas, A., Yilmaz, M. A., Yener, I., Firat, M., & Kolak, U. (2020). A GC-MS method validation for quantitative investiga-tion of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. Journal of Food Biochemistry, 44, e13350. https://doi.org/10.1111/jfbc.13350 google scholar
  • Baytop, T. (1984). Treatment with plants in Turkey, Istanbul University Publications, Istanbul, Turkey, 3255. google scholar
  • Bertoli, A., Menichini, F., Mazzetti, M., Spinelli, G., & Morelli, I. (2003). Volatile constituents of the leaves and flowers of Hyperi-cum triquetrifolium Turra. Flavour and Fragrance Journal, 18, 91-94. https://doi.org/10.1002/ffj.1161 google scholar
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi. org/10.1038/1811199a0 google scholar
  • Carletti, E., Colletier, J. P., Dupeux, F., Trovaslet, M., Masson, P., & Nachon, F. (2010). Structural evidence that human acetylcholin-esterase inhibited by tabun ages through O-dealkylation. Journal of Medicinal Chemistry, 53, 4002-4008. https://doi.org/10.1021/ jm901853b google scholar
  • Carletti, E., Colletier, J. P., Schopfer, L. M., Santoni, G., & Masson, P. (2013). Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chemical Research in Toxicol-ogy, 26, 280-289. https://doi.org/10.1021/tx3004505 google scholar
  • Cirak, C., & Bertoli, A. (2013). Aromatic profiling of wild and rare spe-cies growing in Turkey: Hypericum aviculariifolium Jaub. And Spach subsp. Depilatum (Freyn and Bornm.) Robson var. Depilatum and Hypericum pruinatum Boiss. And Bal. Natural Product Research, 27, 100-107. https://doi.org/10.1080/14786419.2012.660633 google scholar
  • Deri, B., Kanteev, M., Goldfeder, M., Lecina, D., Guallar, V., Adir, N., & Fishman, A. (2016). The unravelling of the complex pattern of tyrosinase inhibition. Scientific Reports, 6, 34993. google scholar
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcho-linesterase activity. Biochemical Pharmacology, 7, 88-95. https:// doi.org/10.1016/0006-2952(61)90145-9 google scholar
  • Ertas, A., & Yener, I. (2020). A comprehensive study on chemical and biological profiles of three herbal teas in Anatolia; rosmarinic and chlorogenic acids. South African Journal of Botany, 130, 274281. https://doi.org/10.1016/j.sajb.2020.01.008 google scholar
  • Ertas, A., Cakırca, H., Yener, I., Akdeniz, M., Fırat, M., Topcu, G., & Ko-lak, U. (2021). Bioguided fraction and isolation of secondary me-tabolites from Salvia cerino-pruinosa Rech. F. var. Cerino-pruinosa. Records of Natural Products, 15, 585-592. https://doi.org/10.25135/ rnp.248.21.01.1933 google scholar
  • Grafakou, M. E., Diamanti, A., Antaloudaki, E., Kypriotakis, Z., Ciric, A., Sokovic, M., & Skaltsa, H. (2020). Chemical composition and antimicrobial activity of the essential oils of three closely related Hypericum species growing Wild on the Island of Crete, Greece. Applied Sciences, 10, 2823. https://doi.org/10.3390/app10082823">https://doi.org/10.3390/app10082823 Hearing, V. J., & Jimenez, M. (1987). Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19, 1141-1147. https://doi. org/10.1016/0020-711X(87)90095-4 google scholar
  • Hina, Z., Ghazala, H. R., Arfa, K., Huma, S., Sabiha, T., & Ajmal, K. (2015). Anti-urease activity of Mimusops elengi Linn (Sapotace-ae). European Journal of Medicinal Plants, 6, 223-230. https://doi. org/10.9734/EJMP/2015/12240 google scholar
  • Karatoprak, G. S., Yucel, C., Kaytan, H.C., Ilgun, S., Safak, E. K., & Ko-sar, M. (2019). Antioxidant and cytotoxic activities of aerial and underground parts of Hypericum scabrum L. Iranian Journal of Science and Technology, Transactions A: Science, 43, 2107-2113 https://doi.org/10.1007/s40995-019-00717-1 google scholar
