Conference Paper
BibTex RIS Cite

Investigation of Thermal Conductivity of Wood Sandwich Panels with Aluminium and Polypropylene Core

Year 2019, Volume: 4 Issue: 4, 647 - 650, 31.12.2019
https://doi.org/10.35229/jaes.640624

Abstract

Sandwich panels are
obtained by placing thick but rather light core material between two thin and
rigid lower and upper surface layers. Sandwich panels, especially due to their
light weight, high "strength / weight" ratio and durability compared
to conventional materials have many use areas such as aviation and space
industry, maritime, automotive and building industry. It is one of the biggest
advantages that sandwich materials can be obtained from different materials and
geometric structures by choosing the lower and upper surface layers and the
core for various applications. The aim of this study is to investigate the
thermal conductivity values of the sandwich panels, which are manufactured with
different types of surface and core materials in sandwich panels. An aluminium
and polypropylene as a core materials and alder, birch and scots pine wood
veneers were used as wood species for surface panels for manufacturing of
sandwich panels. A polyurethane modified epoxy- adhesive were used for binding
of core layer to both surface layers. Thermal conductivity of sandwich panels
was determined according to ASTM C 518 & ISO 8301. As a result of the
study, the highest thermal conductivity values were obtained from aluminium
core sandwich panels. The highest values were obtained from alder for the
aluminium core panels and scots pine for the polypropylene core panels as wood
species.

References

  • Aslan, M., Guler, O., Cava, K., Alver, U. & Yuceloglu E., (2017). An Investigation on the Mechanical Properties of the Sandwich Panel Composites. 2nd International Defense Industry Symposium Science Board, Kırıkkale, Turkey, Aprıl 6-8, pp 602-610.
  • ASTM C 518, (2004). Methots of Measuring Thermal Conductivity, Absolute and Reference Method. ASTM International: West Conshohocken, USA.
  • Aydin, I., Demir, A. & Öztürk, H. (2015). Effect of Veneer Drying Temperature on Thermal Conductivity of Veneer Sheets. Pro Ligno, 11 (4), 351-354.
  • Bader, H., Niemz, P. & Sonderegger, W., (2007). Untersuchungen zum Einfluss des Plattenaufbaus auf Ausgewählte Eigenschaften von Massivholzplatten. Holzals Roh- und Werkstoff, 65 (3), 173–81.
  • Demirkır, C., Colak, S. & Aydin, I., (2013). Some Technological Properties of Wood–Styrofoam Composite Panels, Composites: Part B, 55, 513–517.
  • Forsberg, J. & Nilsson, L., (2006). Evaluation of Response Surface Methodologies Used in Crashworthiness Optimization. International Journal of Impact Engineering, 32 (5), 759–777.
  • Gustin, J., Joneson, A., Mahinfalah, M. & Stone, J., (2005). Low Velocity Impact of Combination Kevlar/carbon Fiber Sandwich Composites. Composite Structures, 69, 396–406.
  • Joo, J., H., Kang, K., J., Kim, T. & Lu, T., J., (2011). Forced Convective Heat Transfer in All Metallic Wire-woven Bulk Kagome Sandwich Panels. Int. J. Heat Mass Transfer, 54, 5658–5662.
  • Kamke, A., F. & Zylkowoski, S., C., (1989). Effects of Wood-based Panel Characteristics on Thermal Conductivity. Forest Prod J., 39 (5):19–34.
  • Kawasaki, T. & Kawai, S., (2006). Thermal Insulation Properties of Wood-based Sandwich Panel for Use as Structural Insulated Walls and Floors. J Wood Sci., 52, 75–83.
  • Kol, H., S., Uysal, B. & Kurt, S., (2010). Thermal Conductivity of Oak Impregnated with Some Chemicals and Finished. BioResources, 5 (2):545–55.
  • Lakreb, N., Bezzazi, B. & Pereira, H., (2015). Mechanical Behavior of Multilayered Sandwich Panels of Wood Veneer and a Core of Cork Agglomerates. Materials and Design, 65, 627–636.
  • Li, J., Hunt, J., F., Gong, S. & Cai, Z., (2014). High Strength Wood-based Sandwich Panels Reinforced with Fiberglass and Foam. Bioresurces. 9 (2), 1898-1913.
  • Pan, S., D., Wu, L., Z., Sun, Y., G. & Zhoug, Z., G., (2008). Fracture Test for Double Cantilever Beam of Honeycomb Sandwich Panels. Mater. Lett., 62, 523–526.
  • Qin, Q., H. & Wang, T., J., (2013). Low-velocity Impact Response of Fully Clamped Metal Foam Core Sandwich Beam Incorporating Local Denting Effect. Compos. Struct., 96, 346–356.
  • Sahin Kol, H. & Altun, S., (2009). Effect of Some Chemicals on Thermal Conductivity of Impregnated Laminated Veneer Lumbers Bonded with Poly(Vinyl Acetate) and Melamine–Formaldehyde Adhesives. Drying Technology, 27, 1010–1016.
  • Seo, J., Jeon, J., Lee, J., H. & Kim, S., (2011). Thermal Performance Analysis According to Wood Flooring Structure for Energy Conservation in Radiant Floor Heating Systems. Energy and Buildings, 43 (2011) 2039–2042.
  • Sonderegger, W. & Niemz, P., (2009). Thermal Conductivity and Water Vapor Transmission Properties of Wood Based Materials. Eur J Wood Wood Prod., 67, 313–21.Steeves, C., A. & Fleck, N., A., (2004). Material Selection in Sandwich Beam Construction. Scripta Materialia, 50, 1335–1339.
  • Suleiman, B., M., Larfeldt, J., Leckner, B. & Gustavsson, M., (1999). Thermal Conductivity and diffusivity of wood. Wood Sci Technol, 33 (6):465–73.
  • Vaziri, A., Xue, Z. & Hutchinson, J., W., (2006). Metal Sandwich Plates with Polymeric Foam-filled Cores, J. Mech. Mater. Struct., 1 (1), 95–128.
  • Watson, N., L. & Cameron, M., (2008). Vehicle Safety Ratings Estimated from Police Reported Crash Data: 2008 Update. Monash University Accident Research Center Report, Melbourne, 280.
  • Xiong, J., Ma, L., Wu, L., Wang, B. & Vaziri, A., (2010). Fabrication and Crushing Behavior of Low Density Carbon Fiber Composite Pyramidal Truss Structures. Compos. Struct., 92, 2695–2702.
  • Xiong, J., Vaziri, A., Ghosh, R., Hu, H., Ma, L. & Wu, L., (2016). Compression Behavior and Energy Absorption of Carbon Fiber Reinforced Composite Sandwich Panels Made of Three-dimensional Honeycomb Grid Cores. Extreme Machines Letters, 7, 114-120.

