Research Article
BibTex RIS Cite

Flood Susceptibility Assessment through Hydromorphometric Analysis for Ergene River Basin

Year 2019, Issue: 2, 1 - 15, 15.04.2019

Abstract

The aim of this study is to calculate the flood susceptibility for the 14 subbasins of the Ergene River. Flood susceptibility classifications were derived from the analysis of hydromorphometric parameters. The study was based on a 3 dimensional methodology; Linear Analysis (Stream order, Bifurcation ratio, Stream length ratio), Aerial Analysis (Texture ratio, Basin length ratio, Basin shape, Stream frequency, Drainage density) and Relief Analysis (Relief ratio, Time of concentration, Ruggedness number, Basin relief, Hypsometric integral).  ALOS Raster DEM satellite data of 12,5 m resolution, dated 2006 and 2008, was used in conjunction with Geographic Information Systems (GIS) technologies. Flood susceptibility of the 14 river sub-basins were categorized in 5 levels from very low to very high degree based on the outcome of the hydromorphometric analysis. While 3 subbasins classified as “moderate”, 1 as “low and 5 others as “very low” in flood susceptibility. 2 subbasins rated “high” and 3 “very high” flood susceptibility.

References

  • ALOS, 2018. Satellite Imaging Corporation. ALOS (Advanced Land Observation Satellite). https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/alos/
  • Andreani L., Stanek, K. P., Gloaguen, R., Krentz, O., Domínguez-González, L., 2014. DEM‐based analysis of interactions between tectonics and landscapes in the Ore Mountains and Eger Rift, Remote Sensing, 6(9): 7971‐8001.
  • Bhatt, S. ve Ahmed, S. A., 2014. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, Volume: 29, No: 8, 878–894, http://dx.doi.org/10.1080/10106049.2013.868042.
  • Biswas, S., Sudhakar, S., Desai, V.R., 1999. Prioritisation of Subwatersheds Based on Morphometric Analysis of Drainage Basin: A Remote Sensing and GIS Approach, Journal of the Indian Society of Remote Sensing, 27(3): 155-166.
  • Biswas, R. N., Mia, M. J., Islam, M. N., 2018. Hydro-Morphometric Modeling for Flood Hazard Vulnerability Assessment of Old Brahmaputra River Basin in Bangladesh. Engineering Technology Open Access Journal, 1(4): 555567.
  • ÇŞB, 2009. Trakya Alt Bölgesi Ergene Havzası 1/100 000 Ölçekli Revizyon Çevre Düzeni Planı. Çevre ve Şehircilik Bakanlığı, http://mpgm.csb.gov.tr/trakya-alt-bolgesi-ergene-havzasi-i-82194
  • Fang, X., Thompson, D. B., Cleveland, T. G., Pradhan, P., 2007. Variations of Time of Concentration Estimates Using NRCS Velocity Method. Journal of Irrigation and Drainage Engineering, DOI: 10.1061/(ASCE)0733-437 133:4(314).
  • Farhan, Y., Anaba, O., Salim, A., 2016. Morphometric Analysis and Flash Floods Assessment for Drainage Basins of the Ras En Naqb Area, South Jordan Using GIS. Journal of Geoscience and Environment Protection, 4; 9-33. http://dx.doi.org/10.4236/gep.2016.46002
  • Gharde, K. D. ve Kothari, M., 2016. Hydromorphometric Analysis and Prioritization of Savitri Basin of Maharashtra, India Using GIS. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development (IJCSEIERD), 6(2): 1-10.
  • Goudar, M. B. 2015. Morphometric Analysis And Stream Network Characteristics in Gadag District. Integrated watershed development in Gadag district. Bölüm 4, 147-167. http://shodhganga.inflibnet.ac.in/handle/10603/36306.
  • Horton, R. E., 1932. Drainage basin characteristics. Eos Transcations American Geophysical Union, 13: 350–361.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins: l approach to quantitative morphology. Bulletin of the Geological Society of America, 56: 275–370
  • Kabite, G. ve Gessesse, B., 2018. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 175–183. www.elsevier.com/locate/iswcr.
  • Kirpich, Z. P., 1940. Time of concentration of small agricultural watersheds. Civil Engineering, 10 (6), 362.
  • Knighton, D., 1984. Fluviyal Forms and Processes. Edward Arnold, ISBN 0-7131-6405-0, UK.
  • Kumar, R., Kumar, S., Lohani, A. K., Nema, R. K., Singh, R. D., 2000. Evaluation of geomorphological characteristics of a catchment using GIS. GIS India, 9: 13–17.
  • Manjunatha, S., Dalwai, M., Sukhaye, R. Davithuraj, R., 2017. Morphometric Analysis of Karanja River Basin, Bidar District, Karnataka, India, using Remote Sensing and GIS Techniques. Journal of Geosciences Research, 2(1): 45 – 53.
  • Melton, M.A., 1957. An analysis of the relation among elements of climate, surface properties and geomorphology, Department of Geology, Columbia University, New York. Technical Report, 11, Project NR 389-042. Office of Navy Research, New York.
  • Mirzavand, M. ve Ghasemieh, H., 2013. Analysis of hydro morphometric characteristics using GIS and statistical analysis (Case study: Maragh basin, Esfahan province, center of Iran). Advances in Applied Science Research, 4(4): 22-29.
  • Mockus, V., 1961. Watershed lag. U.S. Departmen of Agriculture, Soil Conservation Service, ES–1015, Washington, DC.
  • NRCS, 1991. Time of Concentration. Engineering Hydrology Training Series Module 206A. Natural Resources Conservation Service, USDA.
  • Özdemir, H. 2011. Havza morfometrisi ve taşkınlar. D. Ekinci (Ed.), Fiziki coğrafya araştırmaları: Sistematik ve bölgesel. Türk Coğrafya Kurumu Yayınları, 507–526, İstanbul.
  • Patton, P. C., 1988. Drainage basin morphometry and floods. In: Baker VR, Kochel RC, Patton PC (Eds) Flood geomorphology, 51–65, Wiley, USA.
  • Rana, N., Singh, S., Sundriyal, P. Y., Rawat, S. G., Juyal, N., 2016. Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley. Journal of Earth System Science, 125(4): 841–854.
  • Reddy, G. P. O., Maji, A. K., Gajbhiye, K. S., 2004. Drainage morphometry and its influence on landform characteristics in basaltic terrain, central India—a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6: 1-16.
  • Saha, A. ve Singh, P., 2017. Drainage Morphometric Analysis and Water Resource Management of Hindon River Basin, using Earth Observation Data Sets. International Journal of Interdisciplinary Research (IJIR), 3(4): 2051-2057, https://www.onlinejournal.in/IJIRV3I4/353.pdf
  • Samson, S. A., Eludoyin, A. O., Ogbole, J., Alaga, A. T., Oloko-Oba, M., Okeke, U. H., Popoola, O. S., 2016. Drainage Basin Morphometric Analysis for Flood Potential Mapping in Owu Using Geospatial Techniques. Journal of Geography, Environment and Earth Science International, 4(3): 1-8, Article no.JGEESI.22223.
  • Satheesh, B. 2017. Gis Based On Morphometric Analysis of Part of Manair River Basin in Karimnagar District, Telangana State. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 5(5): 01-07, www.iosrjournals.org
  • Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67: 597-646.
  • Singh, O., Sarangi, A. and Sharma, M.C., 2008. Hypsometric Integral Estimation Methods and its Relevance on Erosion Status of Northwestern Lesser Himalayan Watersheds. Water Resources Management, 22: 1545-1560. http://dx.doi.org/10.1007/s11269-008-9242-z
  • Smith, K. G., 1950. Standards for grading texture of erosional topography. American Journal of Science, 248: 655–668.
  • Strahler, A.N., 1952a. Hypsometric (area-altitude curve) analysis analysis of erosional topography, Geological Society of America Bulletin, 63: 1117-1141.
  • Strahler, A.N., 1952b. Dynamic Basis of Geomorphology. Geological Society of America Bulletin, 63: 923-938. http://dx.doi.org/10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2
  • Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. Chow VT (Ed) Handbook of applied hydrology. New York, 4-40–4-74.
  • Strahler, A. N., 1975. Physical Geography (4th Edition). John Wiley & Sons Inc.
  • Turoğlu, H., 1997. İyidere Havzasının Hidrografik Özelliklerine Sayısal Yaklaşım, Türk Coğrafya Dergisi, 32: 355-364.
  • Turoğlu, H., 2005. Bartın’da meydana gelen sel ve taşkınlara ait zarar azaltma ve önleme önerileri”. İ.T.Ü. Türkiye Kuvaterner Sempozyumu V, Bildiriler Kitabı:104–110, İstanbul.
  • Turoğlu, H. 2010a. Yapılaşmanın doğal akım yönü ve akım birikimi üzerindeki etkileri. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama Merkezi (TUCAM), VI. Ulusal Coğrafya Sempozyumu 2010, Bildiriler Kitabı: 29–36, Ankara.
  • Turoğlu, H., 2010b. 8–10 Eylül 2009 Tarihlerindeki yağışların Silivri-Selimpaşa sahil kuşağında neden olduğu sel ve taşkınlar. DSİ Genel Müdürlüğü 2. Ulusal Taşkın Sempozyumu, Afyon 22–24 Mart 2010, Tebliğler Kitabı: 31–43, Afyon.
  • Turoğlu, H., 2011a. Flashfloods and Floods in Istanbul. Ankara University Journal of Environmental Sciences. 3(1): 39–46, Ankara.
  • Turoğlu, H., 2011b. İstanbul’da Meydana Gelen Sel ve Taşkınlar. Fiziki Coğrafya Araştırmaları; Sistematik ve Bölgesel, Türk Coğrafya Kurumu Yayınları, 6: 411–430, İstanbul.
  • Turoğlu, H., 2011c. Şehirsel Gelişmenin İstanbul Selleri Üzerindeki Etkisi. İstanbul’un Afetlerden Zarar Görebilirliği Sempozyumu 2010. İstanbul’un Afetlerden Zarar Görebilirliği Sempozyumu Bildiriler Kitabı, İTO Yayınları, Yayın no: 2011–13: 46-56, İstanbul.
  • Turoğlu, H., 2016. Coğrafi Bilgi Sistemlerinin Temel Esasları (Genişletilmiş 4. Baskı). ISBN 987-975-9060-51-0, Çantay Kitapevi, İstanbul.
  • Turoğlu, H. ve Dölek, İ., 2011. Floods and their likely impacts on ecological environment in the Bolaman River Basin (Ordu, Turkey). Research Journal of Agricultural Science, 43 (4): 167–173
  • Turoğlu, H. ve Özdemir, H. 2005. Bartın'da Sel ve Taşkınlar; Sebepler, Etkiler, Önleme ve Zarar Azaltma Önerileri, ISBN 975–9060–04–3, Çantay Kitapevi, İstanbul.
  • Utlu, M. ve Özdemir, H. 2018. Havza Morfometrik Özelliklerinin Taşkın Üretmedeki Rolü Biga Çayı Havzası Örneği (The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin). Coğrafya Dergisi – Journal of Geography, 36; 49-62. DOI: 10.26650/JGEOG408101.
  • Verstappen, H.Th., 1983. Applied geomorphology. ISBN 0-444-42181-5, Elsevier, Amsterdam, The Netherlands.

Ergene Nehri Havzası için Hidromorfometrik Analizlerle Taşkın Duyarlılık Değerlendirmesi

Year 2019, Issue: 2, 1 - 15, 15.04.2019

Abstract

Bu çalışmanın amacı Ergene Nehrinin 14 alt havzası için taşkın
duyarlılık analizi sınıflamasının yapılmasıdır. Taşkın duyarlılık sınıflaması
hidromorfometrik parametrelere ait analizlere dayandırılmıştır. Çalışma;
Çizgisel Analizler (Akarsu düzeni, Çatallanma oranı, Akarsu uzunluk oranı), Alansal
Analizler (Tekstür oranı, Havza uzunluk oranı, Havza şekli, Akarsu sıklığı,
Drenaj yoğunluğu) ve Rölyef Analizleri (Rölyef oranı, Akım toplanma süresi,
Engebelilik değeri, Havza röliefi, Hipsometrik integral) olmak üzere
3 boyutlu bir
metodolojiye dayandırılmıştır.
Analizlerde; yersel
çözünürlüğü 12,5m olan, 2006 ve 2008 tarihli, ALOS Raster DEM uydu verisi,
Coğrafi Bilgi Sistemleri teknolojileri ile kullanılmıştır. Analiz sonuçlarına
göre, 14 alt havza kendi içinde taşkın duyarlılığı hedefli olarak; çok düşük
dereceden çok yüksek derece aralığında 5 seviyede sınıflandırılmıştır. 3 alt
havzanın taşkın duyarlılığı “orta” derecededir. 1 alt havza “düşük” ve 5 alt havza
ise “çok düşük” taşkın duyarlılığına sahiptir. 2 alt havza “yüksek” ve 3 alt
havza “çok yüksek” taşkın duyarlılığına sahiptir.

References

  • ALOS, 2018. Satellite Imaging Corporation. ALOS (Advanced Land Observation Satellite). https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/alos/
  • Andreani L., Stanek, K. P., Gloaguen, R., Krentz, O., Domínguez-González, L., 2014. DEM‐based analysis of interactions between tectonics and landscapes in the Ore Mountains and Eger Rift, Remote Sensing, 6(9): 7971‐8001.
  • Bhatt, S. ve Ahmed, S. A., 2014. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, Volume: 29, No: 8, 878–894, http://dx.doi.org/10.1080/10106049.2013.868042.
  • Biswas, S., Sudhakar, S., Desai, V.R., 1999. Prioritisation of Subwatersheds Based on Morphometric Analysis of Drainage Basin: A Remote Sensing and GIS Approach, Journal of the Indian Society of Remote Sensing, 27(3): 155-166.
  • Biswas, R. N., Mia, M. J., Islam, M. N., 2018. Hydro-Morphometric Modeling for Flood Hazard Vulnerability Assessment of Old Brahmaputra River Basin in Bangladesh. Engineering Technology Open Access Journal, 1(4): 555567.
  • ÇŞB, 2009. Trakya Alt Bölgesi Ergene Havzası 1/100 000 Ölçekli Revizyon Çevre Düzeni Planı. Çevre ve Şehircilik Bakanlığı, http://mpgm.csb.gov.tr/trakya-alt-bolgesi-ergene-havzasi-i-82194
  • Fang, X., Thompson, D. B., Cleveland, T. G., Pradhan, P., 2007. Variations of Time of Concentration Estimates Using NRCS Velocity Method. Journal of Irrigation and Drainage Engineering, DOI: 10.1061/(ASCE)0733-437 133:4(314).
  • Farhan, Y., Anaba, O., Salim, A., 2016. Morphometric Analysis and Flash Floods Assessment for Drainage Basins of the Ras En Naqb Area, South Jordan Using GIS. Journal of Geoscience and Environment Protection, 4; 9-33. http://dx.doi.org/10.4236/gep.2016.46002
  • Gharde, K. D. ve Kothari, M., 2016. Hydromorphometric Analysis and Prioritization of Savitri Basin of Maharashtra, India Using GIS. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development (IJCSEIERD), 6(2): 1-10.
  • Goudar, M. B. 2015. Morphometric Analysis And Stream Network Characteristics in Gadag District. Integrated watershed development in Gadag district. Bölüm 4, 147-167. http://shodhganga.inflibnet.ac.in/handle/10603/36306.
  • Horton, R. E., 1932. Drainage basin characteristics. Eos Transcations American Geophysical Union, 13: 350–361.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins: l approach to quantitative morphology. Bulletin of the Geological Society of America, 56: 275–370
  • Kabite, G. ve Gessesse, B., 2018. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 175–183. www.elsevier.com/locate/iswcr.
  • Kirpich, Z. P., 1940. Time of concentration of small agricultural watersheds. Civil Engineering, 10 (6), 362.
  • Knighton, D., 1984. Fluviyal Forms and Processes. Edward Arnold, ISBN 0-7131-6405-0, UK.
  • Kumar, R., Kumar, S., Lohani, A. K., Nema, R. K., Singh, R. D., 2000. Evaluation of geomorphological characteristics of a catchment using GIS. GIS India, 9: 13–17.
  • Manjunatha, S., Dalwai, M., Sukhaye, R. Davithuraj, R., 2017. Morphometric Analysis of Karanja River Basin, Bidar District, Karnataka, India, using Remote Sensing and GIS Techniques. Journal of Geosciences Research, 2(1): 45 – 53.
  • Melton, M.A., 1957. An analysis of the relation among elements of climate, surface properties and geomorphology, Department of Geology, Columbia University, New York. Technical Report, 11, Project NR 389-042. Office of Navy Research, New York.
  • Mirzavand, M. ve Ghasemieh, H., 2013. Analysis of hydro morphometric characteristics using GIS and statistical analysis (Case study: Maragh basin, Esfahan province, center of Iran). Advances in Applied Science Research, 4(4): 22-29.
  • Mockus, V., 1961. Watershed lag. U.S. Departmen of Agriculture, Soil Conservation Service, ES–1015, Washington, DC.
  • NRCS, 1991. Time of Concentration. Engineering Hydrology Training Series Module 206A. Natural Resources Conservation Service, USDA.
  • Özdemir, H. 2011. Havza morfometrisi ve taşkınlar. D. Ekinci (Ed.), Fiziki coğrafya araştırmaları: Sistematik ve bölgesel. Türk Coğrafya Kurumu Yayınları, 507–526, İstanbul.
  • Patton, P. C., 1988. Drainage basin morphometry and floods. In: Baker VR, Kochel RC, Patton PC (Eds) Flood geomorphology, 51–65, Wiley, USA.
  • Rana, N., Singh, S., Sundriyal, P. Y., Rawat, S. G., Juyal, N., 2016. Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley. Journal of Earth System Science, 125(4): 841–854.
  • Reddy, G. P. O., Maji, A. K., Gajbhiye, K. S., 2004. Drainage morphometry and its influence on landform characteristics in basaltic terrain, central India—a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6: 1-16.
  • Saha, A. ve Singh, P., 2017. Drainage Morphometric Analysis and Water Resource Management of Hindon River Basin, using Earth Observation Data Sets. International Journal of Interdisciplinary Research (IJIR), 3(4): 2051-2057, https://www.onlinejournal.in/IJIRV3I4/353.pdf
  • Samson, S. A., Eludoyin, A. O., Ogbole, J., Alaga, A. T., Oloko-Oba, M., Okeke, U. H., Popoola, O. S., 2016. Drainage Basin Morphometric Analysis for Flood Potential Mapping in Owu Using Geospatial Techniques. Journal of Geography, Environment and Earth Science International, 4(3): 1-8, Article no.JGEESI.22223.
  • Satheesh, B. 2017. Gis Based On Morphometric Analysis of Part of Manair River Basin in Karimnagar District, Telangana State. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 5(5): 01-07, www.iosrjournals.org
  • Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67: 597-646.
  • Singh, O., Sarangi, A. and Sharma, M.C., 2008. Hypsometric Integral Estimation Methods and its Relevance on Erosion Status of Northwestern Lesser Himalayan Watersheds. Water Resources Management, 22: 1545-1560. http://dx.doi.org/10.1007/s11269-008-9242-z
  • Smith, K. G., 1950. Standards for grading texture of erosional topography. American Journal of Science, 248: 655–668.
  • Strahler, A.N., 1952a. Hypsometric (area-altitude curve) analysis analysis of erosional topography, Geological Society of America Bulletin, 63: 1117-1141.
  • Strahler, A.N., 1952b. Dynamic Basis of Geomorphology. Geological Society of America Bulletin, 63: 923-938. http://dx.doi.org/10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2
  • Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. Chow VT (Ed) Handbook of applied hydrology. New York, 4-40–4-74.
  • Strahler, A. N., 1975. Physical Geography (4th Edition). John Wiley & Sons Inc.
  • Turoğlu, H., 1997. İyidere Havzasının Hidrografik Özelliklerine Sayısal Yaklaşım, Türk Coğrafya Dergisi, 32: 355-364.
  • Turoğlu, H., 2005. Bartın’da meydana gelen sel ve taşkınlara ait zarar azaltma ve önleme önerileri”. İ.T.Ü. Türkiye Kuvaterner Sempozyumu V, Bildiriler Kitabı:104–110, İstanbul.
  • Turoğlu, H. 2010a. Yapılaşmanın doğal akım yönü ve akım birikimi üzerindeki etkileri. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama Merkezi (TUCAM), VI. Ulusal Coğrafya Sempozyumu 2010, Bildiriler Kitabı: 29–36, Ankara.
  • Turoğlu, H., 2010b. 8–10 Eylül 2009 Tarihlerindeki yağışların Silivri-Selimpaşa sahil kuşağında neden olduğu sel ve taşkınlar. DSİ Genel Müdürlüğü 2. Ulusal Taşkın Sempozyumu, Afyon 22–24 Mart 2010, Tebliğler Kitabı: 31–43, Afyon.
  • Turoğlu, H., 2011a. Flashfloods and Floods in Istanbul. Ankara University Journal of Environmental Sciences. 3(1): 39–46, Ankara.
  • Turoğlu, H., 2011b. İstanbul’da Meydana Gelen Sel ve Taşkınlar. Fiziki Coğrafya Araştırmaları; Sistematik ve Bölgesel, Türk Coğrafya Kurumu Yayınları, 6: 411–430, İstanbul.
  • Turoğlu, H., 2011c. Şehirsel Gelişmenin İstanbul Selleri Üzerindeki Etkisi. İstanbul’un Afetlerden Zarar Görebilirliği Sempozyumu 2010. İstanbul’un Afetlerden Zarar Görebilirliği Sempozyumu Bildiriler Kitabı, İTO Yayınları, Yayın no: 2011–13: 46-56, İstanbul.
  • Turoğlu, H., 2016. Coğrafi Bilgi Sistemlerinin Temel Esasları (Genişletilmiş 4. Baskı). ISBN 987-975-9060-51-0, Çantay Kitapevi, İstanbul.
  • Turoğlu, H. ve Dölek, İ., 2011. Floods and their likely impacts on ecological environment in the Bolaman River Basin (Ordu, Turkey). Research Journal of Agricultural Science, 43 (4): 167–173
  • Turoğlu, H. ve Özdemir, H. 2005. Bartın'da Sel ve Taşkınlar; Sebepler, Etkiler, Önleme ve Zarar Azaltma Önerileri, ISBN 975–9060–04–3, Çantay Kitapevi, İstanbul.
  • Utlu, M. ve Özdemir, H. 2018. Havza Morfometrik Özelliklerinin Taşkın Üretmedeki Rolü Biga Çayı Havzası Örneği (The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin). Coğrafya Dergisi – Journal of Geography, 36; 49-62. DOI: 10.26650/JGEOG408101.
  • Verstappen, H.Th., 1983. Applied geomorphology. ISBN 0-444-42181-5, Elsevier, Amsterdam, The Netherlands.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Physical Geography and Environmental Geology
Journal Section Articles
Authors

Hüseyin Turoğlu 0000-0003-0173-6995

Tunahan Aykut 0000-0003-0503-3859

Publication Date April 15, 2019
Submission Date March 12, 2019
Acceptance Date March 31, 2019
Published in Issue Year 2019 Issue: 2

Cite

APA Turoğlu, H., & Aykut, T. (2019). Ergene Nehri Havzası için Hidromorfometrik Analizlerle Taşkın Duyarlılık Değerlendirmesi. Jeomorfolojik Araştırmalar Dergisi(2), 1-15.

Journal of Geomorphological Researches  ( JADER )

Turkish Society for Geomorphology ( www.jd.org.tr )