Review
BibTex RIS Cite

The Impact of microRNA’s (miRNA) on Mammary Gland Development and Milk Production in Cattle, Goat and Sheep

Year 2018, Volume: 3 Issue: 3, 124 - 130, 18.12.2018
https://doi.org/10.35229/jaes.425623

Abstract

Mammary gland (MG) have important
functions by producing milk for both newborns and human consumption and is a
complex organ that grows and develops in the ruminants after calving.
Development of MG with the synthesis and secretion of milk are both associated
with the lactation process. The productivity of MG is under the influence of
nutrition, genetics, race and epigenetic factors. The microRNAs (miRNAs), precede
the epigenetic factors, are non-coding RNA molecules that have an average
length of 22 (19-24nt) nucleotides. The miRNAs, which play a role in important
biological processes such as cell proliferation, differentiation and apoptosis,
participate in gene expression as a post transcriptional regulators. In cattle,
goat and sheep species miRNA’s, which are extensively studied from
carcinogenesis to embryogenesis, were defined 1045, 436 and 153 (mature) respectively.
230 miRNAs were detected in the colostrum and 213 miRNAs in the milk within the
identified miRNAs. It was also defined that miRNA types and expression levels
differed in the dry period and the lactation peak period. In another study, it
was seen that the miRNA’s detected in the milk were two times more than the
serum and milk contained 47 different miRNAs compaired to serum; consequently
its tought that MG synthesized its own miRNAs. However, the information about
miRNAs on mammary gland development and the specific function of lactation
regulation is limited. Molecular studies are required to illuminate the effects
of miRNAs on lactogenesis mechanisms and to understand its effect on lactation
milk yield. This review focuses on the current knowledge of miRNAs on the
development of MB and milk production in livestock and possible future
implications.