Investigation of Thermal Conductivity of Wood Sandwich Panels with Aluminium and Polypropylene Core

Year 2019, Volume: 4 Issue: 4, 647 - 650, 31.12.2019
https://doi.org/10.35229/jaes.640624

Abstract

Sandviç
paneller, iki ince ve sert alt ve üst yüzey tabakasının arasına kalın fakat
hafif çekirdek malzeme yerleştirilerek elde edilir.
Sandviç paneller, özellikle
hafiflikleri, yüksek "kuvvet / ağırlık" oranları ve geleneksel
malzemelere göre dayanıklılıkları nedeniyle havacılık ve uzay endüstrisi,
denizcilik, otomotiv ve inşaat endüstrisi gibi birçok kullanım alanına
sahiptir. Sandviç malzemelerin, farklı uygulamalar için alt ve üst yüzey
katmanları ve çekirdeği seçilerek farklı malzemelerden ve geometrik yapılardan
elde edilebileceği, en büyük avantajlardan biridir. Bu çalışmanın amacı, farklı
yüzey ve çekirdek malzemeleri ile üretilen sandviç panellerin ısıl iletkenlik
değerlerini araştırmaktır. Çekirdek malzeme olarak, alüminyum ve polipropilen;
kızılağaç, huş ve sarıçam kaplamaları, sandviç panellerin üretiminde yüzey
panelleri olarak kullanılmıştır. Çekirdek tabakanın her iki yüzey tabakasına yapışması
için poliüretan ile modifiye edilmiş bir epoksi yapıştırıcı kullanılmıştır.

Sandviç panellerin ısıl
iletkenliği ASTM C 518 ve ISO 8301'e göre belirlenmiştir. Çalışma sonucunda, en
yüksek ısıl iletkenlik değerleri, alüminyum çekirdekli sandviç panellerinden
elde edilmiştir. Alüminyum çekirdekli paneller için kızılağaçtan en yüksek
değerler elde edilmiş ve polipropilen çekirdekli paneller için çam ağacından
elde edilmiştir.

References

  • Aslan, M., Guler, O., Cava, K., Alver, U. & Yuceloglu E., (2017). An Investigation on the Mechanical Properties of the Sandwich Panel Composites. 2nd International Defense Industry Symposium Science Board, Kırıkkale, Turkey, Aprıl 6-8, pp 602-610.
  • ASTM C 518, (2004). Methots of Measuring Thermal Conductivity, Absolute and Reference Method. ASTM International: West Conshohocken, USA.
  • Aydin, I., Demir, A. & Öztürk, H. (2015). Effect of Veneer Drying Temperature on Thermal Conductivity of Veneer Sheets. Pro Ligno, 11 (4), 351-354.
  • Bader, H., Niemz, P. & Sonderegger, W., (2007). Untersuchungen zum Einfluss des Plattenaufbaus auf Ausgewählte Eigenschaften von Massivholzplatten. Holzals Roh- und Werkstoff, 65 (3), 173–81.
  • Demirkır, C., Colak, S. & Aydin, I., (2013). Some Technological Properties of Wood–Styrofoam Composite Panels, Composites: Part B, 55, 513–517.
  • Forsberg, J. & Nilsson, L., (2006). Evaluation of Response Surface Methodologies Used in Crashworthiness Optimization. International Journal of Impact Engineering, 32 (5), 759–777.
  • Gustin, J., Joneson, A., Mahinfalah, M. & Stone, J., (2005). Low Velocity Impact of Combination Kevlar/carbon Fiber Sandwich Composites. Composite Structures, 69, 396–406.
  • Joo, J., H., Kang, K., J., Kim, T. & Lu, T., J., (2011). Forced Convective Heat Transfer in All Metallic Wire-woven Bulk Kagome Sandwich Panels. Int. J. Heat Mass Transfer, 54, 5658–5662.
  • Kamke, A., F. & Zylkowoski, S., C., (1989). Effects of Wood-based Panel Characteristics on Thermal Conductivity. Forest Prod J., 39 (5):19–34.
  • Kawasaki, T. & Kawai, S., (2006). Thermal Insulation Properties of Wood-based Sandwich Panel for Use as Structural Insulated Walls and Floors. J Wood Sci., 52, 75–83.
  • Kol, H., S., Uysal, B. & Kurt, S., (2010). Thermal Conductivity of Oak Impregnated with Some Chemicals and Finished. BioResources, 5 (2):545–55.
  • Lakreb, N., Bezzazi, B. & Pereira, H., (2015). Mechanical Behavior of Multilayered Sandwich Panels of Wood Veneer and a Core of Cork Agglomerates. Materials and Design, 65, 627–636.
  • Li, J., Hunt, J., F., Gong, S. & Cai, Z., (2014). High Strength Wood-based Sandwich Panels Reinforced with Fiberglass and Foam. Bioresurces. 9 (2), 1898-1913.
  • Pan, S., D., Wu, L., Z., Sun, Y., G. & Zhoug, Z., G., (2008). Fracture Test for Double Cantilever Beam of Honeycomb Sandwich Panels. Mater. Lett., 62, 523–526.
  • Qin, Q., H. & Wang, T., J., (2013). Low-velocity Impact Response of Fully Clamped Metal Foam Core Sandwich Beam Incorporating Local Denting Effect. Compos. Struct., 96, 346–356.
  • Sahin Kol, H. & Altun, S., (2009). Effect of Some Chemicals on Thermal Conductivity of Impregnated Laminated Veneer Lumbers Bonded with Poly(Vinyl Acetate) and Melamine–Formaldehyde Adhesives. Drying Technology, 27, 1010–1016.
  • Seo, J., Jeon, J., Lee, J., H. & Kim, S., (2011). Thermal Performance Analysis According to Wood Flooring Structure for Energy Conservation in Radiant Floor Heating Systems. Energy and Buildings, 43 (2011) 2039–2042.
  • Sonderegger, W. & Niemz, P., (2009). Thermal Conductivity and Water Vapor Transmission Properties of Wood Based Materials. Eur J Wood Wood Prod., 67, 313–21.Steeves, C., A. & Fleck, N., A., (2004). Material Selection in Sandwich Beam Construction. Scripta Materialia, 50, 1335–1339.
  • Suleiman, B., M., Larfeldt, J., Leckner, B. & Gustavsson, M., (1999). Thermal Conductivity and diffusivity of wood. Wood Sci Technol, 33 (6):465–73.
  • Vaziri, A., Xue, Z. & Hutchinson, J., W., (2006). Metal Sandwich Plates with Polymeric Foam-filled Cores, J. Mech. Mater. Struct., 1 (1), 95–128.
  • Watson, N., L. & Cameron, M., (2008). Vehicle Safety Ratings Estimated from Police Reported Crash Data: 2008 Update. Monash University Accident Research Center Report, Melbourne, 280.
  • Xiong, J., Ma, L., Wu, L., Wang, B. & Vaziri, A., (2010). Fabrication and Crushing Behavior of Low Density Carbon Fiber Composite Pyramidal Truss Structures. Compos. Struct., 92, 2695–2702.
  • Xiong, J., Vaziri, A., Ghosh, R., Hu, H., Ma, L. & Wu, L., (2016). Compression Behavior and Energy Absorption of Carbon Fiber Reinforced Composite Sandwich Panels Made of Three-dimensional Honeycomb Grid Cores. Extreme Machines Letters, 7, 114-120.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Aslan 0000-0003-2299-8417

Hasan Öztürk 0000-0002-5422-7556

Cenk Demirkır 0000-0003-2503-8470

Publication Date December 31, 2019
Submission Date October 31, 2019
Acceptance Date December 6, 2019
Published in Issue Year 2019 Volume: 4 Issue: 4

Cite

APA Aslan, M., Öztürk, H., & Demirkır, C. (2019). Investigation of Thermal Conductivity of Wood Sandwich Panels with Aluminium and Polypropylene Core. Journal of Anatolian Environmental and Animal Sciences, 4(4), 647-650. https://doi.org/10.35229/jaes.640624


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS