Effect of Salt Stress (Potassium Chloride) on the Ecological and Physiological Characteristics of Safflower (Carthamus tinctorius L.) Varieties
Year 2021,
Volume: 6 Issue: 3, 441 - 448, 28.09.2021
Sema Leblebici
,
Şifanur Sülüş
,
Gülçin Çetin Kılıçaslan
Abstract
Salinity, which is a significant abiotic stress factor, is among the most important factors that limit product quality and yield. In this study investigated phenological and physiological changes that occurred in three different safflower varieties that were exposed to KCl stress at concentrations of 0, 50, 100 and 150 mM. It was found that, based on increasing salt concentrations, the most significant decrease was in all phenological parameters at the concentrations of 100 and 150 mM KCl. The SOD and CAT activities showed a significant increase at high salt concentrations in the Balcı and Dinçer varieties. The APX and GR activities showed a parallelism in all safflower varieties, and they showed a significant increase based on increased concentration at the applications of 100 and 150 mM KCl. Among the three safflower varieties, the most resistant variety to salt application was Dinçer, while the most sensitive one was Remzibey. The Balcı variety was closer to the Dinçer variety in terms of its tolerance against salt stress.
Supporting Institution
Bilecik Şeyh Edebali University
Project Number
2016-02.BŞEÜ.06-01
Thanks
This study was supported by Bilecik Şeyh Edebali University Scientific Research Projects Coordinatorship with the project number 2016-02.BŞEÜ.06-01.
References
- Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. & Hernandez, J.A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1): 1–38.
- Ahanger, M.A., Tomar, N.S., Tittal, M., Argal, S. & Agarwal, R.M. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23(4): 731–744.
- Beyer, W.F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161: 559-566.
- Bradford, M.M. (1976). A rapid and sensitive metod for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
- Burke, J.J. & Oliver, M.J. (1992). Differential temperature sensitivity of pea superoxide dismutases. Journal of Plant Physiology, 100:1595–8.
- Cervilla, L.M., Blasco, B., Ríos, J.J., Romero l. & Ruiz, J.M. (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100: 747–756.
- Chen, X., Zhang, R., Xing, Y., Jiang, B., Li, B., Xu, X. & Zhou, Y. (2021). The efficacy of different seed priming agents for promoting sorghum germination under salt stress. Plos One, 16(1): 1-14.
- Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95: 27–42.
- Çulha Erdal, Ş. & Çakirlar, H. (2014). Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars. Turkish Journal of Biology, 38(4), 549–560.
Danicic, M., Maksimovic, I. & Putnik-Delic, M. (2016). Physiological and chemical characteristics of safflower (Carthamus tinctorius L.) grown in the presence of low salt concentrations. Zbornik Matice Srpske Za Prirodne NaukeMatica Srpska Journal for Natural Sciences, 130: 85–91.
- El-Shourbagy, M., Saad-Allah, K., Foda, S. & Razzaky, E. (2017). Impact of Some Halophytic Extracts on the Antioxidant System of Salt-Stressed Safflower (Carthamus tinctorius L.). Journal of Plant Production, 8(7): 759–765.
- Elouaer, M.A. & Hannachi, C. (2012). Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. EurAsian Journal of BioSciences, 6: 76-84.
- Fahad, S., Hussain, S., Matloob, A., Khan, F.A., Khaliq, A., Saud, S., Hassan, S., Shan, D., Khan, F., Ullah, N., Faiq, M., Khan, M.R., Tareen, A.K., Khan, A., Ullah, A., Ullah, N. & Huang, J. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75(2): 391–404.
- Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S. & Changhai, W. (2015). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64(1): 175–181.
- Golkar, P. & Taghizadeh, M. (2018) In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress. Plant Cell, Tissue and Organ Culture, 134(3): 357–368.
- Golldack, D., Li, C., Mohan, H. & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5(APR): 1–10.
- Hussain, M.I. & Al-Dakheel, A. (2018). Effect of salinity stress on phenotypic plasticity, yield stability, and signature of stable isotopes of carbon and nitrogen in safflower. Environmental Science and Pollution Research, 25: 23685-23694.
- Isik, G. & Leblebici, S. (2016). Seed germination behavior of some safflower (C. tinctorius L.) varieties according to habitat conditions containing different concentrations of boric acid. Pakistan Journal of Botany, 48(6), 2211-2214.
- Jabeen, N. & Ahmad, R. (2012). Improvement in growth and leaf water relation parameters of Sunflower and Safflower plants with foliar application of nutrient solutions under salt stress. --- Pakistan Journal of Botany, 44(4): 1341-1345.
- Javed, S., Bukhari, S.A., Yasin Ashraf, M., Mahmood., S. & Iftikhar, T. (2014). Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (Carthamus tinctorius L.). Pakistan Journal of Botany, 46(4): 1153–1158.
- Karimi, N., Soheilikhah, Z., Ghasmpour, H.R. & Zebarjadi, A. (2011). Effect of salinity stress on germination and early seedling growth of different Safflower (Carthamus tinctorius L.) genotypes. Journal of Ecobiotechnology, 3(10): 07-13.
- Karray-Bouraoui, N., Harbaoui, F., Rabhi, M., Jallali, I., Ksouri, R., Attia, H., Msilini, N. & Lachaal, M. (2011). Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiologiae Plantarum, 33: 1435-1444.
- Khodadad, M. (2011). An evaluation of safflower genotypes (Carthamus tinctorius L.), seed germination and seedling characters in salt stress conditions. African Journal of Agricultural Research, 6(7): 1667-1672.
- Kumari, A., Das, P., Parida, A.K. & Agarwal, P.K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6: 537.
- Liang, W., Ma, X., Wan, P. & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286–291.
- Rao, M.V., Paliyath, G. & Ormrod, D.P. (1996). Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110: 125–136.
- Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012: 1–26.
- Sharma, P., Jha, A.B. & Dubey, R.S. (2016). Oxidative stress and antioxidative defense systems in plants growing under abiotic stresses. Handbook of Plant and Crop Stress Third Edition, 89–138.
- Siddiqi, E.H., Ashraf, M., Al-Qurainy, F. & Akram, N. A. (2011). Salt-inducedmodulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Journal of the Science of Food and Agriculture, 91: 2785-2793.
- Singh, M., Kumar, J., Singh, S., Singh, V.P. & Prasad, S.M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Biotechnology, 14(3): 407–426.
- Sourour, A., Rassaa, N., Chamekh, Z., Beji, S., Karouı, F., Bouzaien, T., Mrabit, M. & Ben Younes, M. (2014). Effect of salt stress (sodium chloride) on germination and seedling growth of durum wheat (Triticum durum Desf.) genotypes. International Journal of Biodiversity and Conservation, 6(4): 320-325.
- Stephenie, S., Chang, Y.P., Gnanasekaran, A., Esa, N.M. & Gnanaraj, C. (2020). An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68(November 2019): 103917.
- Sulus, S., Leblebici, S. (2020). The effect of boric acid application on ecophysiological characterıstics of safflower varieties (Carthamus tinctorius L.). Fresenius Environmental Bulletin, 29(09A): 8177-8185.
- Tepe, M. & Aydemir, T. (2011). Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogen sources. African Journal of Biotechnology, 10(53): 10882–10891.
- Tian, M., Cao, H.Y., Zhang, M.S., Zhang, Z.X., Yang, D.Y., Li, H.R., Ma, C.Y. (2019). Response of Carthamus tinctorius L. to salt stress during germination and seedling stage. Journal of Agricultural Science and Technology, 21(5): 49-54.
- Zaman, B., Ali, A., Hyder, S.I., Arshadullah, M. & Bhatti, S.U. (2012). Potassium chloride as a nutrient seed primer to enhance salt-tolerance in maize. Pesquisa Agropecuária Brasileira, 47(8): 1181-1184.
- Zao, D., Gao, S., Zhang, X., Zhang, Z., Zheng, H., Rong, K., Zhao, W. & Khan, S.A. (2021). Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant, Soil and Environment, 67(2): 61-70.
Tuz Stresinin (Potasyum Klorür) Aspir (Carthamus tinctorius L.) Çeşitlerinin Ekolojik ve Fizyolojik Özelliklerine Etkisi
Year 2021,
Volume: 6 Issue: 3, 441 - 448, 28.09.2021
Sema Leblebici
,
Şifanur Sülüş
,
Gülçin Çetin Kılıçaslan
Abstract
Önemli bir abiyotik stres faktörü olan tuzluluk, bitkilerde ürün kalitesini ve verimini ciddi şekilde sınırlandırmaktadır. Bu çalışmada, 0, 50, 100 ve 150 mM KCl uygulanan üç farklı aspir çeşidinde meydana gelen fenolojik ve fizyolojik değişiklikler incelenmiştir. Artan tuz konsantrasyonlarına bağlı olarak en önemli azalmanın tüm fenolojik parametrelerde 100 ve 150 mM KCl konsantrasyonlarında olduğu belirlenmiştir. Balcı ve Dinçer çeşidinde yüksek tuz konsantrasyonlarında SOD ve CAT aktiviteleri önemli bir artış göstermiştir. APX ve GR aktiviteleri tüm aspir çeşitlerinde paralellik göstermiş, 100 ve 150 mM KCl uygulamasında önemli bir artış göstermiştir. Üç Aspir çeşidi karşılşatırıldığında tuz stresine en dayanıklı çeşidin Dinçer, en hassas çeşidin Remzibey olduğu; Balcı çeşidinin ise tuz stresine tolerans bakımından Dinçer çeşidine daha yakın olduğu tespit edilmiştir.
Project Number
2016-02.BŞEÜ.06-01
References
- Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. & Hernandez, J.A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1): 1–38.
- Ahanger, M.A., Tomar, N.S., Tittal, M., Argal, S. & Agarwal, R.M. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23(4): 731–744.
- Beyer, W.F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161: 559-566.
- Bradford, M.M. (1976). A rapid and sensitive metod for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
- Burke, J.J. & Oliver, M.J. (1992). Differential temperature sensitivity of pea superoxide dismutases. Journal of Plant Physiology, 100:1595–8.
- Cervilla, L.M., Blasco, B., Ríos, J.J., Romero l. & Ruiz, J.M. (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100: 747–756.
- Chen, X., Zhang, R., Xing, Y., Jiang, B., Li, B., Xu, X. & Zhou, Y. (2021). The efficacy of different seed priming agents for promoting sorghum germination under salt stress. Plos One, 16(1): 1-14.
- Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95: 27–42.
- Çulha Erdal, Ş. & Çakirlar, H. (2014). Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars. Turkish Journal of Biology, 38(4), 549–560.
Danicic, M., Maksimovic, I. & Putnik-Delic, M. (2016). Physiological and chemical characteristics of safflower (Carthamus tinctorius L.) grown in the presence of low salt concentrations. Zbornik Matice Srpske Za Prirodne NaukeMatica Srpska Journal for Natural Sciences, 130: 85–91.
- El-Shourbagy, M., Saad-Allah, K., Foda, S. & Razzaky, E. (2017). Impact of Some Halophytic Extracts on the Antioxidant System of Salt-Stressed Safflower (Carthamus tinctorius L.). Journal of Plant Production, 8(7): 759–765.
- Elouaer, M.A. & Hannachi, C. (2012). Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. EurAsian Journal of BioSciences, 6: 76-84.
- Fahad, S., Hussain, S., Matloob, A., Khan, F.A., Khaliq, A., Saud, S., Hassan, S., Shan, D., Khan, F., Ullah, N., Faiq, M., Khan, M.R., Tareen, A.K., Khan, A., Ullah, A., Ullah, N. & Huang, J. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75(2): 391–404.
- Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S. & Changhai, W. (2015). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64(1): 175–181.
- Golkar, P. & Taghizadeh, M. (2018) In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress. Plant Cell, Tissue and Organ Culture, 134(3): 357–368.
- Golldack, D., Li, C., Mohan, H. & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5(APR): 1–10.
- Hussain, M.I. & Al-Dakheel, A. (2018). Effect of salinity stress on phenotypic plasticity, yield stability, and signature of stable isotopes of carbon and nitrogen in safflower. Environmental Science and Pollution Research, 25: 23685-23694.
- Isik, G. & Leblebici, S. (2016). Seed germination behavior of some safflower (C. tinctorius L.) varieties according to habitat conditions containing different concentrations of boric acid. Pakistan Journal of Botany, 48(6), 2211-2214.
- Jabeen, N. & Ahmad, R. (2012). Improvement in growth and leaf water relation parameters of Sunflower and Safflower plants with foliar application of nutrient solutions under salt stress. --- Pakistan Journal of Botany, 44(4): 1341-1345.
- Javed, S., Bukhari, S.A., Yasin Ashraf, M., Mahmood., S. & Iftikhar, T. (2014). Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (Carthamus tinctorius L.). Pakistan Journal of Botany, 46(4): 1153–1158.
- Karimi, N., Soheilikhah, Z., Ghasmpour, H.R. & Zebarjadi, A. (2011). Effect of salinity stress on germination and early seedling growth of different Safflower (Carthamus tinctorius L.) genotypes. Journal of Ecobiotechnology, 3(10): 07-13.
- Karray-Bouraoui, N., Harbaoui, F., Rabhi, M., Jallali, I., Ksouri, R., Attia, H., Msilini, N. & Lachaal, M. (2011). Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiologiae Plantarum, 33: 1435-1444.
- Khodadad, M. (2011). An evaluation of safflower genotypes (Carthamus tinctorius L.), seed germination and seedling characters in salt stress conditions. African Journal of Agricultural Research, 6(7): 1667-1672.
- Kumari, A., Das, P., Parida, A.K. & Agarwal, P.K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6: 537.
- Liang, W., Ma, X., Wan, P. & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286–291.
- Rao, M.V., Paliyath, G. & Ormrod, D.P. (1996). Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110: 125–136.
- Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012: 1–26.
- Sharma, P., Jha, A.B. & Dubey, R.S. (2016). Oxidative stress and antioxidative defense systems in plants growing under abiotic stresses. Handbook of Plant and Crop Stress Third Edition, 89–138.
- Siddiqi, E.H., Ashraf, M., Al-Qurainy, F. & Akram, N. A. (2011). Salt-inducedmodulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Journal of the Science of Food and Agriculture, 91: 2785-2793.
- Singh, M., Kumar, J., Singh, S., Singh, V.P. & Prasad, S.M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Biotechnology, 14(3): 407–426.
- Sourour, A., Rassaa, N., Chamekh, Z., Beji, S., Karouı, F., Bouzaien, T., Mrabit, M. & Ben Younes, M. (2014). Effect of salt stress (sodium chloride) on germination and seedling growth of durum wheat (Triticum durum Desf.) genotypes. International Journal of Biodiversity and Conservation, 6(4): 320-325.
- Stephenie, S., Chang, Y.P., Gnanasekaran, A., Esa, N.M. & Gnanaraj, C. (2020). An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68(November 2019): 103917.
- Sulus, S., Leblebici, S. (2020). The effect of boric acid application on ecophysiological characterıstics of safflower varieties (Carthamus tinctorius L.). Fresenius Environmental Bulletin, 29(09A): 8177-8185.
- Tepe, M. & Aydemir, T. (2011). Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogen sources. African Journal of Biotechnology, 10(53): 10882–10891.
- Tian, M., Cao, H.Y., Zhang, M.S., Zhang, Z.X., Yang, D.Y., Li, H.R., Ma, C.Y. (2019). Response of Carthamus tinctorius L. to salt stress during germination and seedling stage. Journal of Agricultural Science and Technology, 21(5): 49-54.
- Zaman, B., Ali, A., Hyder, S.I., Arshadullah, M. & Bhatti, S.U. (2012). Potassium chloride as a nutrient seed primer to enhance salt-tolerance in maize. Pesquisa Agropecuária Brasileira, 47(8): 1181-1184.
- Zao, D., Gao, S., Zhang, X., Zhang, Z., Zheng, H., Rong, K., Zhao, W. & Khan, S.A. (2021). Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant, Soil and Environment, 67(2): 61-70.