  • Kohno, T., Hochigai, H., Yamashita, E., Tsukihara, T., & Kanaoka, M. (2006). Crystal structures of the catalytic domain of human stromely-sin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453. Biochemical and Biophysical Research Communi-cations, 344, 315-322. https://doi.org/10.1016/j.bbrc.2006.03.098 google scholar
  • Kraunsoe, J. A. E., Claridge, T. D. W., & Lowe, G. (1996). Inhibition of human leukocyte and porcine pancreatic elastase by homo-logues of bovine pancreatic trypsin inhibitor. Biochemistry, 35, 9090-9096. https://doi.org/10.1021/bi953013b google scholar
  • Lang, P. T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S. ... Kuntz, I. (2007). DOCK 6.1. University of California, San Francisco. http://dock.compbio.ucsf.edu/ google scholar
  • Mojarraba, M., Langzian, M.S., Emamic, S.A., Asilic, J., & Tayarani-Naja-ranb, Z. (2013). In vitro anti-proliferative and apoptotic activity of differ-ent fractions of Artemisia armeniaca. Revista Brasileira de Farmacogno-sia, 23,783-7888. https://doi.org/10.1590/S0102-695X2013000500010 google scholar
  • Nakanishi, I., Kinoshita, T., Sato, A., & Tada, T. (2020). Structure of porcine pancreatic elastase complexed with FR901277, a novel macrocyclic inhibitor of elastases, at 1.6Â resolution. Biopolymers 53, 434-445. https://doi.org/10.1002/(SICI)1097-0282(20000415)53:5<434::AID-BIP7>3.0.CO;2-5 google scholar
  • Petrakis, P. V. Couladis, M., Couladis, M., & Roussis, V. (2005). A method for detecting the biosystematic significance of the es-sential oil composition: The case of five Hellenic Hypericum L. spe-cies. Biochemical Systematics and Ecology, 33, 873-898. https://doi. org/10.1016/j.bse.2005.02.002 google scholar
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Ev-ans, C. (1999). Antioxidant activity applying an improved ABTS radi-cal cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3 google scholar
  • Sajjadi, S. E., Mehregan, I., & Taheri, M. (2015). Essential oil com-position of Hypericum triquetrifolium Turra growing wild in Iran. Research in Pharmaceutical Sciences, 10, 90-94. google scholar
  • Silva, A. R., Taofiq, O., Ferreira, I. C. F. R., & Barros, L. (2021). Hypericum genus cosmeceutical application: A decade comprehensive review on its multifunctional biological properties. Industrial Crops and Prod-ucts, 159, 113053. https://doi.org/10.1016/j.indcrop.2020.113053 google scholar
  • Tahir, N. A. R., Azeez, H. A., Muhammad, K. A., Faqe, S. A., & Omer, D. A. (2019). Exploring of bioactive compounds in essential oil acquired from the stem and root derivatives of Hypericum triquet-rifolium callus cultures. Natural Product Research, 33, 1504-1508. https://doi.org/10.1080/14786419.2017.1419228 google scholar
  • Thring, T. S. A., Hili, P., & Naughton, D.P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine, 9, 1-11. https://doi. org/10.1186/1472-6882-9-27 google scholar
  • Volz, H.P. (1997) Controlled clinical trials of Hypericum extracts in depressed patients: An overview. Pharmacopsychiatry, 30, 72-76. https://doi.org/10.1055/s-2007-979522 google scholar
  • Yener, I., Ozhan Kocakaya, S., Ertas, A., Ercan, B., Kaplaner, E., Var-han Oral, E., Yilmaz-Ozden, T., Yilmaz, M. A., Ozturk, M., & Kolak, U. (2020). Selective in vitro and in silico enzymes inhibitory ac-tivities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chemistry, 327, 127045. https://doi. org/10.1016/j.foodchem.2020.127045 google scholar
  • Yener, I., Tokul-Olmez, O., Ertas, A., Yilmaz, M. A., Firat, M., Irtegun-Kandemir, S., Ozturk, M., Kolak, U., & Temel, H. (2018). A detailed study on chemical and biological profile of nine Euphorbia spe-cies from Turkey with chemometric approach: Remarkable cy-totoxicity of E. fistulasa and promising tannic acid content of E. eriophora. Industrial Crops and Products, 123, 442-453. https://doi. org/10.1016/j.indcrop.2018.07.007 google scholar
There are 32 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Mehmet Akdeniz This is me 0000-0002-4435-4826

İsmail Yener 0000-0002-0988-9462

Şafak Özhan Kocakaya 0000-0001-6836-7667

Murat Yolcu 0000-0003-3067-8755

Serkan Yiğitkan This is me 0000-0002-6202-1515

Fırat Aydın 0000-0002-0868-2769

Fatma Pınar Türkmenoğlu This is me 0000-0002-4377-0481

Abdulselam Ertaş 0000-0002-2193-8386

Publication Date August 30, 2023
Submission Date November 17, 2021
Published in Issue Year 2023 Volume: 53 Issue: 2

Cite

APA Akdeniz, M., Yener, İ., Özhan Kocakaya, Ş., Yolcu, M., et al. (2023). Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species. İstanbul Journal of Pharmacy, 53(2), 177-185. https://doi.org/10.26650/IstanbulJPharm.2023.1024145
AMA Akdeniz M, Yener İ, Özhan Kocakaya Ş, Yolcu M, Yiğitkan S, Aydın F, Türkmenoğlu FP, Ertaş A. Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species. iujp. August 2023;53(2):177-185. doi:10.26650/IstanbulJPharm.2023.1024145
Chicago Akdeniz, Mehmet, İsmail Yener, Şafak Özhan Kocakaya, Murat Yolcu, Serkan Yiğitkan, Fırat Aydın, Fatma Pınar Türkmenoğlu, and Abdulselam Ertaş. “Essential Oil Content, in-Vitro and in-Silico Activities of Hypericum Triquetrifolium Turra, H. Empetrifolium Subsp. Empetrifolium Willd., and H. Pruinatum Boiss. & Balansa Species”. İstanbul Journal of Pharmacy 53, no. 2 (August 2023): 177-85. https://doi.org/10.26650/IstanbulJPharm.2023.1024145.
EndNote Akdeniz M, Yener İ, Özhan Kocakaya Ş, Yolcu M, Yiğitkan S, Aydın F, Türkmenoğlu FP, Ertaş A (August 1, 2023) Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species. İstanbul Journal of Pharmacy 53 2 177–185.
IEEE M. Akdeniz, İ. Yener, Ş. Özhan Kocakaya, M. Yolcu, S. Yiğitkan, F. Aydın, F. P. Türkmenoğlu, and A. Ertaş, “Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species”, iujp, vol. 53, no. 2, pp. 177–185, 2023, doi: 10.26650/IstanbulJPharm.2023.1024145.
ISNAD Akdeniz, Mehmet et al. “Essential Oil Content, in-Vitro and in-Silico Activities of Hypericum Triquetrifolium Turra, H. Empetrifolium Subsp. Empetrifolium Willd., and H. Pruinatum Boiss. & Balansa Species”. İstanbul Journal of Pharmacy 53/2 (August 2023), 177-185. https://doi.org/10.26650/IstanbulJPharm.2023.1024145.
JAMA Akdeniz M, Yener İ, Özhan Kocakaya Ş, Yolcu M, Yiğitkan S, Aydın F, Türkmenoğlu FP, Ertaş A. Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species. iujp. 2023;53:177–185.
MLA Akdeniz, Mehmet et al. “Essential Oil Content, in-Vitro and in-Silico Activities of Hypericum Triquetrifolium Turra, H. Empetrifolium Subsp. Empetrifolium Willd., and H. Pruinatum Boiss. & Balansa Species”. İstanbul Journal of Pharmacy, vol. 53, no. 2, 2023, pp. 177-85, doi:10.26650/IstanbulJPharm.2023.1024145.
Vancouver Akdeniz M, Yener İ, Özhan Kocakaya Ş, Yolcu M, Yiğitkan S, Aydın F, Türkmenoğlu FP, Ertaş A. Essential oil content, in-vitro and in-silico activities of Hypericum triquetrifolium Turra, H. empetrifolium subsp. empetrifolium Willd., and H. pruinatum Boiss. & Balansa species. iujp. 2023;53(2):177-85.