References

  • 1. Alverez-Garcia I., Miska EA., (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653-62.
  • 2. Barozai MYK., (2012) The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol Biol Rep, 39, 6259–6266.
  • 3. Berezikov E., Guryev V., Van de Belt J., Wienholds E., Plasterk RH., Cuppen E., (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell,120(1), 21–24.
  • 4. Bhaskaran M., Mohan M., (2014). MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease, Veterinary Pathology, 51(4), 759-774.
  • 5. Chen X., Gao C., Li H., Huang L., Sun Q., Dong Y., Tian C., Gao S., Dong H., Guan D., Hu X., Zhao S., Li L., Zhu L., Yan Q., Zhang J., Zen K., Zhang CY., (2010). Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res, 20(10), 1128-1137.
  • 6. Cui Y., Sun X., Jin L., Yu G., Li Q., Gao X., Ao J., Wang C., (2017). MiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways. BMC Vet Res, 13(1), 350.
  • 7. Do DN., Ibeagha-Awemu EM., (2012). Non-Coding RNA Roles in Ruminant Mammary Gland Development and Lactation, Current Topics in Lactation Isabel Gigli, IntechOpen, DOI: 10.5772/67194. Available from: https://www.intechopen.com/books/current-topics-in-lactation/non-coding-rna-roles-in-ruminant-mammary-gland-development-and-lactation.
  • 8. Do DN., Li R., Dudemaine PL., Ibeagha-Awemu EM., (2017). MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci Rep, 7, 44605.
  • 9. Faostat., (2018). Faostat 2016: Dünya geneli keçi taze sütü üretimi, Erişim tarihi:14.05.2018, Erişim Kaynağı: http://www.fao.org/faostat/en/# data/QL/visualize.
  • 10. Galio L., Droineau S., Yeboah P., Boudiaf H., Bouet S., Truchet S., Devinoy E., (2013). MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics, 45(4), 151-161.
  • 11. Gigli I., Maizon DO., (2013). MicroRNAs and the mammary gland: A new understanding of gene expression. Genetics and Molecular Biology, 36(4), 465-474.
  • 12. Gu ZL., Eleswarapu S., Jiang HL., (2007). Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett, 581(5), 981-988.
  • 13. Hata T., Murakami K., Nakatani H., Yamamoto Y., Matsuda T., Aoki N., (2010). Isolation of bovine milk-derived micro vesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun, 396, 528-533.
  • 14. Hou J., An X Song Y., Gao T., Lei Y., Cao B., (2015). Two Mutations in the Caprine MTHFR 3'UTR Regulated by MicroRNAs Are Associated with Milk Production Traits. PLoS One. 7, e0133015.
  • 15. Hou J., An X. Song Y., Cao B., Yang H., Zhang Z., Shen W., Li Y., (2017). Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC Genet, 18(1), 38.
  • 16. Howard KM., Jati Kusuma R., Baier SR., Friemel T., Markham L., Vanamala J., Zempleni J., (2015). Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. J Agric Food Chem, 63(2), 588-592.
  • 17. Izumi H., Kosaka N., Shimizu T., Sekine K., Ochiya T., Takase M. (2012). Bovine milk contains microRNA and Messenger RNA that are stable under degradative conditions. J Dairy Sci, 95, 4831-4841.
  • 18. Jabed A., Wagner S., McCracken J., Wells DN., Laible G., (2012). Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. In proceedings of the National Academy of Sciences of the United States of America. 109(42):16811-16816. doi:10.1073/pnas.1210057109.
  • 19. Ji Z., Wang G., Xie Z., Zhang C., Wang J., (2012). Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Molecular Biology Reports, 39(10), 9361-9371.
  • 20. Ji Z., Wang G., Zhang C., Xie Z., Liu Z., Wang J., (2013). Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats. Asian-Australas J Anim Sci, 26(3), 309-315.
  • 21. Knight CH., Peaker M., (1982). Development of the mammary gland. Journal of Reproduction and Fertility, 65, 521–36.
  • 22. Knight CH., Peaker M., Wilde CJ. (1998). Local control of mammary development and function. Reviews of Reproduction, 3, 104–112.
  • 23. Le Guillou S., Marthey S., Laloë D., Laubier J., Mobuchon L., Leroux C., Le Provost F., (2014). Characterisation and Comparison of Lactating Mouse and Bovine Mammary Gland miRNomes, PLoS One, 9(3), e91938.
  • 24. Lee RC., Feinbaum RL., Ambros V., (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843–854.
  • 25. Li HM., Wang CM., Li QZ., Gao XJ. (2012). MiR-15a decreases bovine mammary epithelial cell ,viability and lactation and regulates growth hormone receptor expression. Molecules, 17(10), 12037-12048.
  • 26. Li R., Dudemaine PL., Zhao X., Lei C., Ibeagha-Awemu EM., (2016). Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One, 11(4), e0154129.
  • 27. Li Z., Lan X., Guo W., Sun J., Huang Y., Wang J., Huang T., Lei C., Fang X., Chen H., (2012a). Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues. PLoS One, 7(12), e52388.
  • 28. Li Z., Lan X., Han R., Wang J., Huang Y., Sun J., Guo W., Chen H., (2017). miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep, 7, 42627.
  • 29. Li Z., Liu H., Jin X., Lo L., Liu J., (2012b). Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics, 13, 731.
  • 30. Lin X., Luo J., Zhang L., Wang W., Gou D. (2013a). MiR-103 Controls Milk Fat Accumulation in Goat (Capra hircus) Mammary Gland during Lactation. PLoS One, 8(11), e79258.
  • 31. Lin XZ., Luo J., Zhang LP., Wang W., Shi HB., Zhu JJ. (2013b). miR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene, 521(1):15-23.
  • 32. Liu HC., Hicks JA., Trakooljul N., Zhao SH., (2010). Current knowledge of microRNA characterization in agricultural animals. Animal Genetics, 41(3), 225-231.
  • 33. miRBase (2018). Ruminantlarda prekursör ve olgun miRNA sayıları. Erişim kaynağı: http://www.mirbase.org/cgi-bin/browse.pl Erişim tarihi:30.04.2018
  • 34. mirTarbase (2018). Türlere göre miRNA varlığı. Erişim kaynağı: http://mirtarbase.mbc.nctu.edu.tw/php/index.php Erişim tarihi: 30.04.2018.
  • 35. Mobuchon L., Marthey S., Boussaha M., Le Guillou S., Leroux C. Le Provost F., (2015). Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics, 16, 285.
  • 36. Park YW., Juárez M., Ramos M., Haenlein GFW., (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research, 68(1-2), 88-113.
  • 37. Peng J., Zhao JS., Shen YF., Mao HG., Xu NY., (2015). MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. Int J Mol Sci, 16(1), 1448-1465.
  • 38. Qiang-Zhang L., Chun-mei W., Xue-jun G., (2014). Role of miRNA in Mammary Gland Development and Lactation. Journal of Northeast Agriculture University, 21(1), 70-74.
  • 39. Silveri LG., Tilly JL., Vilotte JL., Provost FL., (2006). MicroRNA involvement in mammary gland development and breast cancer. Reprod Nutr Dev, 46(5), 549-556.
  • 40. Wahid F., Shehzad A., Khan T., Kim YY., (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta, 1803(11), 1231-43.
  • 41. Wang M., Moisá S., Khan MJ., Wang J., Bu D., Loor JJ., (2012). MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. J Dairy Sci, 9, 6529 6535.
  • 42. Wang H., Luo J., Zhang T., Tian H., Ma Y., Xu H., Yao D., Loor JJ. (2016). MicroRNA-26a/b and their host genes synergistically regulate triacylglycerol synthesis by targeting the INSIG1 gene. RNA Biol, 13(5), 500-510.
  • 43. Wightman B., Ha I., Ruvkun G., (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855–862.
  • 44. Winter J. Jung S., Keller S., Gregory RI., Diederichs S., (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 11(3), 228-234.
  • 45. Zhang L., Hou D., Chen X., Li D., Zhu L., Zhang Y., Li J., Bian Z., Liang X., Cai X., (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of crosskingdom regulation by microRNA. Cell Res, 22, 107-126.
  • 46. Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., Zhou X., Wang X., Gao X., Li X., (2012). Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci, 8, 118-123.

Sığır, Keçi ve Koyunlarda mikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi

Year 2018, Volume: 3 Issue: 3, 124 - 130, 18.12.2018
https://doi.org/10.35229/jaes.425623

Abstract

Meme bezi (MB) gerek yeni doğanlara gerekse insan tüketimine süt üretimiyle önemli fonksiyona sahip olan ve ruminantlarda yavru doğumundan sonra büyüyüp gelişen kompleks bir organdır. MB’nin gelişimi ile sütün sentez ve salgılanması ise laktasyon süreci ile ilişkilidir. MB’nin verimi; beslenme, genetik, ırk ve epigenetik faktörlerin etkisi altındadır. Epigenetik faktörlerin başında gelen mikroRNA’lar (miRNA) ortalama 22 nükleotit (19-24 nt) uzunluğunda, kodlamayan RNA molekülleridir. Hücre çoğalması, farklılaşması ve apopitoz gibi önemli biyolojik süreçlerde rol oynayan miRNA’lar post transkripsiyonel regülatör olarak gen ekspresyonunda görev almaktadır. Karsinogenezden embriyogeneze kadar pek çok alanda yoğun olarak çalışılan miRNA’lar sığır, keçi ve koyun türünde sırasıyla; 1045, 436 ve 153 (olgun) adet tanımlanmıştır. Tanımlanmış miRNA’lar içerisinde kolostrumda 230, sütte ise 213 miRNA tipi tespit edilmiştir. Ayrıca kuru dönemde ve laktasyonun pik evresinde miRNA tipleri ve ekspresyon seviyelerinin farklılık gösterdiği belirlenmiştir. Bir başka çalışmada, sütte tespit edilen miRNA’ların miktar olarak kan serumundan iki kat daha fazla olduğu ve serumdan farklı 47 tip miRNA içerdiği görülürken; MB’nin kendine özgü miRNA’lar sentezlediği sonucuna varılmıştır. Ancak miRNA’ların meme bezi gelişimi ve laktasyon regülasyonundaki spesifik fonksiyonuna ilişkin bilgiler kısıtlıdır. Bu nedenle, miRNA’ların laktogenez mekanizmalarına olan etkilerinin aydınlatılmasına ve laktasyon süt verim ile bileşimine olan etkisinin anlaşılmasına yönelik moleküler çalışmalara ihtiyaç vardır. Bu derlemede çiftlik hayvanlarında miRNA’ların MB gelişimi ve süt üretimine olan etkilerine yönelik güncel bilgiler ve gelecekteki olası çıkarımlar üzerine odaklanılmıştır.

References

  • 1. Alverez-Garcia I., Miska EA., (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653-62.
  • 2. Barozai MYK., (2012) The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol Biol Rep, 39, 6259–6266.
  • 3. Berezikov E., Guryev V., Van de Belt J., Wienholds E., Plasterk RH., Cuppen E., (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell,120(1), 21–24.
  • 4. Bhaskaran M., Mohan M., (2014). MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease, Veterinary Pathology, 51(4), 759-774.
  • 5. Chen X., Gao C., Li H., Huang L., Sun Q., Dong Y., Tian C., Gao S., Dong H., Guan D., Hu X., Zhao S., Li L., Zhu L., Yan Q., Zhang J., Zen K., Zhang CY., (2010). Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res, 20(10), 1128-1137.
  • 6. Cui Y., Sun X., Jin L., Yu G., Li Q., Gao X., Ao J., Wang C., (2017). MiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways. BMC Vet Res, 13(1), 350.
  • 7. Do DN., Ibeagha-Awemu EM., (2012). Non-Coding RNA Roles in Ruminant Mammary Gland Development and Lactation, Current Topics in Lactation Isabel Gigli, IntechOpen, DOI: 10.5772/67194. Available from: https://www.intechopen.com/books/current-topics-in-lactation/non-coding-rna-roles-in-ruminant-mammary-gland-development-and-lactation.
  • 8. Do DN., Li R., Dudemaine PL., Ibeagha-Awemu EM., (2017). MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci Rep, 7, 44605.
  • 9. Faostat., (2018). Faostat 2016: Dünya geneli keçi taze sütü üretimi, Erişim tarihi:14.05.2018, Erişim Kaynağı: http://www.fao.org/faostat/en/# data/QL/visualize.
  • 10. Galio L., Droineau S., Yeboah P., Boudiaf H., Bouet S., Truchet S., Devinoy E., (2013). MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics, 45(4), 151-161.
  • 11. Gigli I., Maizon DO., (2013). MicroRNAs and the mammary gland: A new understanding of gene expression. Genetics and Molecular Biology, 36(4), 465-474.
  • 12. Gu ZL., Eleswarapu S., Jiang HL., (2007). Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett, 581(5), 981-988.
  • 13. Hata T., Murakami K., Nakatani H., Yamamoto Y., Matsuda T., Aoki N., (2010). Isolation of bovine milk-derived micro vesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun, 396, 528-533.
  • 14. Hou J., An X Song Y., Gao T., Lei Y., Cao B., (2015). Two Mutations in the Caprine MTHFR 3'UTR Regulated by MicroRNAs Are Associated with Milk Production Traits. PLoS One. 7, e0133015.
  • 15. Hou J., An X. Song Y., Cao B., Yang H., Zhang Z., Shen W., Li Y., (2017). Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC Genet, 18(1), 38.
  • 16. Howard KM., Jati Kusuma R., Baier SR., Friemel T., Markham L., Vanamala J., Zempleni J., (2015). Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. J Agric Food Chem, 63(2), 588-592.
  • 17. Izumi H., Kosaka N., Shimizu T., Sekine K., Ochiya T., Takase M. (2012). Bovine milk contains microRNA and Messenger RNA that are stable under degradative conditions. J Dairy Sci, 95, 4831-4841.
  • 18. Jabed A., Wagner S., McCracken J., Wells DN., Laible G., (2012). Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. In proceedings of the National Academy of Sciences of the United States of America. 109(42):16811-16816. doi:10.1073/pnas.1210057109.
  • 19. Ji Z., Wang G., Xie Z., Zhang C., Wang J., (2012). Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Molecular Biology Reports, 39(10), 9361-9371.
  • 20. Ji Z., Wang G., Zhang C., Xie Z., Liu Z., Wang J., (2013). Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats. Asian-Australas J Anim Sci, 26(3), 309-315.
  • 21. Knight CH., Peaker M., (1982). Development of the mammary gland. Journal of Reproduction and Fertility, 65, 521–36.
  • 22. Knight CH., Peaker M., Wilde CJ. (1998). Local control of mammary development and function. Reviews of Reproduction, 3, 104–112.
  • 23. Le Guillou S., Marthey S., Laloë D., Laubier J., Mobuchon L., Leroux C., Le Provost F., (2014). Characterisation and Comparison of Lactating Mouse and Bovine Mammary Gland miRNomes, PLoS One, 9(3), e91938.
  • 24. Lee RC., Feinbaum RL., Ambros V., (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843–854.
  • 25. Li HM., Wang CM., Li QZ., Gao XJ. (2012). MiR-15a decreases bovine mammary epithelial cell ,viability and lactation and regulates growth hormone receptor expression. Molecules, 17(10), 12037-12048.
  • 26. Li R., Dudemaine PL., Zhao X., Lei C., Ibeagha-Awemu EM., (2016). Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One, 11(4), e0154129.
  • 27. Li Z., Lan X., Guo W., Sun J., Huang Y., Wang J., Huang T., Lei C., Fang X., Chen H., (2012a). Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues. PLoS One, 7(12), e52388.
  • 28. Li Z., Lan X., Han R., Wang J., Huang Y., Sun J., Guo W., Chen H., (2017). miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep, 7, 42627.
  • 29. Li Z., Liu H., Jin X., Lo L., Liu J., (2012b). Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics, 13, 731.
  • 30. Lin X., Luo J., Zhang L., Wang W., Gou D. (2013a). MiR-103 Controls Milk Fat Accumulation in Goat (Capra hircus) Mammary Gland during Lactation. PLoS One, 8(11), e79258.
  • 31. Lin XZ., Luo J., Zhang LP., Wang W., Shi HB., Zhu JJ. (2013b). miR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene, 521(1):15-23.
  • 32. Liu HC., Hicks JA., Trakooljul N., Zhao SH., (2010). Current knowledge of microRNA characterization in agricultural animals. Animal Genetics, 41(3), 225-231.
  • 33. miRBase (2018). Ruminantlarda prekursör ve olgun miRNA sayıları. Erişim kaynağı: http://www.mirbase.org/cgi-bin/browse.pl Erişim tarihi:30.04.2018
  • 34. mirTarbase (2018). Türlere göre miRNA varlığı. Erişim kaynağı: http://mirtarbase.mbc.nctu.edu.tw/php/index.php Erişim tarihi: 30.04.2018.
  • 35. Mobuchon L., Marthey S., Boussaha M., Le Guillou S., Leroux C. Le Provost F., (2015). Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics, 16, 285.
  • 36. Park YW., Juárez M., Ramos M., Haenlein GFW., (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research, 68(1-2), 88-113.
  • 37. Peng J., Zhao JS., Shen YF., Mao HG., Xu NY., (2015). MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. Int J Mol Sci, 16(1), 1448-1465.
  • 38. Qiang-Zhang L., Chun-mei W., Xue-jun G., (2014). Role of miRNA in Mammary Gland Development and Lactation. Journal of Northeast Agriculture University, 21(1), 70-74.
  • 39. Silveri LG., Tilly JL., Vilotte JL., Provost FL., (2006). MicroRNA involvement in mammary gland development and breast cancer. Reprod Nutr Dev, 46(5), 549-556.
  • 40. Wahid F., Shehzad A., Khan T., Kim YY., (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta, 1803(11), 1231-43.
  • 41. Wang M., Moisá S., Khan MJ., Wang J., Bu D., Loor JJ., (2012). MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. J Dairy Sci, 9, 6529 6535.
  • 42. Wang H., Luo J., Zhang T., Tian H., Ma Y., Xu H., Yao D., Loor JJ. (2016). MicroRNA-26a/b and their host genes synergistically regulate triacylglycerol synthesis by targeting the INSIG1 gene. RNA Biol, 13(5), 500-510.
  • 43. Wightman B., Ha I., Ruvkun G., (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855–862.
  • 44. Winter J. Jung S., Keller S., Gregory RI., Diederichs S., (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 11(3), 228-234.
  • 45. Zhang L., Hou D., Chen X., Li D., Zhu L., Zhang Y., Li J., Bian Z., Liang X., Cai X., (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of crosskingdom regulation by microRNA. Cell Res, 22, 107-126.
  • 46. Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., Zhou X., Wang X., Gao X., Li X., (2012). Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci, 8, 118-123.
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Deniz Dinçel 0000-0002-8015-9032

Sena Ardıçlı 0000-0003-2758-5945

Hale Şamlı 0000-0003-4728-0735

Faruk Balcı 0000-0003-2382-1330

Publication Date December 18, 2018
Submission Date May 22, 2018
Acceptance Date October 10, 2018
Published in Issue Year 2018 Volume: 3 Issue: 3

Cite

APA Dinçel, D., Ardıçlı, S., Şamlı, H., Balcı, F. (2018). Sığır, Keçi ve Koyunlarda mikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. Journal of Anatolian Environmental and Animal Sciences, 3(3), 124-130. https://doi.org/10.35229/jaes.425623


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS