Research Article
BibTex RIS Cite

Thermogravimetric Evaluation for the Pyrolysis Process of Pellets Produced from Quinoa and Amaranth Harvest Residues

Year 2022, Volume: 5 Issue: 2, 64 - 73, 30.12.2022
https://doi.org/10.46876/ja.1202911

Abstract

In this study, the combustion properties of pellets produced from quinoa (C3 plant) and amaranth (C4 plant) harvest residues were evaluated by Thermogravimetric Analysis (TGA) and Differential Thermogravimetry (DTG) methods. Pelletizing was carried out at 25% moisture content and at a material temperature of 70 °C. 7.5% molasses was used as the adhesive. The pellets were heated from 25 °C to 1000 °C in a thermal analyzer at a tracking rate of 10 °C min-1 and in N2 gas environment. The mass loss and mass loss rate occurring in this temperature range were recorded simultaneously and expressed in thermograms. Combustion stages are observed as a peak in the DTG curve and these peaks represent the mass losses in the combustion stages. According to the analysis results, the highest mass loss rate in the evaporation zone of water in the quinoa plant was 2.12% at 96.65 °C, and in the amaranth plant at 2.34% at 101.7 °C. However, in the next step, the mass loss rate decreased in both pellets. At this stage of the analysis, the water in the pellets completely evaporated and the mass loss was 12.43% in quinoa and 13.38% in amaranth, according to the initial mass. With the increase of volatile matter output, the mass loss rate increased again, and the highest mass loss rates were realized as 6.42% and 4.96%, respectively, at 320 °C for quinoa and 315 °C for amaranth. The rate-determining stage in the combustion kinetics of coal and biomass is the semi-coke combustion stage. At this stage, the lowest mass loss (0.89%) occurred in both pellet samples. TGA and DTG results showed that there were no significant differences between the combustion stages of quinoa and amaranth pellets, and their combustion behaviors were generally close to each other.

Supporting Institution

The Scientific Research Projects Unit of Iğdır University

Project Number

2017-FBE-L15

References

  • Acar, M. (2015). Tarım ve biyoyakıtlar. Türktarım Dergisi, 224, 50-53.
  • Açma, H. (1999). Kömürün mineral içeriğinin yanma özelliklerine etkisi. [Doktora Tezi]. İstanbul Teknik Üniversitesi Fen Bilimleri Fakültesi, İstanbul.
  • Atay, O. A., Ekinci, K., & Umucu, Y. (2016). Yağ gülü damıtma atıkları, kızılçam kabuğu ve linyit kömür tozundan elde edilen peletlerin baca gazı emisyonlarının belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 13(2), 1-9.
  • Başçetinçelik, A., & Öztürk, H. (2005). Türkiye’de tarımsal biyokütleden enerji üretimi olanakları, Makina Mühendisleri Odası Dergisi, 563, 7-13.
  • Berkowitz, N. (1985). Chemistry of Coal Science and Technology. Elsevier, Amsterdam.
  • Bhargava, A., Shukla, S., & Ohri, D. (2007). Genetic variability and ınterrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa willd.). Field Crops Research, 101(1), 104-116. doi.org/10.1016/j.fcr.2006.10.001
  • Branca, C., & Blasi, C.D. (2004). Global intrinsic kinetics of wood oxidation. Fuel, 83(1), 81–87. doi.org/10.1016/S0016-2361(03)00220-5
  • Caballero, J.A., Conesa, R., Front, A., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159-175. doi.org/10.1016/S0165-2370(97)00015-6
  • Collard, F. X. & Blin, J. (2014). A Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews, 38, 594-608. doi.org/10.1016/j.rser.2014.06.013
  • Çıtak, E., & Kılınç Pala, P.B. (2016). Yenilenebilir enerjinin enerji güvenliğine etkisi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25, 79-102.
  • Durak, D. (2015). Amaranth sp. türlerinin yem olarak kalite kriterleri ve toksisitesinin belirlenmesi. [Yüksek Lisans Tezi]. Mustafa Kemal Üniversitesi Hatay.
  • Ergun, M., Özbay, N., Osmanoğlu, A., & Çalkır, A. (2014). Sebze ve tahıl olarak amarant (Amarant spp) bitkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 4(3), 21-28.
  • Fang, M. X., Shen, D. K., Li, Y. X., Yu, C. J., Luo, Z. Y., & Cen, K. F. (2006). Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 77, 22–27. doi.org/10.1016/j.jaap.2005.12.010
  • Grover, P.D., & Mishra, S.K. (1996). Biomass briquetting: technology and practices. Food and Agriculture Organization of the United Nations, Bangkok, Tailand,43.
  • Kaewluan, S., & Pipatmanomai, S. (2011). Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier. Energy Conversion and Management, 52(1), 75–84. doi.org/10.1016/j.enconman.2010.06.044
  • Karaosmanoğlu, F. (2006). Biyoyakıt teknolojisi ve İTÜ araştırmaları. ENKÜS 2006-İTÜ Enerji Çalıştayı ve Sergisi Bildiri Kitabı, İstanbul, Türkiye.
  • Kazagic, A., & Smajevic, I. (2007). Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass. Energy, 32(10), 2006–2016. doi.org/10.1016/j.energy.2007.03.007
  • Kuş, E., Yıldırım, Y., Çokgez Kuş, A., Demir, B. (2016). Iğdır ili tarımsal biyokütle potansiyeli ve enerji eşdeğeri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 65-73.
  • Küsek, G., Güngör, C., Öztürk, H.H., & Akdemir, Ş. (2015). Tarımsal artıklardan biyopelet üretimi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(2), 137-145.
  • Liu, N. A., Weicheng, F., Ritsu, D., & Liusheng, H. (2002). Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical and Applied Pyrolysis, 63(2), 303–325. doi.org/10.1016/S0165-2370(01)00161-9
  • Maschio, G., Lucchesi, A., & Koufopanos, C. (1992). Study of the kinetic and transfer phenomena in the pyrolysis of biomass particles, in: A.V. Bridgwater (Ed.), Advances in Thermochemical Biomass Conversion (pp. 746-759), Blakie/Cambridge University Press. London.
  • Orecchini, F., & Bocci, E. (2007). Biomass to hydrogen for the realization of closed cycles of energy resources, Energy 32(6), 1006–1011. doi.org/10.1016/j.energy.2006.10.021
  • Özsin, G. (2018). Termal analiz ile birleştirilmiş spektral yöntemlerin kullanımı ile biyokütle pirolizinin incelenmesi. BAUN Fen Bilimleri Enstitüsü Dergisi, 20(2), 315-329. Doi: 10.25092/baunfbed.433924
  • Paniagua Bermejo, S. P., Prado-Guerra, A., Garcia Perez, A. I., & Calvo Prieto, L. F. (2020). Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renewable Energy, 146, 2224-2233. DOI: 10.1016/j.renene.2019.08.056
  • Saxena, R.C., Adhikari, D.K., & Goyal, H.B. (2009). Biomass-based energy fuel through biochemical routes: a review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. doi.org/10.1016/j.rser.2007.07.011
  • Shen, D. K., Gu, S., Jin, B., & Fang, M. X. (2011). Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology, 102, 2047–2052. doi.org/10.1016/j.biortech.2010.09.081
  • Shafizadeh, F., McGinnis, G.D. (1971). Chemical composition and thermal analysis of cottonwood. Carbohydrate Research, 16(2), 273-277. doi.org/10.1016/S0008-6215(00)81161-1
  • Soria-Verdugo, A., Goos, E., & García-Hernando, N. (2015). Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model. Fuel Processing Technology, 134, 360-371. doi.org/10.1016/j.fuproc.2015.02.018
  • Sungur, B., Topaloğlu, B., & Özbey, M. (2018). Pelet yakıtlı yakma sistemlerinin ısıl performans ve emisyon açısından incelenmesi. Mühendis ve Makina, 59(693), 64-84.
  • Pütün, A.E., Burcu Uzun, B., Apaydin, E., & Pütün, E. (2005). Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Processing Technology, 87(1), 25–32. doi.org/10.1016/j.fuproc.2005.04.003
  • Prins, M.J., Ptasinski, K.J., & Janssen, F.J.J.G. (2006). Torrefaction of wood: Part 1 weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77(1), 28–34.
  • Tan, M., & Yöndem, Z. (2013). İnsan ve hayvan beslenmesinde yeni bir bitki: kinoa (Chenopodium quinoa Willd.). Alınteri Zirai Bilimler Dergisi, 25(B), 62-66.
  • Topal, M., & Arslan, E. (2008). Biyokütle enerjisi ve Türkiye, VII. Ulusal Temiz Enerji Sempozyumu, İstanbul, Türkiye.
  • TS ISO EN 11358-1. (2014). Plastics - Thermogravimetry (TG) of Polymers - Part 1: General Principles.
  • Üçgül, İ., & Akgül, G. (2010). Biyokütle Teknolojisi. Yekarum Dergi, 1(1), 3-11.
  • Williams, P. T., & Besler, S. (1992). Thermogravimetric analysis of the components of biomass, in: A.V. Bridgwater (Ed.), Advances in Thermochemical Biomass Conversion (pp. 771-783). Vol. 2, BlakieCambridge University Press, London.
  • Williams, A., Pourkashanian, M., Jones, J.M. (2000). Combustion and Gasification of Coal. Taylor&Franscis, New York, 336.
  • Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Conversion and Management, 45(5), 651-671. doi.org/10.1016/S0196-8904(03)00177-8
Year 2022, Volume: 5 Issue: 2, 64 - 73, 30.12.2022
https://doi.org/10.46876/ja.1202911

Abstract

Project Number

2017-FBE-L15

References

  • Acar, M. (2015). Tarım ve biyoyakıtlar. Türktarım Dergisi, 224, 50-53.
  • Açma, H. (1999). Kömürün mineral içeriğinin yanma özelliklerine etkisi. [Doktora Tezi]. İstanbul Teknik Üniversitesi Fen Bilimleri Fakültesi, İstanbul.
  • Atay, O. A., Ekinci, K., & Umucu, Y. (2016). Yağ gülü damıtma atıkları, kızılçam kabuğu ve linyit kömür tozundan elde edilen peletlerin baca gazı emisyonlarının belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 13(2), 1-9.
  • Başçetinçelik, A., & Öztürk, H. (2005). Türkiye’de tarımsal biyokütleden enerji üretimi olanakları, Makina Mühendisleri Odası Dergisi, 563, 7-13.
  • Berkowitz, N. (1985). Chemistry of Coal Science and Technology. Elsevier, Amsterdam.
  • Bhargava, A., Shukla, S., & Ohri, D. (2007). Genetic variability and ınterrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa willd.). Field Crops Research, 101(1), 104-116. doi.org/10.1016/j.fcr.2006.10.001
  • Branca, C., & Blasi, C.D. (2004). Global intrinsic kinetics of wood oxidation. Fuel, 83(1), 81–87. doi.org/10.1016/S0016-2361(03)00220-5
  • Caballero, J.A., Conesa, R., Front, A., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159-175. doi.org/10.1016/S0165-2370(97)00015-6
  • Collard, F. X. & Blin, J. (2014). A Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews, 38, 594-608. doi.org/10.1016/j.rser.2014.06.013
  • Çıtak, E., & Kılınç Pala, P.B. (2016). Yenilenebilir enerjinin enerji güvenliğine etkisi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25, 79-102.
  • Durak, D. (2015). Amaranth sp. türlerinin yem olarak kalite kriterleri ve toksisitesinin belirlenmesi. [Yüksek Lisans Tezi]. Mustafa Kemal Üniversitesi Hatay.
  • Ergun, M., Özbay, N., Osmanoğlu, A., & Çalkır, A. (2014). Sebze ve tahıl olarak amarant (Amarant spp) bitkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 4(3), 21-28.
  • Fang, M. X., Shen, D. K., Li, Y. X., Yu, C. J., Luo, Z. Y., & Cen, K. F. (2006). Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 77, 22–27. doi.org/10.1016/j.jaap.2005.12.010
  • Grover, P.D., & Mishra, S.K. (1996). Biomass briquetting: technology and practices. Food and Agriculture Organization of the United Nations, Bangkok, Tailand,43.
  • Kaewluan, S., & Pipatmanomai, S. (2011). Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier. Energy Conversion and Management, 52(1), 75–84. doi.org/10.1016/j.enconman.2010.06.044
  • Karaosmanoğlu, F. (2006). Biyoyakıt teknolojisi ve İTÜ araştırmaları. ENKÜS 2006-İTÜ Enerji Çalıştayı ve Sergisi Bildiri Kitabı, İstanbul, Türkiye.
  • Kazagic, A., & Smajevic, I. (2007). Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass. Energy, 32(10), 2006–2016. doi.org/10.1016/j.energy.2007.03.007
  • Kuş, E., Yıldırım, Y., Çokgez Kuş, A., Demir, B. (2016). Iğdır ili tarımsal biyokütle potansiyeli ve enerji eşdeğeri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 65-73.
  • Küsek, G., Güngör, C., Öztürk, H.H., & Akdemir, Ş. (2015). Tarımsal artıklardan biyopelet üretimi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(2), 137-145.
  • Liu, N. A., Weicheng, F., Ritsu, D., & Liusheng, H. (2002). Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical and Applied Pyrolysis, 63(2), 303–325. doi.org/10.1016/S0165-2370(01)00161-9
  • Maschio, G., Lucchesi, A., & Koufopanos, C. (1992). Study of the kinetic and transfer phenomena in the pyrolysis of biomass particles, in: A.V. Bridgwater (Ed.), Advances in Thermochemical Biomass Conversion (pp. 746-759), Blakie/Cambridge University Press. London.
  • Orecchini, F., & Bocci, E. (2007). Biomass to hydrogen for the realization of closed cycles of energy resources, Energy 32(6), 1006–1011. doi.org/10.1016/j.energy.2006.10.021
  • Özsin, G. (2018). Termal analiz ile birleştirilmiş spektral yöntemlerin kullanımı ile biyokütle pirolizinin incelenmesi. BAUN Fen Bilimleri Enstitüsü Dergisi, 20(2), 315-329. Doi: 10.25092/baunfbed.433924
  • Paniagua Bermejo, S. P., Prado-Guerra, A., Garcia Perez, A. I., & Calvo Prieto, L. F. (2020). Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renewable Energy, 146, 2224-2233. DOI: 10.1016/j.renene.2019.08.056
  • Saxena, R.C., Adhikari, D.K., & Goyal, H.B. (2009). Biomass-based energy fuel through biochemical routes: a review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. doi.org/10.1016/j.rser.2007.07.011
  • Shen, D. K., Gu, S., Jin, B., & Fang, M. X. (2011). Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology, 102, 2047–2052. doi.org/10.1016/j.biortech.2010.09.081
  • Shafizadeh, F., McGinnis, G.D. (1971). Chemical composition and thermal analysis of cottonwood. Carbohydrate Research, 16(2), 273-277. doi.org/10.1016/S0008-6215(00)81161-1
  • Soria-Verdugo, A., Goos, E., & García-Hernando, N. (2015). Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model. Fuel Processing Technology, 134, 360-371. doi.org/10.1016/j.fuproc.2015.02.018
  • Sungur, B., Topaloğlu, B., & Özbey, M. (2018). Pelet yakıtlı yakma sistemlerinin ısıl performans ve emisyon açısından incelenmesi. Mühendis ve Makina, 59(693), 64-84.
  • Pütün, A.E., Burcu Uzun, B., Apaydin, E., & Pütün, E. (2005). Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Processing Technology, 87(1), 25–32. doi.org/10.1016/j.fuproc.2005.04.003
  • Prins, M.J., Ptasinski, K.J., & Janssen, F.J.J.G. (2006). Torrefaction of wood: Part 1 weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77(1), 28–34.
  • Tan, M., & Yöndem, Z. (2013). İnsan ve hayvan beslenmesinde yeni bir bitki: kinoa (Chenopodium quinoa Willd.). Alınteri Zirai Bilimler Dergisi, 25(B), 62-66.
  • Topal, M., & Arslan, E. (2008). Biyokütle enerjisi ve Türkiye, VII. Ulusal Temiz Enerji Sempozyumu, İstanbul, Türkiye.
  • TS ISO EN 11358-1. (2014). Plastics - Thermogravimetry (TG) of Polymers - Part 1: General Principles.
  • Üçgül, İ., & Akgül, G. (2010). Biyokütle Teknolojisi. Yekarum Dergi, 1(1), 3-11.
  • Williams, P. T., & Besler, S. (1992). Thermogravimetric analysis of the components of biomass, in: A.V. Bridgwater (Ed.), Advances in Thermochemical Biomass Conversion (pp. 771-783). Vol. 2, BlakieCambridge University Press, London.
  • Williams, A., Pourkashanian, M., Jones, J.M. (2000). Combustion and Gasification of Coal. Taylor&Franscis, New York, 336.
  • Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Conversion and Management, 45(5), 651-671. doi.org/10.1016/S0196-8904(03)00177-8
There are 38 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Savaş Uzunoğlu 0000-0003-3506-1594

Emrah Kuş 0000-0001-6880-5591

Project Number 2017-FBE-L15
Publication Date December 30, 2022
Submission Date November 11, 2022
Acceptance Date December 7, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Uzunoğlu, S., & Kuş, E. (2022). Thermogravimetric Evaluation for the Pyrolysis Process of Pellets Produced from Quinoa and Amaranth Harvest Residues. Journal of Agriculture, 5(2), 64-73. https://doi.org/10.46876/ja.1202911