Research Article
BibTex RIS Cite

Ecological Carrying Capacity: Carrying Capacity Estimation for Kılıçkaya Dam Lake Using Phosphorus Based Loading Model

Year 2022, Volume: 7 Issue: 3, 323 - 330, 30.09.2022
https://doi.org/10.35229/jaes.1153542

Abstract

Ecological carrying capacity defines the degree of maximum utilization of the environment without damaging ecosystems. Like every economic activity, aquaculture has significant effects on aquatic ecosystems. Especially, floating net cage fish farms may cause eutrophication by releasing nutrients into the environment due to their settlement location. For this reason, the carrying capacity of the environment should be calculated before the establishment of fish farms. In this study, the carrying capacity of the Kılıçkaya Dam Lake located in the Black Sea Region of Turkey was estimated using the Dillon-Rigler phosphorus loading model. Farm and lake limnological data in calculations (average depth 16 m, surface area 64.4 km2, acceptable phosphorus load 30 mg/m3, average phosphorus concentration 24 mg/m3, FCR between 1.0-1.5-2.0) used. The model estimated the annual amount of trout that can be produced in the lake as between 1,697 tons and 25,162 tons. Considering the low depth of the lake, the eutrophic structure of the lower basin, and the global climate change, it has been concluded that an average of 2,500 tons/year trout can be produced without damaging the environment. In addition, it is suggested to calculate the ecological carrying capacity in all dam lakes of Turkey before the fish farm is established.

References

  • Abd Hamid, M., Md Sah, A. S. R., Idris, I., Mohd Nor, S. A., & Mansor, M. (2022). Trophic state index and carrying capacity estimation of aquaculture development; the application of total phosphorus budget. Aquaculture Research, 1–15.
  • Akpojotor, E. (2015). Development of Carrying Capacity Estimates for Zonation of Cage Aquaculture in Lake Volta, Ghana. MSc Thesis, Institute of Aquaculture, University of Stirling, Scotland.
  • Alp, A. (2015). Karkamış Baraj Gölü’nün kafeslerde alabalık yetiştiriciliği açısından taşıma kapasitesi raporu. KSÜ Ziraat Fakültesi Su Ürünleri Bölümü, 5s, K.Maraş.
  • ANA (2009). Agência Nacional de Águas . Nota Técnican.009/2009/GEOUT/SOF-ANA: atualização na metodologia de análise de pedidos de outorga para piscicultura em tanques-rede.
  • Aslantürk, A. & Çetinkaya. O. (2021) Sücüllü Baraj Gölü’nün Alabalık Yetiştiriciliği İçin Taşıma Kapasitesinin Tahmini. Acta Aquatica Turcica, 17(2), 221-232.
  • Aydoğar, Ş.İ. (2004). Türkiye’de İlçelerin İl Olma Çalışmaları Suşehri. Acar Matbaacılık A.Ş., İstanbul, 160s.
  • Ayekin, B., Yeşilayer, N. & Buhan, E. (2018). Karakaya Baraj gölü (Malatya) Ağ Kafes Sistemlerinde Alabalık Yetiştiriciliği İçin Taşıma Kapasitesinin Tahmini, Gaziosmanpaşa Bilimsel Araştırma Dergisi , 7 (3), 101-110.
  • Ayvaz, M., Tenekecioğlu, E. & Koru, E. (2011). Determination of trophic status of Afsar (Manisa-Turkey) Dam Lake . Ecology, 20 (81): 37-47.
  • Beveridge, M.C.M. (1984) . Cage and pen fish farming, carrying capacity models and environmental impact. FAO Fisheries Technical Paper 255, Rome, 131p.
  • Buhan E., Koçer M.A., Polat F., Doğan H.M., Dirim S. & Neary E.T. (2010). Almus Baraj Gölü su kalitesinin alabalık yetiştiriciliği açısından değerlendirilmesi ve tasıma kapasitesinin tahmini. Ziraat Fakültesi Dergisi, 27 (1): 57-65.
  • Büyükçapar, H.M. & Alp, A. (2006). The carrying capacity and suitability of the Menzelet Reservoir (Kahramanmaras-Turkey) for trout culture in terms of water quality. Journal of Applied Sciences , 6 (13): 2774-2778.
  • BRASIL (2005). Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, 18 mar. Seção 1, p.58-63.
  • Carballeira Braña CB, Cerbule K, Senff P & Stolz IK. (2021) . Towards Environmental Sustainability in Marine Finfish Aquaculture. Front. Mar. Sci. 8:666662.
  • Chen, D., & Zheng, A. R. (2005). Contamination of N, P and organic matters from cage culture and its assessment. Fujian Journal of Agricultural Sciences, 20, 57-62.
  • Costa-Pierce, B.A.(2002). Sustainability of cage culture ecosystems for large scaleresettlement from hydropower dams: an Indonesian case study. In: Costa-Pierce, B.A. (Ed.), Ecological Aquaculture – The Evolution of the Blue Revolution. Blackwell Science, Oxford, pp. 286–313.
  • David, G. S., Carvalho, E. D., Lemos, D., Silveira, A. N., & Dall’Aglio-Sobrinho, M. (2015). Ecological carrying capacity for intensive tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquacultural Engineering, 66, 30–40.
  • Dillon, P.J. & Rigler, F.H. (1974). A test of simple nutrient budget model predicting the phosphorus concentrations in lake water. J.Fish.Res.Board.Can, 31 (14): 1771-1778 pp.
  • Dirican, S. (2008). Kılıçkaya Dam Lake (Sivas, Turkey) has established the evaluation of water quality. Harran University, Faculty of Agriculture Journal 12(4): 25-31.
  • DSİ,(2017).http://www2.dsi.gov.tr/baraj/detay.cfm?ID=136(erişim tarihi:05.04.2017).
  • Elliott, M., Boyes, S.J., Barnard, S. & Borja, A. (2018). Using best expert judgement to harmonise marine environmental status assessment and maritime spatial planning. Marine Pollution Bulletin, 133: 367–377.
  • EUMOFA (2021). Portion trout in the EU European Commission, Directorate General for Maritime Affairs and Fisheries , https://data.europa.eu/doi/10.2771/98441
  • FAO (2018). The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals. FAO, Rome.
  • Hach-Lange (2007). DR 2800 Spectrophotometer, Procedures Manual, Edition 2.
  • Jahan, P.,Watanabe, T., Kıron, I. & Satoh, S.H. (2003). Balancing protein ingredients in carp feeds to limit discharge of phosphorus and nitrogen into water bodies. Fisheries Science, 69:226-233.
  • Küçükyılmaz, M., Koçer, M.A., Örnekci, G.N., Karakaya, G., Uslu, A. A., Arısoy, G., Alpaslan, K., Türkgülü, İ. & Özbey, N. (2021). Özlüce Baraj Gölü su kalitesinin alabalık yetiştiriciliği açısından değerlendirilmesi ve taşıma kapasitesinin tahmini. Internal. Journal of Eastern Mediterranean Agricultural Research, 4(1):15-31.
  • Leschen, W., Van Veenhuizen, R., Little, D.C. & Bunting, S. (2005). Urban aquatic production in four Southeastern Asian cities. Network of Resource Centres for Urban Agriculture and Food Safety (RUAF), ISSN 1571-6244.
  • Li, J. & Zhou, X.D. (2009). Research on water ecological carrying capacity of Yarkant River Basin. Journal of Xi’an University of Technology, 25(3):249-255.
  • McKindsey, C. W., Thetmeyer, H., Landry, T., & Silvert, W. (2006). Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture, 261(2), 451–462.
  • McKindsey, C.W. (2013). Carrying capacity for sustainable bivalve aquaculture. (In: Christou P, Savin R, Costa-Pierce B, Misztal I, Whitelaw B ; eds), Sustainable Food Production, pp. 449–466. Springer, New York, NY.
  • Mhlanga, L. (2013). The application of a phosphorus mass balance model for estimating the carrying capacity of Lake Kariba.Turk J Vet Anim Sci, 37: 316-319.
  • Molony, B.W. (2001). Environmental requirements and tolerances of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) with special reference to Western Australia: a review. Fish. Res. Rep. West. Aust. 130 (28 pp.).
  • Polat, F. & Özmen, H. (2011). Almus Baraj Gölü’nde trofik seviyenin belirlenmesi ve gölün fosfor taşıma kapasitesinin araştırılması. Ekoloji, 20(78): 53-59.
  • Ross, L.G., Telfer, T.C., Falconer, L., Soto, D., Aguilar-Manjarrez, J., Asmah, R. et al. (2013). Carrying capacities and site selection within the ecosystem approach to aquaculture. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture, pp. 19–46. FAO, Rome, Italy.
  • Sala, S., Ciuffo, B. & Nijkamp, P. (2015). A systemic framework for sustainability assessment. Ecological Economics , 119: 314–325.
  • Sayre, N.F. (2008). The genesis, history, and limits of carrying capacity. Annals of the Association of American Geographers , 98 (1): 120–134.
  • Sun, G., Sheng, L. X., Feng, J., Lang, Y., & Li, Z. X. (1999). Relationship between fishery and eutrophication in Chinese lakes. Journal of Northeast Normal University (Natural Science Edition), 3(1), 74-78.
  • Tüfek, M.Ö. & Yalçın, N. (2007). Rezervuarlarda su ürünleri yetiştiriciliği, Türk Sucul Yaşam Dergisi, Yıl 3-5, Sayı 5-8 , 704-716.
  • TÜİK (2022). Türkiye İstatistik Kurumu. Su Ürünleri İstatistikleri Veritabanı. https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2021-45745 [erişim tarihi:28.07.2022]
  • Verep, B., Çelikkale, M.S., Düzgüneş, E. & Okumuş, İ. (2003). Uzungöl’ün genel hidrografisi ve taşıma kapasitesi. Türk Sucul Yaşam Dergisi , 148-157.
  • Vollenweider, R.A. (1968). Scientific Fundamentals of the eutrophication of lakes and flowing waters, with particular refer nitrogen and phosphorus as factors of eutrophication. OECD, Technical Report (DA5/SU/68.27), 250 p.
  • Vollenweider, R.A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol, 33:53-83p.
  • Weitzman, J. & Filgueira, R. (2019). The evolution and application of carrying capacity in aquaculture: towards a research agenda. Reviews in Aquaculture.
  • White, P., Phillips, M.J. & Beveridge, M.C.M. (2013). Environmental impact, site selection and carrying capacity estimation for small-scale aquaculture in Asia. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture. , pp.231–251, FAO Fisheries and Aquaculture Proceedings N◦. 21. FAO. 282 pp.
  • YSKY (Yerüstü Su Kalitesi Yönetmeliği) 2012. 30/11/2012 tarihli ve 28483 sayılı Resmî Gazete. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=1680 (erişim tarihi: 05.04.2017).
  • Yüngül,M., Karaman,Z., & Dörücü M. (2016). Çamlıgöze Baraj Gölü’ndeki alabalık işletmelerinin yapısal, biyoteknik ve yetiştiricilik mekanizasyonu yönünden incelenmesi, Biyoloji Bilimleri Araştırma Dergisi , 9 (2): 01-09.
  • Zhang, P.P., Liu, R.M., Bao, Y.M., Wang, J.W., Yu, W.W. & Shen, Z.Y. (2014). Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res., 53, 132–144.
  • Zhou, H.D., Jiang, C.L., Zhu, L.Q., Wang, X.W., Hu, X.Q., Cheng, J.Y. & Xie, M.H., 2011. Impact of pond and fence aquaculture on reservoir environment. Water Science and Engineering, 4, 92-100. 677.

Ekolojik Taşıma Kapasitesi : Fosfora Dayalı Yüklenme Modeli Kullanılarak Kılıçkaya Baraj Gölü için Taşıma Kapasitesi Tahmini

Year 2022, Volume: 7 Issue: 3, 323 - 330, 30.09.2022
https://doi.org/10.35229/jaes.1153542

Abstract

Ekolojik taşıma kapasitesi ekosistemlere zarar verilmeden ortamdan üst düzeyde yararlanma ölçütünü tanımlar. Her ekonomik faaliyet gibi su ürünleri yetiştiriciliğinin de sucul ekosistemler üzerine önemli etkileri bulunmaktadır. Özellikle yüzer ağ kafes balık çiftlikleri yerleşim konumu gereği ortama besleyici element vererek ötrofikasyona neden olabilir. Bu nedenle balık çiftlikleri kurulmadan önce ortamın taşıma kapasitesi hesaplanmalıdır. Bu çalışmada Türkiye’nin Karadeniz Bölgesinde yeralan Kılıçkaya Baraj Gölünün taşıma kapasitesi Dillon-Rigler fosfor yüklenme modeli kullanılarak tahmin edilmiştir. Hesaplamalarda çiftlik ve göl limnolojik verileri (ortalama derinlik 16 m, yüzey alanı 64,4 km2 , kabul edilebilir fosfor yükü 30 mg/m3, ortalama fosfor konsantrasyonu 24 mg/m3, YYO 1,0-1,5-2,0 arasında) kullanılmıştır. Model gölde ağ kafeslerde üretilebilecek yıllık alabalık miktarını 1.697 ton ile 25.162 ton arasında tahmin etmiştir. Gölün derinliğinin az olması, alt havzanın ötrofik yapısı ve küresel iklim değişimi dikkate alınarak, çevreye zarar vermeden ortalama 2500 ton/yıl alabalık üretilebileceği sonucuna ulaşılmıştır. Ayrıca Türkiye’nin tüm baraj göllerinde; ağ kafes çiftliği kurulmadan önce ekolojik taşıma kapasitesinin hesaplanması önerilmiştir.

References

  • Abd Hamid, M., Md Sah, A. S. R., Idris, I., Mohd Nor, S. A., & Mansor, M. (2022). Trophic state index and carrying capacity estimation of aquaculture development; the application of total phosphorus budget. Aquaculture Research, 1–15.
  • Akpojotor, E. (2015). Development of Carrying Capacity Estimates for Zonation of Cage Aquaculture in Lake Volta, Ghana. MSc Thesis, Institute of Aquaculture, University of Stirling, Scotland.
  • Alp, A. (2015). Karkamış Baraj Gölü’nün kafeslerde alabalık yetiştiriciliği açısından taşıma kapasitesi raporu. KSÜ Ziraat Fakültesi Su Ürünleri Bölümü, 5s, K.Maraş.
  • ANA (2009). Agência Nacional de Águas . Nota Técnican.009/2009/GEOUT/SOF-ANA: atualização na metodologia de análise de pedidos de outorga para piscicultura em tanques-rede.
  • Aslantürk, A. & Çetinkaya. O. (2021) Sücüllü Baraj Gölü’nün Alabalık Yetiştiriciliği İçin Taşıma Kapasitesinin Tahmini. Acta Aquatica Turcica, 17(2), 221-232.
  • Aydoğar, Ş.İ. (2004). Türkiye’de İlçelerin İl Olma Çalışmaları Suşehri. Acar Matbaacılık A.Ş., İstanbul, 160s.
  • Ayekin, B., Yeşilayer, N. & Buhan, E. (2018). Karakaya Baraj gölü (Malatya) Ağ Kafes Sistemlerinde Alabalık Yetiştiriciliği İçin Taşıma Kapasitesinin Tahmini, Gaziosmanpaşa Bilimsel Araştırma Dergisi , 7 (3), 101-110.
  • Ayvaz, M., Tenekecioğlu, E. & Koru, E. (2011). Determination of trophic status of Afsar (Manisa-Turkey) Dam Lake . Ecology, 20 (81): 37-47.
  • Beveridge, M.C.M. (1984) . Cage and pen fish farming, carrying capacity models and environmental impact. FAO Fisheries Technical Paper 255, Rome, 131p.
  • Buhan E., Koçer M.A., Polat F., Doğan H.M., Dirim S. & Neary E.T. (2010). Almus Baraj Gölü su kalitesinin alabalık yetiştiriciliği açısından değerlendirilmesi ve tasıma kapasitesinin tahmini. Ziraat Fakültesi Dergisi, 27 (1): 57-65.
  • Büyükçapar, H.M. & Alp, A. (2006). The carrying capacity and suitability of the Menzelet Reservoir (Kahramanmaras-Turkey) for trout culture in terms of water quality. Journal of Applied Sciences , 6 (13): 2774-2778.
  • BRASIL (2005). Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, 18 mar. Seção 1, p.58-63.
  • Carballeira Braña CB, Cerbule K, Senff P & Stolz IK. (2021) . Towards Environmental Sustainability in Marine Finfish Aquaculture. Front. Mar. Sci. 8:666662.
  • Chen, D., & Zheng, A. R. (2005). Contamination of N, P and organic matters from cage culture and its assessment. Fujian Journal of Agricultural Sciences, 20, 57-62.
  • Costa-Pierce, B.A.(2002). Sustainability of cage culture ecosystems for large scaleresettlement from hydropower dams: an Indonesian case study. In: Costa-Pierce, B.A. (Ed.), Ecological Aquaculture – The Evolution of the Blue Revolution. Blackwell Science, Oxford, pp. 286–313.
  • David, G. S., Carvalho, E. D., Lemos, D., Silveira, A. N., & Dall’Aglio-Sobrinho, M. (2015). Ecological carrying capacity for intensive tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquacultural Engineering, 66, 30–40.
  • Dillon, P.J. & Rigler, F.H. (1974). A test of simple nutrient budget model predicting the phosphorus concentrations in lake water. J.Fish.Res.Board.Can, 31 (14): 1771-1778 pp.
  • Dirican, S. (2008). Kılıçkaya Dam Lake (Sivas, Turkey) has established the evaluation of water quality. Harran University, Faculty of Agriculture Journal 12(4): 25-31.
  • DSİ,(2017).http://www2.dsi.gov.tr/baraj/detay.cfm?ID=136(erişim tarihi:05.04.2017).
  • Elliott, M., Boyes, S.J., Barnard, S. & Borja, A. (2018). Using best expert judgement to harmonise marine environmental status assessment and maritime spatial planning. Marine Pollution Bulletin, 133: 367–377.
  • EUMOFA (2021). Portion trout in the EU European Commission, Directorate General for Maritime Affairs and Fisheries , https://data.europa.eu/doi/10.2771/98441
  • FAO (2018). The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals. FAO, Rome.
  • Hach-Lange (2007). DR 2800 Spectrophotometer, Procedures Manual, Edition 2.
  • Jahan, P.,Watanabe, T., Kıron, I. & Satoh, S.H. (2003). Balancing protein ingredients in carp feeds to limit discharge of phosphorus and nitrogen into water bodies. Fisheries Science, 69:226-233.
  • Küçükyılmaz, M., Koçer, M.A., Örnekci, G.N., Karakaya, G., Uslu, A. A., Arısoy, G., Alpaslan, K., Türkgülü, İ. & Özbey, N. (2021). Özlüce Baraj Gölü su kalitesinin alabalık yetiştiriciliği açısından değerlendirilmesi ve taşıma kapasitesinin tahmini. Internal. Journal of Eastern Mediterranean Agricultural Research, 4(1):15-31.
  • Leschen, W., Van Veenhuizen, R., Little, D.C. & Bunting, S. (2005). Urban aquatic production in four Southeastern Asian cities. Network of Resource Centres for Urban Agriculture and Food Safety (RUAF), ISSN 1571-6244.
  • Li, J. & Zhou, X.D. (2009). Research on water ecological carrying capacity of Yarkant River Basin. Journal of Xi’an University of Technology, 25(3):249-255.
  • McKindsey, C. W., Thetmeyer, H., Landry, T., & Silvert, W. (2006). Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture, 261(2), 451–462.
  • McKindsey, C.W. (2013). Carrying capacity for sustainable bivalve aquaculture. (In: Christou P, Savin R, Costa-Pierce B, Misztal I, Whitelaw B ; eds), Sustainable Food Production, pp. 449–466. Springer, New York, NY.
  • Mhlanga, L. (2013). The application of a phosphorus mass balance model for estimating the carrying capacity of Lake Kariba.Turk J Vet Anim Sci, 37: 316-319.
  • Molony, B.W. (2001). Environmental requirements and tolerances of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) with special reference to Western Australia: a review. Fish. Res. Rep. West. Aust. 130 (28 pp.).
  • Polat, F. & Özmen, H. (2011). Almus Baraj Gölü’nde trofik seviyenin belirlenmesi ve gölün fosfor taşıma kapasitesinin araştırılması. Ekoloji, 20(78): 53-59.
  • Ross, L.G., Telfer, T.C., Falconer, L., Soto, D., Aguilar-Manjarrez, J., Asmah, R. et al. (2013). Carrying capacities and site selection within the ecosystem approach to aquaculture. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture, pp. 19–46. FAO, Rome, Italy.
  • Sala, S., Ciuffo, B. & Nijkamp, P. (2015). A systemic framework for sustainability assessment. Ecological Economics , 119: 314–325.
  • Sayre, N.F. (2008). The genesis, history, and limits of carrying capacity. Annals of the Association of American Geographers , 98 (1): 120–134.
  • Sun, G., Sheng, L. X., Feng, J., Lang, Y., & Li, Z. X. (1999). Relationship between fishery and eutrophication in Chinese lakes. Journal of Northeast Normal University (Natural Science Edition), 3(1), 74-78.
  • Tüfek, M.Ö. & Yalçın, N. (2007). Rezervuarlarda su ürünleri yetiştiriciliği, Türk Sucul Yaşam Dergisi, Yıl 3-5, Sayı 5-8 , 704-716.
  • TÜİK (2022). Türkiye İstatistik Kurumu. Su Ürünleri İstatistikleri Veritabanı. https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2021-45745 [erişim tarihi:28.07.2022]
  • Verep, B., Çelikkale, M.S., Düzgüneş, E. & Okumuş, İ. (2003). Uzungöl’ün genel hidrografisi ve taşıma kapasitesi. Türk Sucul Yaşam Dergisi , 148-157.
  • Vollenweider, R.A. (1968). Scientific Fundamentals of the eutrophication of lakes and flowing waters, with particular refer nitrogen and phosphorus as factors of eutrophication. OECD, Technical Report (DA5/SU/68.27), 250 p.
  • Vollenweider, R.A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol, 33:53-83p.
  • Weitzman, J. & Filgueira, R. (2019). The evolution and application of carrying capacity in aquaculture: towards a research agenda. Reviews in Aquaculture.
  • White, P., Phillips, M.J. & Beveridge, M.C.M. (2013). Environmental impact, site selection and carrying capacity estimation for small-scale aquaculture in Asia. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture. , pp.231–251, FAO Fisheries and Aquaculture Proceedings N◦. 21. FAO. 282 pp.
  • YSKY (Yerüstü Su Kalitesi Yönetmeliği) 2012. 30/11/2012 tarihli ve 28483 sayılı Resmî Gazete. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=1680 (erişim tarihi: 05.04.2017).
  • Yüngül,M., Karaman,Z., & Dörücü M. (2016). Çamlıgöze Baraj Gölü’ndeki alabalık işletmelerinin yapısal, biyoteknik ve yetiştiricilik mekanizasyonu yönünden incelenmesi, Biyoloji Bilimleri Araştırma Dergisi , 9 (2): 01-09.
  • Zhang, P.P., Liu, R.M., Bao, Y.M., Wang, J.W., Yu, W.W. & Shen, Z.Y. (2014). Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res., 53, 132–144.
  • Zhou, H.D., Jiang, C.L., Zhu, L.Q., Wang, X.W., Hu, X.Q., Cheng, J.Y. & Xie, M.H., 2011. Impact of pond and fence aquaculture on reservoir environment. Water Science and Engineering, 4, 92-100. 677.
There are 47 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ekrem Buhan 0000-0003-4338-1758

Melek Yüzer This is me 0000-0002-2028-6822

Publication Date September 30, 2022
Submission Date August 3, 2022
Acceptance Date September 1, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Buhan, E., & Yüzer, M. (2022). Ekolojik Taşıma Kapasitesi : Fosfora Dayalı Yüklenme Modeli Kullanılarak Kılıçkaya Baraj Gölü için Taşıma Kapasitesi Tahmini. Journal of Anatolian Environmental and Animal Sciences, 7(3), 323-330. https://doi.org/10.35229/jaes.1153542


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS