Research Article
BibTex RIS Cite

A Study on the Forest Fire Phenomenon on the Axis of Organizational Entropy

Year 2024, Volume: 1 Issue: 1, 1 - 16, 29.06.2024

Abstract

The laws of thermodynamics are the most important and radical laws in the natural sciences. These laws have led to epistemological and ontological changes in many disciplines of the social and natural sciences. The exposure to entropy, the second law of thermodynamics, which is one of the common reflections of this change, has closely affected both scientific systems. Entropy refers to the determination of uncertainties in the universe in the natural sciences. In this framework, the phenomenon of forest fires, which is related to entropic components in the context of mathematical and physical modules based on thermodynamic principles, has tried to be studied at the organizational level through purpose, structure, ecological relationship-interaction-information entropy in line with organizational entropy.. The study was conducted with mixed methods in a conceptual and theoretical framework. In this research, which tries to understand the behavior of forest fires by using the laws of thermodynamics and entropy in the methodological context, it is seen that forest fires are in a complex and large-scale position that takes into account both the chemical-physical aspect of the combustion of the heat-producing forest layer and local meteorological forecasts, considering their ecological relationships and the suitability of a biosystemic typology. In addition to this situation, the thermodynamic and entropy variables discussed in the philosophical and theoretical framework show complementarity, extension, data diversification and development typologies with the forest ecosystem, which is a biophysical element, and forest fires, which are its part. This compatibility is shown in the research from a triangulation perspective and enriched in the semantic dimension within the framework of fire-organization cluster behaviors. This compatibility has been tried to be shown in the research from a triangulation perspective and enriched in the semantic dimension within the framework of fire-organization clusters, fire-ecological relationship-interaction behaviors. In this enrichment process, the preferred entropy modules were deepened on the axis of information entropy. Thus, the information gain of events and probabilities at the level of thermodynamic laws and entropy was tried to be revealed and the axioms of ecological phenomena, which are the root, were explained. In the theoretical and empirical results obtained, it was determined that the behavioral dimensions of forest fires can be studied through information theory in organizational integrity by using entropy and thermodynamic laws.

References

  • Abd El Aziz, MA., Hemdan, AM., Ewees, AA., Elhoseny, M., Shehab, A., Hassanien, AE. & Xiong, S. (2017, June 27-30). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization [Conference presentation]. Accra, Ghana. https://ieeexplore.ieee.org/xpl/conhome/7983001/proceeding
  • Abedi Gheshlaghi, H., Feizizadeh, B., Blaschke, T., Lakes, T. & Tajbar, S. (2021). Forest fire susceptibility modeling using hybrid approaches. Transactions in GIS, 25(1), 311-333. https://doi.org/10.1111/tgis.12688
  • Aghalarova, S. & Bozkurt Keser, S. (2022). Öğrencilerin akademik performanslarının tahmin edilmesi için automl tekniğinin uygulanması. El-Cezeri, 9(2), 394-412. https://doi.org/10.31202/ecjse.946505
  • Alla, B., Sergiy, B., Svitlana, O. & Tanaka, H. (2020, February 18-20). Entropy paradigm of project-oriented organizations management [Conference presentation]. IT Project Management, Slavsko, Lviv region, Ukraine. https://ceur-ws.org/Vol-2565/paper20.pdf
  • Anderson, E. (1935). The irises of the Gaspe Peninsula. Bulletin of American Iris Society, (59), 2-5.
  • Aoki, I. (2018). Entropy principle for the evolution of living systems and the universe from bacteria to the universe. Journal of the Physical Society of Japan, 87(10), 104801. https://doi.org/10.7566/JPSJ.87.104801
  • Atkinson, B.W. (1981). Meso-scale atmospheric circulations. Academic Press.
  • Bettinger, P., Boston, K., Siry, J. & Grebner, D.L. (2016). Forest management and planning. Academic Press.
  • Bilgin, H. (2022). Sistem teorisi ve yeni sistemin politika kurulları. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 4(2), 53-70. https://doi.org/10.46482/ebyuiibfdergi.1206591
  • Boltzmann, L. (1866). Über die mechanische bedeutung des zweiten hauptsatzes der wärmetheorie. Wiener Berichte.
  • Bond, W.J. & Keeley, J.E. (2005). Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20(7), 387-394. https://doi.org/10.1016/j.tree.2005.04.025
  • Bryant, R., Doerr, S.H. & Helbig, M. (2005). Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire, (14), 449–455. http://dx.doi.org/10.1071/WF05035
  • Carnot, S. (1824). Reflections on the motive power of fire, and on machines fitted to develop that power. Bachelier.
  • Church, M. & Ryder, J.M. (1972). Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin, 83(10), 3059-3072. https://doi.org/10.1130/0016-7606(1972)83[3059:PSACOF]2.0.CO;2
  • Clausius, R. (1879). The mechanical theory of heat. Macmillan.
  • Cochrane, M.A., Baker, P.J. & Bunyavejchewin, S. (2009). Fire behavior and fire effects across the forest landscape of continental Southeast Asia. In Cochrane, M. A (Ed.), Tropical fire ecology: Climate change land use, and ecosystem Dynamics, 311-334. https://doi.org/10.1007/978-3-540-77381-8_11
  • Cortez, P. & Morais, A. (2007). Forest fires. [Data set]. R. R Studio/RPubs. UCI Machine Learning Repository. https://doi.org/10.24432/C5D88D
  • Creswell, J.W. & Plano Clark, V.L. (2018). Core mixed methods designs. Designing and conducting mixed methods research. SAGE Publications.
  • Çakır, G., Sivrikaya, F., Terzioğlu, S., Başkent, E. Z., Turan, S. & Yolasığmaz, H. A. (2007). Mapping secondary forest succession with geographic information systems: A case study from Bulanikdere, Kırklareli, Turkey. Turkish Journal of Agriculture and Forestry. 31(11), 71-81. https://journals.tubitak.gov.tr/agriculture/vol31/iss1/9/
  • Çelik, H.E. (2023). Orman yangınlarının erozyon sel-üzerindeki etkileri. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları, 288-300. Türkiye Ormancılar Derneği Yayını.
  • Çengel, Y.A., Boles, M.A. & Kanoğlu, M. (2011). Thermodynamics: An engineering approach. McGraw-Hill.
  • Çetin, M. & Meydan, A. (2020). Büyük coğrafi veri setlerinin kümelenmesinde map reduce modellemeleri yoluyla bitki coğrafyası veri tabanlarının oluşturulması. Çukurova Araştırmaları Dergisi, 5(9), 213-240. https://doi.org/10.18560/cukurova.1142
  • Çetin, M. & Özkaya, A. (2021). Postmodernizm ve jeomorfoloji ilişkiselliğine kuantum mekaniği açısından bir bakış. Akademi Sosyal Bilimler Dergisi, 8(24), 492-509. https://doi.org/10.34189/asbd.8.24.007
  • Çetin, M. (2023). Jeomorfolojik süreçlerdeki kaotik ve dinamik süreçler ile kuantum mekaniği ilişkiselliği üzerine bir inceleme. Çukurova Araştırmaları Dergisi, 9(18), 86-102. https://doi.org/10.29228/cukar.68042
  • Çubukçu, K. M. (2015). Planlamada ve coğrafyada temel istatistik ve mekansal istatistik. Nobel.
  • Davie, T. (2019). Fundamentals of hydrology. Routledge.
  • Demirel, H.G. (2023). Doğa bilimlerinden sosyal bilimlere: Örgütsel entropi. R&S-Research Studies Anatolia Journal, 6(4), 556-583. https://doi.org/10.33723/rs.1358922
  • Dinçer, I. & Çengel, Y.A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149. https://doi.org/10.3390/e3030116
  • Dindaroğlu, T. (2021). Ekolojik yıkımın ve salgınların ardındaki gerçek; Ekosistemik yabancılaşma mı? Turkish Journal of Forest Science, 5(1), 266-287. https://doi.org/10.32328/turkjforsci.866874.
  • Eddington, A.S. (1929). The formation of absorption lines. Monthly Notices of the Royal Astronomical Society, 89(7), 620-636. https://doi.org/10.1093/mnras/89.7.620
  • Eker, R., Alkiş, K.C., Uçar, Z. & Aydın, A. (2023). Ormancılıkta makine öğrenmesi kullanımı. Turkish Journal of Forestry, 24(2), 150-177. https://doi.org/10.18182/tjf.1282768
  • Erbaş, Ü. (2010). Entropi ilkelerinin boyut indirgeme uygulamaları (Tez No. 258457) [Doktora tezi, Marmara Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Gafar, M.G., Elhoseny, M. & Gunasekaran, M. (2020). Modeling neutrosophic variables based on particle swarm optimization and information theory measures for forest fires. The Journal of Supercomputing, 76(4), 2339-2356. https://doi.org/10.1007/s11227-018-2512-5
  • Gong, A., Huang, Z., Liu, L., Yang, Y., Ba, W. & Wang, H. (2023). Development of an ındex for forest fire risk assessment considering hazard factors and the hazard-formative environment. Remote Sensing, 15(21), 5077. https://doi.org/10.3390/rs15215077
  • Government of British Columbia. (2024, March). Wildfire rank. BC Wildfire Service. https://www2.gov.bc.ca/gov/content/safety/wildfire-status/wildfire-response/about-wildfire/wildfire-rank
  • Güney, C.O., Mert, A. & Gülsoy, S. (2023). Orman yangınları sonrası ekosistem tabanlı planlamaya doğru: Yanma derinliğinin sınıflandırılması. Afet ve Risk Dergisi, 6(1), 205-224. https://doi.org/10.35341/afet.1197031
  • Gürpınar, Ö., Demir, A. & Harmanci, A. (2023). Entropi ekseninde çevre sorunları ve doğa-sanat-sanatçı ilişkisi. Jia Journial, Uluslararası Sanat ve Sanat Eğitimi Dergisi, 6(12), 1-19. https://doi.org/10.29228/jiajournal.68711
  • Jiang, H., Shen, Y., Xie, J., Li, J., Qian, J. & Yang, J. (2021, October 11-17). Sampling network guided cross-entropy method for unsupervised point cloud registration [Conference presentation]. IEEE/CVF International Computer Vision (ICCV), Montreal, Canada.
  • Jolley, N. (2019). Leibniz (14rd ed.). Routledge.
  • Kala, C. P. (2023). Environmental and socioeconomic impacts of forest fires: A call for multilateral cooperation and management interventions. Natural Hazards Research. 3(2),286-294. https://doi.org/10.1016/j.nhres.2023.04.003
  • Kalender, T. (2021). Farklı rankine çevrimlerinin termodinamik açıdan incelenmesi (Tez No.258457) [Yüksek lisans tezi, Hitit Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Kavgacı, A., Tolunay, D., Sevgi, O. & Tutmaz, V. (2023). Orman yangınları terminolojisi. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları, 3-17. Türkiye Ormancılar Derneği Yayını.
  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116-126. https://doi.org/10.1071/WF07049
  • Kumar, S. & Kumar, A. (2022). Hotspot and trend analysis of forest fires and its relation to climatic factors in the western Himalayas. Natural Hazards, 114(3), 3529-3544. https://doi.org/10.1007/s11069-022-05530-5
  • Livadiotis, G. & McComas, D.J. (2023). Entropy defect in thermodynamics. Scientific Reports, 13(1), 9033. https://doi.org/10.1038/s41598-023-36080-w
  • Lopes, A.M. & Tenreiro Machado, J.A. (2014). Dynamic analysis and pattern visualization of forest fires. PloS one, 9(8), e105465. https://doi.org/10.1371/journal.pone.0105465
  • Ludovisi, A. (2012). Energy degradation and ecosystem development: Theoretical framing, indicators definition and application to a test case study. Ecological Indicators, (20), 204-212. https://doi.org/10.1016/j.ecolind.2012.02.019
  • Malamud, B.D. & Turcotte, D.L. (1999). Self-organized criticality applied to natural hazards. Natural Hazards, (20), 93-116. https://doi.org/10.1023/A:1008014000515
  • Markina, I. & Dyachkov, D. (2014). Entropy model management of organization. World Applied Sciences Journal, (30), 159-164. https://doi.org/10.5829/idosi.wasj.2014.30.mett.66
  • Marzaeva, V.I.I. (2019). Mathematical modeling of canopy forest fire spread in the presence of fire breaks and barriers. Technical Physics, (64), 1073-1081. https://doi.org/10.1134/S1063784219080139
  • Maxwell, J.C. (1878). Tait's “Thermodynamics”. Nature, (17), 278–280. https://doi.org/10.1038/017278a0
  • Meisel, M. (2016). Chaos ımagined: Literature, art, science. Columbia University Press.
  • Mendez, C. (2020). Spatial regression analysis [Data set]. R. R Studio/RPubs. https://rpubs.com/quarcs-lab/tutorial-spatial-regression
  • Meysman, F.J. & Bruers, S. (2007). A thermodynamic perspective on food webs: Quantifying entropy production within detrital-based ecosystems. Journal of Theoretical Biology, 249(1), 124-139. https://doi.org/10.1016/j.jtbi.2007.07.015
  • Miller, J.G. (1978). Living systems: Basic concepts. Behavioral Science, 10(3), 193-237. https://doi.org/10.1002/bs.3830100302
  • Nandi, A. & Pal, A.K. (2021). Interpreting machine learning models: Learn model interpretability and explainability methods. Apress LP Press.
  • Neary, D.G., Gottfiried, G.J. & Ffolliott, P.F. (2003, November 16-20). Post wildfire watershed flood responses [Conference presentation]. Boston, ABD. https://www.frames.gov/catalog/9
  • Nişanyan, S. (2023). Çağdaş Türkçe etimolojisi. Liberus Yayıncılık.
  • Norgard, R.B. (1984). Coevolutionary development potential. Land Economics, 60(2), 160–173. https://doi.org/10.2307/3145970
  • Pausas, J.G. & Keeley, J.E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17(5), 289-295. https://doi.org/10.1002/fee.2044
  • Petrucci, R.H. & Harwood, W.S. (1993). General chemistry: principles and modern applications. Pearson Prentice Hall.
  • Planck, M. (1901). On the law of distibution of energy in the normal spectum. Ann. Phys, (4), 553-563. https://doi.org/10.1002/andp.19013090310
  • Plano Clark, V.L. & Ivankova, N.V. (2016). Mixed methods research: A guide to the field (3rd ed.). SAGE Publications.
  • Scott, D.F., Versfeld, D.B. & Lesch, W. (1998). Erosion and sediment yield in relation to afforestation and fire in the mountains of the western cape provınce, South Afrıca. South African Geographical Journal, 80(1), 52-59. https://doi.org/10.1080/03736245.1998.9713644
  • Shannon, C.E. & Weaver, W. (1948). The mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://www.jstor.org/stable/24530875
  • Skene, K.R. (2013). The energetics of ecological succession: A logistic model of entropic output. Ecological Modelling, (250), 287-293. https://doi.org/10.1016/j.ecolmodel.2012.11.020
  • Smith, C.E. & Smith, J.W. (1996). Economics, ecology and entropy: The second law of thermodynamics and the limits to growth. Population and Environment, 17(4), 309-321.
  • Swanson, F.J. (1981, October 8-11). Fire and geomorphic processes [Conference presentation]. Fire Regimes and Ecosystem Properties, Forest Service. https://wpg.forestry.oregonstate.edu/
  • Swanson, G. A., Bailey, K. D. & Miller, J. G. (1997). Entropy, social entropy and money: A living systems theory perspective. Systems Research and Behavioral Science, 14(1), 45-65. https://doi.org/10.1002/(SICI)1099-1743
  • Tejeida-Padilla, R., Peon-Escalante, I. & Badillo-Piña, I. (2007, July 5-10). Entropy and emergence in organizational systems under a turbulent environment [Conference presentation]. 51st Annual Meeting of the ISSS-2007, Tokyo, Japan. https://journals.isss.org/index.php/proceedings51st/article/view/469
  • Tobler, W.R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, (46), 234-240. https://doi.org/10.2307/143141
  • Toraman, S. (2021). Karma yöntemler araştırması: Kısa tarihi, tanımı, bakış açıları ve temel kavramlar. Nitel Sosyal Bilimler, 3(1), 1-29. https://doi.org/10.47105/nsb.847688
  • Triulzi, P.E. (2018). The entropy effect: An exploration ınto systems and entropy. Universe.
  • Türkeş, M. & Tolunay, D. (2023). İklim değişikliği ve orman yangınları. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları (46-68). Türkiye Ormancılar Derneği Yayını.
  • Vigna, I., Battisti, L., Ascoli, D., Besana, A., Pezzoli, A. & Comino, E. (2024). Integrating cultural ecosystem services in wildfire risk assessment. Landscape and Urban Planning, (243), 104977. https://doi.org/10.1016/j.landurbplan.2023.104977
  • Vranken, I., Baudry, J., Aubinet, M., Visser, M. & Bogaert, J. (2015). A review on the use of entropy in landscape ecology: Heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landscape Ecology, (30), 51-65. https://doi.org/10.1007/s10980-014-0105-0
  • Whittaker, E. T. (1955). Albert Einstein. The Royal Society Publishing.
  • Yıldırım, S., Bostancı, S. H. & Yıldırım, D.Ç. (2023). Parameters for the study of climate refugees. In P. Singh, B. Ao & A. Yadav (Eds.), Global climate change and environmental refugees (pp. 199-214). Springer. https://doi.org/10.1007/978-3-031-24833-7_11
  • Yıldız, O. (2023). Orman yangınlarının toprağa etkisi. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları (302-319). Türkiye Ormancılar Derneği Yayını.

Entropi Ekseninde Orman Yangınları Fenomeni Üzerine Bir İnceleme

Year 2024, Volume: 1 Issue: 1, 1 - 16, 29.06.2024

Abstract

Termodinamik yasaları doğa bilimlerinin en önemli ve en radikal yasalarıdır. Bu yasalar sosyal bilimler ve doğa bilimlerindeki birçok disiplinde epistemolojik ve ontolojik değişimlere yol açmıştır. Bu değişimin yaygın yansımalarından olan termodinamiğin ikinci yasası entropiye maruz kalma durumu her iki bilim sistemlerini de yakından etkilemiştir. Entropi, doğa bilimlerinde evrendeki belirsizliklerin belirlenmesini ifade etmektedir. Bu çerçevede termodinamik prensiplere dayalı olarak matematiksel ve fiziksel modüller bağlamında entropik bileşenlerle ilişki içerisinde olan orman yangınları fenomeni örgütsel entropi doğrultusunda amaç, yapı, ekolojik ilişki-etkileşim-bilgi entropisi üzerinden örgütsel düzeyde incelenmeye çalışılmıştır. Çalışma kavramsal ve kuramsal çerçevede karma yöntemler eşliğinde yürütülmüştür. Metodolojik bağlamda termodinamik yasaları ve entropi yasaları kullanılarak orman yangınları davranışları anlaşılmaya çalışılan bu araştırmada ekolojik ilişkileri göz önüne alındığında orman yangınlarının hem ısı üreten orman tabakasının yanmasının kimyasal-fiziksel yönünü hem de yerel meteorolojik tahminleri dikkate alan karmaşık ve büyük ölçekli bir konumda olduğu biyosistemsel bir tipoloji uygunluğu görülmektedir. Bu durumun yanı sıra felsefik ve teorik çerçevede ele alınan termodinamik ve entropi değişkenleri bir biyofiziksel unsur olan orman ekosistemi ve onun parçası olan orman yangınları ile tamamlayıcılık, genişletme, veri çeşitlenmesi ve geliştirme tipolojilere uygunluk göstermektedir. Bu uygunluk araştırmada üçgenleme (triangulation) bakış açısıyla gösterilerek anlamsal boyutta yangın-organizasyon kümeleri davranışları çerçevesinde zenginleştirilmiştir. Söz konusu zenginleştirilme sürecinde de tercih edilen entropi modülleri bilgi entropisi ekseninde derinleştirilmiştir. Böylece termodinamik yasalar ve entropi düzeylerindeki olay ve olasılıkların bilgi kazancı ortaya koyularak kök niteliği taşıyan ekolojik fenomenler aksiyomları açıklanmıştır. Elde edilen teorik ve ampirik bulgularda ise entropi ve termodinamik yasaları kullanılarak orman yangınları davranış boyutlarının örgütsel bütünlükte bilgi teorisi aracılığıyla incelenebileceği tespit edilmiştir.

References

  • Abd El Aziz, MA., Hemdan, AM., Ewees, AA., Elhoseny, M., Shehab, A., Hassanien, AE. & Xiong, S. (2017, June 27-30). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization [Conference presentation]. Accra, Ghana. https://ieeexplore.ieee.org/xpl/conhome/7983001/proceeding
  • Abedi Gheshlaghi, H., Feizizadeh, B., Blaschke, T., Lakes, T. & Tajbar, S. (2021). Forest fire susceptibility modeling using hybrid approaches. Transactions in GIS, 25(1), 311-333. https://doi.org/10.1111/tgis.12688
  • Aghalarova, S. & Bozkurt Keser, S. (2022). Öğrencilerin akademik performanslarının tahmin edilmesi için automl tekniğinin uygulanması. El-Cezeri, 9(2), 394-412. https://doi.org/10.31202/ecjse.946505
  • Alla, B., Sergiy, B., Svitlana, O. & Tanaka, H. (2020, February 18-20). Entropy paradigm of project-oriented organizations management [Conference presentation]. IT Project Management, Slavsko, Lviv region, Ukraine. https://ceur-ws.org/Vol-2565/paper20.pdf
  • Anderson, E. (1935). The irises of the Gaspe Peninsula. Bulletin of American Iris Society, (59), 2-5.
  • Aoki, I. (2018). Entropy principle for the evolution of living systems and the universe from bacteria to the universe. Journal of the Physical Society of Japan, 87(10), 104801. https://doi.org/10.7566/JPSJ.87.104801
  • Atkinson, B.W. (1981). Meso-scale atmospheric circulations. Academic Press.
  • Bettinger, P., Boston, K., Siry, J. & Grebner, D.L. (2016). Forest management and planning. Academic Press.
  • Bilgin, H. (2022). Sistem teorisi ve yeni sistemin politika kurulları. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 4(2), 53-70. https://doi.org/10.46482/ebyuiibfdergi.1206591
  • Boltzmann, L. (1866). Über die mechanische bedeutung des zweiten hauptsatzes der wärmetheorie. Wiener Berichte.
  • Bond, W.J. & Keeley, J.E. (2005). Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20(7), 387-394. https://doi.org/10.1016/j.tree.2005.04.025
  • Bryant, R., Doerr, S.H. & Helbig, M. (2005). Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire, (14), 449–455. http://dx.doi.org/10.1071/WF05035
  • Carnot, S. (1824). Reflections on the motive power of fire, and on machines fitted to develop that power. Bachelier.
  • Church, M. & Ryder, J.M. (1972). Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin, 83(10), 3059-3072. https://doi.org/10.1130/0016-7606(1972)83[3059:PSACOF]2.0.CO;2
  • Clausius, R. (1879). The mechanical theory of heat. Macmillan.
  • Cochrane, M.A., Baker, P.J. & Bunyavejchewin, S. (2009). Fire behavior and fire effects across the forest landscape of continental Southeast Asia. In Cochrane, M. A (Ed.), Tropical fire ecology: Climate change land use, and ecosystem Dynamics, 311-334. https://doi.org/10.1007/978-3-540-77381-8_11
  • Cortez, P. & Morais, A. (2007). Forest fires. [Data set]. R. R Studio/RPubs. UCI Machine Learning Repository. https://doi.org/10.24432/C5D88D
  • Creswell, J.W. & Plano Clark, V.L. (2018). Core mixed methods designs. Designing and conducting mixed methods research. SAGE Publications.
  • Çakır, G., Sivrikaya, F., Terzioğlu, S., Başkent, E. Z., Turan, S. & Yolasığmaz, H. A. (2007). Mapping secondary forest succession with geographic information systems: A case study from Bulanikdere, Kırklareli, Turkey. Turkish Journal of Agriculture and Forestry. 31(11), 71-81. https://journals.tubitak.gov.tr/agriculture/vol31/iss1/9/
  • Çelik, H.E. (2023). Orman yangınlarının erozyon sel-üzerindeki etkileri. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları, 288-300. Türkiye Ormancılar Derneği Yayını.
  • Çengel, Y.A., Boles, M.A. & Kanoğlu, M. (2011). Thermodynamics: An engineering approach. McGraw-Hill.
  • Çetin, M. & Meydan, A. (2020). Büyük coğrafi veri setlerinin kümelenmesinde map reduce modellemeleri yoluyla bitki coğrafyası veri tabanlarının oluşturulması. Çukurova Araştırmaları Dergisi, 5(9), 213-240. https://doi.org/10.18560/cukurova.1142
  • Çetin, M. & Özkaya, A. (2021). Postmodernizm ve jeomorfoloji ilişkiselliğine kuantum mekaniği açısından bir bakış. Akademi Sosyal Bilimler Dergisi, 8(24), 492-509. https://doi.org/10.34189/asbd.8.24.007
  • Çetin, M. (2023). Jeomorfolojik süreçlerdeki kaotik ve dinamik süreçler ile kuantum mekaniği ilişkiselliği üzerine bir inceleme. Çukurova Araştırmaları Dergisi, 9(18), 86-102. https://doi.org/10.29228/cukar.68042
  • Çubukçu, K. M. (2015). Planlamada ve coğrafyada temel istatistik ve mekansal istatistik. Nobel.
  • Davie, T. (2019). Fundamentals of hydrology. Routledge.
  • Demirel, H.G. (2023). Doğa bilimlerinden sosyal bilimlere: Örgütsel entropi. R&S-Research Studies Anatolia Journal, 6(4), 556-583. https://doi.org/10.33723/rs.1358922
  • Dinçer, I. & Çengel, Y.A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149. https://doi.org/10.3390/e3030116
  • Dindaroğlu, T. (2021). Ekolojik yıkımın ve salgınların ardındaki gerçek; Ekosistemik yabancılaşma mı? Turkish Journal of Forest Science, 5(1), 266-287. https://doi.org/10.32328/turkjforsci.866874.
  • Eddington, A.S. (1929). The formation of absorption lines. Monthly Notices of the Royal Astronomical Society, 89(7), 620-636. https://doi.org/10.1093/mnras/89.7.620
  • Eker, R., Alkiş, K.C., Uçar, Z. & Aydın, A. (2023). Ormancılıkta makine öğrenmesi kullanımı. Turkish Journal of Forestry, 24(2), 150-177. https://doi.org/10.18182/tjf.1282768
  • Erbaş, Ü. (2010). Entropi ilkelerinin boyut indirgeme uygulamaları (Tez No. 258457) [Doktora tezi, Marmara Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Gafar, M.G., Elhoseny, M. & Gunasekaran, M. (2020). Modeling neutrosophic variables based on particle swarm optimization and information theory measures for forest fires. The Journal of Supercomputing, 76(4), 2339-2356. https://doi.org/10.1007/s11227-018-2512-5
  • Gong, A., Huang, Z., Liu, L., Yang, Y., Ba, W. & Wang, H. (2023). Development of an ındex for forest fire risk assessment considering hazard factors and the hazard-formative environment. Remote Sensing, 15(21), 5077. https://doi.org/10.3390/rs15215077
  • Government of British Columbia. (2024, March). Wildfire rank. BC Wildfire Service. https://www2.gov.bc.ca/gov/content/safety/wildfire-status/wildfire-response/about-wildfire/wildfire-rank
  • Güney, C.O., Mert, A. & Gülsoy, S. (2023). Orman yangınları sonrası ekosistem tabanlı planlamaya doğru: Yanma derinliğinin sınıflandırılması. Afet ve Risk Dergisi, 6(1), 205-224. https://doi.org/10.35341/afet.1197031
  • Gürpınar, Ö., Demir, A. & Harmanci, A. (2023). Entropi ekseninde çevre sorunları ve doğa-sanat-sanatçı ilişkisi. Jia Journial, Uluslararası Sanat ve Sanat Eğitimi Dergisi, 6(12), 1-19. https://doi.org/10.29228/jiajournal.68711
  • Jiang, H., Shen, Y., Xie, J., Li, J., Qian, J. & Yang, J. (2021, October 11-17). Sampling network guided cross-entropy method for unsupervised point cloud registration [Conference presentation]. IEEE/CVF International Computer Vision (ICCV), Montreal, Canada.
  • Jolley, N. (2019). Leibniz (14rd ed.). Routledge.
  • Kala, C. P. (2023). Environmental and socioeconomic impacts of forest fires: A call for multilateral cooperation and management interventions. Natural Hazards Research. 3(2),286-294. https://doi.org/10.1016/j.nhres.2023.04.003
  • Kalender, T. (2021). Farklı rankine çevrimlerinin termodinamik açıdan incelenmesi (Tez No.258457) [Yüksek lisans tezi, Hitit Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Kavgacı, A., Tolunay, D., Sevgi, O. & Tutmaz, V. (2023). Orman yangınları terminolojisi. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları, 3-17. Türkiye Ormancılar Derneği Yayını.
  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116-126. https://doi.org/10.1071/WF07049
  • Kumar, S. & Kumar, A. (2022). Hotspot and trend analysis of forest fires and its relation to climatic factors in the western Himalayas. Natural Hazards, 114(3), 3529-3544. https://doi.org/10.1007/s11069-022-05530-5
  • Livadiotis, G. & McComas, D.J. (2023). Entropy defect in thermodynamics. Scientific Reports, 13(1), 9033. https://doi.org/10.1038/s41598-023-36080-w
  • Lopes, A.M. & Tenreiro Machado, J.A. (2014). Dynamic analysis and pattern visualization of forest fires. PloS one, 9(8), e105465. https://doi.org/10.1371/journal.pone.0105465
  • Ludovisi, A. (2012). Energy degradation and ecosystem development: Theoretical framing, indicators definition and application to a test case study. Ecological Indicators, (20), 204-212. https://doi.org/10.1016/j.ecolind.2012.02.019
  • Malamud, B.D. & Turcotte, D.L. (1999). Self-organized criticality applied to natural hazards. Natural Hazards, (20), 93-116. https://doi.org/10.1023/A:1008014000515
  • Markina, I. & Dyachkov, D. (2014). Entropy model management of organization. World Applied Sciences Journal, (30), 159-164. https://doi.org/10.5829/idosi.wasj.2014.30.mett.66
  • Marzaeva, V.I.I. (2019). Mathematical modeling of canopy forest fire spread in the presence of fire breaks and barriers. Technical Physics, (64), 1073-1081. https://doi.org/10.1134/S1063784219080139
  • Maxwell, J.C. (1878). Tait's “Thermodynamics”. Nature, (17), 278–280. https://doi.org/10.1038/017278a0
  • Meisel, M. (2016). Chaos ımagined: Literature, art, science. Columbia University Press.
  • Mendez, C. (2020). Spatial regression analysis [Data set]. R. R Studio/RPubs. https://rpubs.com/quarcs-lab/tutorial-spatial-regression
  • Meysman, F.J. & Bruers, S. (2007). A thermodynamic perspective on food webs: Quantifying entropy production within detrital-based ecosystems. Journal of Theoretical Biology, 249(1), 124-139. https://doi.org/10.1016/j.jtbi.2007.07.015
  • Miller, J.G. (1978). Living systems: Basic concepts. Behavioral Science, 10(3), 193-237. https://doi.org/10.1002/bs.3830100302
  • Nandi, A. & Pal, A.K. (2021). Interpreting machine learning models: Learn model interpretability and explainability methods. Apress LP Press.
  • Neary, D.G., Gottfiried, G.J. & Ffolliott, P.F. (2003, November 16-20). Post wildfire watershed flood responses [Conference presentation]. Boston, ABD. https://www.frames.gov/catalog/9
  • Nişanyan, S. (2023). Çağdaş Türkçe etimolojisi. Liberus Yayıncılık.
  • Norgard, R.B. (1984). Coevolutionary development potential. Land Economics, 60(2), 160–173. https://doi.org/10.2307/3145970
  • Pausas, J.G. & Keeley, J.E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17(5), 289-295. https://doi.org/10.1002/fee.2044
  • Petrucci, R.H. & Harwood, W.S. (1993). General chemistry: principles and modern applications. Pearson Prentice Hall.
  • Planck, M. (1901). On the law of distibution of energy in the normal spectum. Ann. Phys, (4), 553-563. https://doi.org/10.1002/andp.19013090310
  • Plano Clark, V.L. & Ivankova, N.V. (2016). Mixed methods research: A guide to the field (3rd ed.). SAGE Publications.
  • Scott, D.F., Versfeld, D.B. & Lesch, W. (1998). Erosion and sediment yield in relation to afforestation and fire in the mountains of the western cape provınce, South Afrıca. South African Geographical Journal, 80(1), 52-59. https://doi.org/10.1080/03736245.1998.9713644
  • Shannon, C.E. & Weaver, W. (1948). The mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://www.jstor.org/stable/24530875
  • Skene, K.R. (2013). The energetics of ecological succession: A logistic model of entropic output. Ecological Modelling, (250), 287-293. https://doi.org/10.1016/j.ecolmodel.2012.11.020
  • Smith, C.E. & Smith, J.W. (1996). Economics, ecology and entropy: The second law of thermodynamics and the limits to growth. Population and Environment, 17(4), 309-321.
  • Swanson, F.J. (1981, October 8-11). Fire and geomorphic processes [Conference presentation]. Fire Regimes and Ecosystem Properties, Forest Service. https://wpg.forestry.oregonstate.edu/
  • Swanson, G. A., Bailey, K. D. & Miller, J. G. (1997). Entropy, social entropy and money: A living systems theory perspective. Systems Research and Behavioral Science, 14(1), 45-65. https://doi.org/10.1002/(SICI)1099-1743
  • Tejeida-Padilla, R., Peon-Escalante, I. & Badillo-Piña, I. (2007, July 5-10). Entropy and emergence in organizational systems under a turbulent environment [Conference presentation]. 51st Annual Meeting of the ISSS-2007, Tokyo, Japan. https://journals.isss.org/index.php/proceedings51st/article/view/469
  • Tobler, W.R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, (46), 234-240. https://doi.org/10.2307/143141
  • Toraman, S. (2021). Karma yöntemler araştırması: Kısa tarihi, tanımı, bakış açıları ve temel kavramlar. Nitel Sosyal Bilimler, 3(1), 1-29. https://doi.org/10.47105/nsb.847688
  • Triulzi, P.E. (2018). The entropy effect: An exploration ınto systems and entropy. Universe.
  • Türkeş, M. & Tolunay, D. (2023). İklim değişikliği ve orman yangınları. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları (46-68). Türkiye Ormancılar Derneği Yayını.
  • Vigna, I., Battisti, L., Ascoli, D., Besana, A., Pezzoli, A. & Comino, E. (2024). Integrating cultural ecosystem services in wildfire risk assessment. Landscape and Urban Planning, (243), 104977. https://doi.org/10.1016/j.landurbplan.2023.104977
  • Vranken, I., Baudry, J., Aubinet, M., Visser, M. & Bogaert, J. (2015). A review on the use of entropy in landscape ecology: Heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landscape Ecology, (30), 51-65. https://doi.org/10.1007/s10980-014-0105-0
  • Whittaker, E. T. (1955). Albert Einstein. The Royal Society Publishing.
  • Yıldırım, S., Bostancı, S. H. & Yıldırım, D.Ç. (2023). Parameters for the study of climate refugees. In P. Singh, B. Ao & A. Yadav (Eds.), Global climate change and environmental refugees (pp. 199-214). Springer. https://doi.org/10.1007/978-3-031-24833-7_11
  • Yıldız, O. (2023). Orman yangınlarının toprağa etkisi. İçinde A. Kavgacı & M. Başaran (Eds.), Orman yangınları (302-319). Türkiye Ormancılar Derneği Yayını.
There are 79 citations in total.

Details

Primary Language Turkish
Subjects Ecology in Geography, Natural Hazards
Journal Section Research Article
Authors

Muhammed Çetin 0000-0003-3652-7624

Publication Date June 29, 2024
Submission Date April 2, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

APA Çetin, M. (2024). Entropi Ekseninde Orman Yangınları Fenomeni Üzerine Bir İnceleme. Journal of Anatolian Geography, 1(1), 1-16.


31700