Research Article
BibTex RIS Cite

İçme Suyundan Doğal Organik Madde Gideriminde Kitosan/Karbon Nanotüp Kaplı Ultrafiltrasyon Membranlarının Performansı

Year 2024, Volume: 9 Issue: 2, 257 - 268, 30.06.2024
https://doi.org/10.35229/jaes.1432233

Abstract

Bu çalışmanın amacı, doğal organik maddenin (NOM) giderilmesine ve membran kirlenmesinin
önlenmesine özel olarak odaklanarak, ticari olarak temin edilebilen polietersülfon (PES) ultrafiltrasyon (UF)
membranlarının filtrasyon verimliliğini arttırmaktır. UF membranlarının modifikasyonu, kitosan/çok duvarlı
karbon nanotüp (CS/MWCNT-OH) kullanılarak ve hem daldırma hem de döndürerek kaplama teknikleri
kullanılarak gerçekleştirildi. Membran yüzeyi morfolojileri, Zayıflatılmış Toplam Yansıma Fourier
Dönüşümü Kızılötesi Spektroskopisi (ATR-FTIR), Taramalı Elektron Mikroskobu (SEM), Atomik Kuvvet
Mikroskobu (AFM) ve Enerji Dağıtıcı X-ışını Spektroskopisi (EDX) teknikleri kullanılarak değerlendirildi.
Membranların etkinliğini değerlendirmek için laboratuvar ölçekli bir sistemde İstanbul'un iki ana su kaynağı,
özellikle Melen Nehri ve Terkos Gölü kullanılarak testler gerçekleştirildi. Toplam organik karbon (TOC),
UV254 absorbansı, bulanıklık ve trihalometan oluşum potansiyeli (THMFP) kapsamlı bir analizin parçası
olarak ölçüldü. Yüzey morfolojisi araştırmaları, MWCNT-OH nanopartiküllerinin membran yüzeyine etkili
bir şekilde çökeldiğini doğruladı. Bu, membranın hidrofilikliğinde bir iyileşme gösteren su temas açısındaki
azalma ile desteklendi. Modifiye edilmiş membranlar, orijinal membranlarla karşılaştırıldığında çok daha
yüksek TOC giderim oranları gösterdi. Spesifik olarak Melen Nehri ve Terkos Gölü'nün temizleme verimliliği
sırasıyla %37,14 ve %56,86 idi. Bununla birlikte, yüzeydeki değişiklik, gözenek boyutunda eş zamanlı
düşüşün bir sonucu olarak membran akışında bir düşüşe yol açtı. Özetlemek gerekirse, bu çalışmanın
sonuçları, ticari PES UF membranlarının performansını ve kirlenme önleyici özelliklerini geliştirmek için
CS/MWCNT-OH kullanılarak yüzey modifikasyonunun önemli kapasitesini vurgulamaktadır.

Project Number

111Y077

References

  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P. & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. In Water Research, 160. DOI:10.1016/j.watres.2019.05.064
  • Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022). Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 282. DOI: 10.1016/j.seppur.2021.119997
  • Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. & Alalawi, A. (2019). Effect of ultrafiltration membranes modifications by chitosan on humic acid fouling. Journal of Water Process Engineering, 27. DOI: 10.1016/j.jwpe.2018.11.008
  • Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health, 7(10). DOI: 10.3390/ijerph7103657
  • Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C., Tang, X., Wang, J. & Liang, H. (2019). Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers
  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P. & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. In Water Research, 160. DOI:10.1016/j.watres.2019.05.064
  • Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022). Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 282. DOI: 10.1016/j.seppur.2021.119997
  • Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. & Alalawi, A. (2019). Effect of ultrafiltration membranes modifications by chitosan on humic acid fouling. Journal of Water Process Engineering, 27. DOI: 10.1016/j.jwpe.2018.11.008
  • Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health, 7(10). DOI: 10.3390/ijerph7103657
  • Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C., Tang, X., Wang, J. & Liang, H. (2019). Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment. Chemosphere, 234. DOI: 10.1016/j.chemosphere.2019.06.090
  • Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G., Liu, K.Q., Tong, C.H., & Yu, Z.X. (2021). Modification of regenerated cellulose ultrafiltration membranes with multi-walled carbon nanotubes for enhanced antifouling ability: Field test and mechanism study. Science of the Total Environment, 780. DOI: 10.1016/j.scitotenv.2021.146657
  • Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z., Yang, W., & Graham, N. J. D. (2021). Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. Journal of Membrane Science, 635. DOI: 10.1016/j.memsci.2021.119540
  • Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim, A. A. (2022). Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment. Membranes, 12(8). DOI: 10.3390/membranes12080751
  • Kallem, P., Ibrahim, Y., Hasan, S. W., Show, P. L., & Banat, F. (2021). Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers. Separation and Purification Technology, 261. Doi: 10.1016/j.seppur.2021.118311
  • Levchuk, I., Rueda Márquez, J.J. & Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion Exchange - A review. In Chemosphere, 192. DOI: 10.1016/j.chemosphere.2017.10.101
  • Mallya, D.S., Abdikheibari, S., Dumée, L.F., Muthukumaran, S., Lei, W. & Baskaran, K. (2023). Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – A review. Chemosphere, 321. DOI: 10.1016/j.chemosphere.2023.138070
  • Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba, B.B. & Nkambule, T.T.I. (2018). Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment. Journal of Environmental Chemical Engineering, 6(5). DOI: 10.1016/j.jece.2018.10.002
  • Masoumi, S., Miroliaei, A.R. & Jafarzadeh, Y. (2018). Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in water treatment. Advances in Environmental Technology, 4(2). DOI: 10.22104/AET.2018.2965.1144
  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P. & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. In Water Research, 160. DOI: 10.1016/j.watres.2019.05.064
  • Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022). Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 282. DOI: 10.1016/j.seppur.2021.119997
  • Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. & Alalawi, A. (2019). Effect of ultrafiltration membranes modifications by chitosan on humic acid fouling. Journal of Water Process Engineering, 27. DOI: 10.1016/j.jwpe.2018.11.008
  • Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health, 7(10). DOI: 10.3390/ijerph7103657
  • Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C., Tang, X., Wang, J. & Liang, H. (2019). Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment. Chemosphere, 234. DOI: 10.1016/j.chemosphere.2019.06.090
  • Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G., Liu, K.Q., Tong, C.H. & Yu, Z.X. (2021). Modification of regenerated cellulose ultrafiltration membranes with multi-walled carbon nanotubes for enhanced antifouling ability: Field test and mechanism study. Science of the Total Environment, 780. DOI: 10.1016/j.scitotenv.2021.146657
  • Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z., Yang, W. & Graham, N.J.D. (2021). Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. Journal of Membrane Science, 635. DOI: 10.1016/j.memsci.2021.119540
  • Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim, A. A. (2022). Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment. Membranes, 12(8). DOI: 10.3390/membranes12080751
  • Kallem, P., Ibrahim, Y., Hasan, S.W., Show, P.L. & Banat, F. (2021). Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers. Separation and Purification Technology, 261. DOI: 10.1016/j.seppur.2021.118311
  • Levchuk, I., Rueda Márquez, J. J., & Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange – A review. In Chemosphere, 192. DOI: 10.1016/j.chemosphere.2017.10.101
  • Mallya, D.S., Abdikheibari, S., Dumée, L.F., Muthukumaran, S., Lei, W. & Baskaran, K. (2023). Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – A review. Chemosphere, 321. DOI: 10.1016/j.chemosphere.2023.138070
  • Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba, B.B. & Nkambule, T.T.I. (2018). Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment. Journal of Environmental Chemical Engineering, 6(5). DOI: 10.1016/j.jece.2018.10.002
  • Masoumi, S., Miroliaei, A. R., & Jafarzadeh, Y. (2018). Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in water treatment. Advances in Environmental Technology, 4(2). DOI: 10.22104/AET.2018.2965.1144
  • Mousavi, S.R., Asghari, M. & Mahmoodi, N. M. (2020). Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal. Carbohydrate Polymers, 237. DOI: 10.1016/j.carbpol.2020.116128
  • Pan, Y., Li, H., Zhang, X. & Li, A. (2016). Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. In Trends in Environmental Analytical Chemistry, 12. DOI: 10.1016/j.teac.2016.11.002
  • Pérez-Lucas, G., Martínez-Menchón, M., Vela, N. & Navarro, S. (2022). Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). Journal of Environmental Management, 321. DOI: 10.1016/j.jenvman.2022.115936
  • Peters, C.D., Rantissi, T., Gitis, V. & Hankins, N.P. (2021). Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning - A review. In Journal of Water Process Engineering, 44. DOI: 10.1016/j.jwpe.2021.102374
  • Ren, J., Xia, W., Feng, X. & Zhao, Y. (2022). Surface modification of PVDF membrane by sulfonated chitosan for enhanced anti-fouling property via PDA coating layer. Materials Letters, 307. DOI: 10.1016/j.matlet.2021.130981
  • Savi, P., Giorcelli, M. & Quaranta, S. (2019). Multiwalled carbon nanotubes composites for microwave absorbing applications. Applied Sciences (Switzerland), 9(5). DOI: 10.3390/app9050851
  • Shao, B., Shen, L., Liu, Z., Tang, L., Tan, X., Wang, D., Zeng, W., Wu, T., Pan, Y., Zhang, X., Ge, L. & He, M. (2023). Disinfection byproducts formation from emerging organic micropollutants during chlorine-based disinfection processes. In Chemical Engineering Journal, 455. DOI: 10.1016/j.cej.2022.140476
  • Song, Q., Graham, N., Tang, Y., Siddique, M. S., Kimura, K. & Yu, W. (2022). The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration. Water Research, 215. DOI: 10.1016/j.watres.2022.118263
  • Susanto, H., Robbani, M.H., Istirokhatun, T., Firmansyah, A.A. & Rhamadhan, R. N. (2020). Preparation of low-fouling polyethersulfone ultrafiltration membranes by incorporating highmolecular-weight chitosan with the help of a surfactant. South African Journal of Chemical Engineering, 33. DOI:10.1016/j.sajce.2020.07.003
  • Villanueva, C.M., Evlampidou, I., Ibrahim, F., DonatVargas, C., Valentin, A., Tugulea, A.M., Echigo, S., Jovanovic, D., Lebedev, A.T., Lemus-Pérez, M., Rodriguez-Susa, M., Luzati, A., de Cássia dos Santos Nery, T., Pastén, P.A., Quiñones, M., Regli, S., Weisman, R., Dong, S., Ha, M., Phattarapattamawong, S. & Kogevinas, M. (2023). Global assessment of chemical quality of drinking water: The case of trihalomethanes. Water Research, 230. DOI: 10.1016/j.watres.2023.119568
  • Zhang, S., Yang, Y., Takizawa, S., & Hou, L. an. (2018). Removal of dissolved organic matter and control of membrane fouling by a hybrid ferrihydriteultrafiltration membrane system. Science of the Total Environment, 631–632. DOI: 10.1016/j.scitotenv.2018.03.045
  • Zhao, Z., Zheng, J., Wang, M., Zhang, H., & Han, C. C. (2012). High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. Journal of Membrane Science, 394–395. DOI: 10.1016/j.memsci.2011.12.043.

Performance of Chitosan/Carbon Nanotube-Coated Ultrafiltration Membranes for Natural Organic Matter Removal from Drinking Water

Year 2024, Volume: 9 Issue: 2, 257 - 268, 30.06.2024
https://doi.org/10.35229/jaes.1432233

Abstract

The objective of this study is to improve the filtration efficiency of commercially available polyethersulfone (PES) ultrafiltration (UF) membranes, with a specific focus on removing natural organic
matter (NOM) and preventing membrane fouling. The modification of UF membranes was accomplished by utilizing chitosan/multi-walled carbon nanotubes (CS/MWCNT-OH) and employing both dip and spin
coating techniques. The membrane surface morphologies were evaluated using the Attenuated Total
Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM),
Atomic Force Microscopy (AFM), and Energy-Dispersive X-ray Spectroscopy (EDX) techniques. Tests were
carried out to assess the effectiveness of the membranes in a laboratory-scale system using two primary water sources from Istanbul, specifically the Melen River and Terkos Lake. Total organic carbon (TOC), UV254 absorbance, turbidity, and trihalomethane formation potential (THMFP) were all measured as part of a thorough analysis. The surface morphology investigations verified the effective deposition of MWCNT-OH nanoparticles onto the membrane surface. This was corroborated by the reduction in the water contact angle, showing an improvement in the hydrophilicity of the membrane. The modified membranes demonstrated much higher TOC removal rates compared to the original membranes. Specifically, the removal efficiencies for Melen River and Terkos Lake were 37.14% and 56.86%, respectively. Nevertheless, the alteration of the surface led to a decline in membrane flux as a result of the concurrent drop in pore size. To summarize, the results of this work highlights the considerable capability of surface modification using CS/MWCNT-OH to improve the performance and antifouling characteristics of commercial PES UF membranes.

Supporting Institution

TUBITAK (THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKİYE)

Project Number

111Y077

References

  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P. & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. In Water Research, 160. DOI:10.1016/j.watres.2019.05.064
  • Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022). Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 282. DOI: 10.1016/j.seppur.2021.119997
  • Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. & Alalawi, A. (2019). Effect of ultrafiltration membranes modifications by chitosan on humic acid fouling. Journal of Water Process Engineering, 27. DOI: 10.1016/j.jwpe.2018.11.008
  • Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health, 7(10). DOI: 10.3390/ijerph7103657
  • Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C., Tang, X., Wang, J. & Liang, H. (2019). Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers
  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P. & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. In Water Research, 160. DOI:10.1016/j.watres.2019.05.064
  • Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022). Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 282. DOI: 10.1016/j.seppur.2021.119997
  • Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. & Alalawi, A. (2019). Effect of ultrafiltration membranes modifications by chitosan on humic acid fouling. Journal of Water Process Engineering, 27. DOI: 10.1016/j.jwpe.2018.11.008
  • Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health, 7(10). DOI: 10.3390/ijerph7103657
  • Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C., Tang, X., Wang, J. & Liang, H. (2019). Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment. Chemosphere, 234. DOI: 10.1016/j.chemosphere.2019.06.090
  • Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G., Liu, K.Q., Tong, C.H., & Yu, Z.X. (2021). Modification of regenerated cellulose ultrafiltration membranes with multi-walled carbon nanotubes for enhanced antifouling ability: Field test and mechanism study. Science of the Total Environment, 780. DOI: 10.1016/j.scitotenv.2021.146657
  • Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z., Yang, W., & Graham, N. J. D. (2021). Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. Journal of Membrane Science, 635. DOI: 10.1016/j.memsci.2021.119540
  • Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim, A. A. (2022). Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment. Membranes, 12(8). DOI: 10.3390/membranes12080751
  • Kallem, P., Ibrahim, Y., Hasan, S. W., Show, P. L., & Banat, F. (2021). Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers. Separation and Purification Technology, 261. Doi: 10.1016/j.seppur.2021.118311
  • Levchuk, I., Rueda Márquez, J.J. & Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion Exchange - A review. In Chemosphere, 192. DOI: 10.1016/j.chemosphere.2017.10.101
  • Mallya, D.S., Abdikheibari, S., Dumée, L.F., Muthukumaran, S., Lei, W. & Baskaran, K. (2023). Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – A review. Chemosphere, 321. DOI: 10.1016/j.chemosphere.2023.138070
  • Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba, B.B. & Nkambule, T.T.I. (2018). Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment. Journal of Environmental Chemical Engineering, 6(5). DOI: 10.1016/j.jece.2018.10.002
  • Masoumi, S., Miroliaei, A.R. & Jafarzadeh, Y. (2018). Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in water treatment. Advances in Environmental Technology, 4(2). DOI: 10.22104/AET.2018.2965.1144
  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.P. & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. In Water Research, 160. DOI: 10.1016/j.watres.2019.05.064
  • Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022). Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 282. DOI: 10.1016/j.seppur.2021.119997
  • Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. & Alalawi, A. (2019). Effect of ultrafiltration membranes modifications by chitosan on humic acid fouling. Journal of Water Process Engineering, 27. DOI: 10.1016/j.jwpe.2018.11.008
  • Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health, 7(10). DOI: 10.3390/ijerph7103657
  • Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C., Tang, X., Wang, J. & Liang, H. (2019). Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment. Chemosphere, 234. DOI: 10.1016/j.chemosphere.2019.06.090
  • Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G., Liu, K.Q., Tong, C.H. & Yu, Z.X. (2021). Modification of regenerated cellulose ultrafiltration membranes with multi-walled carbon nanotubes for enhanced antifouling ability: Field test and mechanism study. Science of the Total Environment, 780. DOI: 10.1016/j.scitotenv.2021.146657
  • Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z., Yang, W. & Graham, N.J.D. (2021). Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. Journal of Membrane Science, 635. DOI: 10.1016/j.memsci.2021.119540
  • Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim, A. A. (2022). Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment. Membranes, 12(8). DOI: 10.3390/membranes12080751
  • Kallem, P., Ibrahim, Y., Hasan, S.W., Show, P.L. & Banat, F. (2021). Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers. Separation and Purification Technology, 261. DOI: 10.1016/j.seppur.2021.118311
  • Levchuk, I., Rueda Márquez, J. J., & Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange – A review. In Chemosphere, 192. DOI: 10.1016/j.chemosphere.2017.10.101
  • Mallya, D.S., Abdikheibari, S., Dumée, L.F., Muthukumaran, S., Lei, W. & Baskaran, K. (2023). Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – A review. Chemosphere, 321. DOI: 10.1016/j.chemosphere.2023.138070
  • Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba, B.B. & Nkambule, T.T.I. (2018). Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment. Journal of Environmental Chemical Engineering, 6(5). DOI: 10.1016/j.jece.2018.10.002
  • Masoumi, S., Miroliaei, A. R., & Jafarzadeh, Y. (2018). Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in water treatment. Advances in Environmental Technology, 4(2). DOI: 10.22104/AET.2018.2965.1144
  • Mousavi, S.R., Asghari, M. & Mahmoodi, N. M. (2020). Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal. Carbohydrate Polymers, 237. DOI: 10.1016/j.carbpol.2020.116128
  • Pan, Y., Li, H., Zhang, X. & Li, A. (2016). Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. In Trends in Environmental Analytical Chemistry, 12. DOI: 10.1016/j.teac.2016.11.002
  • Pérez-Lucas, G., Martínez-Menchón, M., Vela, N. & Navarro, S. (2022). Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). Journal of Environmental Management, 321. DOI: 10.1016/j.jenvman.2022.115936
  • Peters, C.D., Rantissi, T., Gitis, V. & Hankins, N.P. (2021). Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning - A review. In Journal of Water Process Engineering, 44. DOI: 10.1016/j.jwpe.2021.102374
  • Ren, J., Xia, W., Feng, X. & Zhao, Y. (2022). Surface modification of PVDF membrane by sulfonated chitosan for enhanced anti-fouling property via PDA coating layer. Materials Letters, 307. DOI: 10.1016/j.matlet.2021.130981
  • Savi, P., Giorcelli, M. & Quaranta, S. (2019). Multiwalled carbon nanotubes composites for microwave absorbing applications. Applied Sciences (Switzerland), 9(5). DOI: 10.3390/app9050851
  • Shao, B., Shen, L., Liu, Z., Tang, L., Tan, X., Wang, D., Zeng, W., Wu, T., Pan, Y., Zhang, X., Ge, L. & He, M. (2023). Disinfection byproducts formation from emerging organic micropollutants during chlorine-based disinfection processes. In Chemical Engineering Journal, 455. DOI: 10.1016/j.cej.2022.140476
  • Song, Q., Graham, N., Tang, Y., Siddique, M. S., Kimura, K. & Yu, W. (2022). The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration. Water Research, 215. DOI: 10.1016/j.watres.2022.118263
  • Susanto, H., Robbani, M.H., Istirokhatun, T., Firmansyah, A.A. & Rhamadhan, R. N. (2020). Preparation of low-fouling polyethersulfone ultrafiltration membranes by incorporating highmolecular-weight chitosan with the help of a surfactant. South African Journal of Chemical Engineering, 33. DOI:10.1016/j.sajce.2020.07.003
  • Villanueva, C.M., Evlampidou, I., Ibrahim, F., DonatVargas, C., Valentin, A., Tugulea, A.M., Echigo, S., Jovanovic, D., Lebedev, A.T., Lemus-Pérez, M., Rodriguez-Susa, M., Luzati, A., de Cássia dos Santos Nery, T., Pastén, P.A., Quiñones, M., Regli, S., Weisman, R., Dong, S., Ha, M., Phattarapattamawong, S. & Kogevinas, M. (2023). Global assessment of chemical quality of drinking water: The case of trihalomethanes. Water Research, 230. DOI: 10.1016/j.watres.2023.119568
  • Zhang, S., Yang, Y., Takizawa, S., & Hou, L. an. (2018). Removal of dissolved organic matter and control of membrane fouling by a hybrid ferrihydriteultrafiltration membrane system. Science of the Total Environment, 631–632. DOI: 10.1016/j.scitotenv.2018.03.045
  • Zhao, Z., Zheng, J., Wang, M., Zhang, H., & Han, C. C. (2012). High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. Journal of Membrane Science, 394–395. DOI: 10.1016/j.memsci.2011.12.043.
There are 43 citations in total.

Details

Primary Language English
Subjects Pollution and Contamination (Other)
Journal Section Articles
Authors

İsmail Hakkı Zengin 0009-0009-4138-2467

Mehmet Çakmakcı 0000-0003-4784-6006

Fatma Busra Buyukbuberoglu 0000-0002-9608-6835

Doğan Karadağ 0000-0002-5217-1173

Cenk Denkdaş 0000-0001-9255-4374

Oğuzhan Avcıata 0000-0002-6423-6114

Afşin Çetinkaya 0000-0001-8071-6444

Project Number 111Y077
Early Pub Date July 3, 2024
Publication Date June 30, 2024
Submission Date February 7, 2024
Acceptance Date June 7, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Zengin, İ. H., Çakmakcı, M., Buyukbuberoglu, F. B., Karadağ, D., et al. (2024). Performance of Chitosan/Carbon Nanotube-Coated Ultrafiltration Membranes for Natural Organic Matter Removal from Drinking Water. Journal of Anatolian Environmental and Animal Sciences, 9(2), 257-268. https://doi.org/10.35229/jaes.1432233


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS