BibTex RIS Cite

On the quaternionic Bertrand curves of AW k -type in Euclidean space E³

Year 2019, Volume: 2 Issue: 3, 1 - 11, 01.10.2019

Abstract

In this paper, We consider that the curvature conditions of AW k -type 1 ≤k≤ 3 quaternioniccurves in Euclidean space E3and investigates quaternionic Bertrand curves α : I → Q with k 6= 0and r 6= 0. Besides, we show that quaternionic Bertrand curves to be AW 2 -type and AW 3 -typequaternionic curves in E. But it is shown that there is no such a quaternionic Bertrand curve ofAW 1 -type

References

  • [1] A. C. C¸ ¨oken, A. Tuna, On the quaternionic inclined curves in the semi-Euclidean space E4 2 , Appl. Math. Computation, 155, (2004), 373-389.
  • [2] C. Ozg¨ur, F. Gezgin, On some curves of AW(k)-type, Differ. Geom. Dyn. Syst, 7, (2005) , 74–80. ¨
  • [3] C¸ . Camcı, K. ˙Ilarslan, L. Kula, H.H. Hacısaliho˘glu, Harmonic curvatures and generalized helices in En, Chaos Solitons & Fractals, (2009), 40(5):2590–6.
  • [4] E. Ata, Y. Yaylı, Dual quaternions and dual projective spaces, Chaos Solitons & Fractals 40, (2009), 15(3):1255-1263.
  • [5] E. Ata, Y. Yaylı, Split quaternions and semi-Euclidean projective spaces, Chaos Solitons & Fractals 41, (2009), 30(4):1910-1915.
  • [6] F. Kahraman, ˙I. G¨ok, H.H. Hacısaliho˘glu, On the quaternionic B2-Slant Helices in the semi-Euclidean Space E4 2 , Appl. Math. Computation, 218, (2012), 6391-6400.
  • [7] ˙I. G¨ok ˙I, O. Z. Okuyucu, F. Kahraman and H. H. Hacisaliho˘glu, On the Quaternionic B2-Slant Helices in the Euclidean Space E4 , Adv. Appl. Clifford Algebras, 21 (2011), 707–719.
  • [8] K. Arslan, C. Ozg¨ur, Curves and surfaces of AW(k)-type, Geometry and Topology of Submanifolds, ¨ IX (Valenciennes/Lyan/Leuven,1997), World. Sci. Publishing, River Edge, NJ, (1999), pp. 21–26.
  • [9] K. Bharathi, M. Nagaraj, Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math, 16, (1985), 741-756.
  • [10] M. Karada˘g, A.˙I. Sivrida˘g, Kuaterniyonik E˘gilim C¸ izgileri i¸cin karakterizasyonlar, Erc. Unv. Fen ¨ Bil. Derg. 13 1-2, (1997), 37-53.
  • [11] M. K¨ulahcı, M. Bektas, M. Erg¨ut, Curves of AW(k)-type in 3-dimensional null cone, Physics Letters A 371, (2007), 275-277.
  • [12] M. K¨ulahcı, M. Bektas, M. Erg¨ut, On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos Solitons & Fractals 41, (2009), 1668–1675.
  • [13] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74, (2002), 97–109.
  • [14] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math., 28 (2), (2004), 153–163.
  • [15] S. Kızıltu˘g, Y. Yaylı, Bertrand curves of AW(k)-type in according to the Equiform Geometry of the Galilean Space, Abstract and Applied Analysis Volume, (2014), Article ID 402360, 6 pages. [16] S. Kızıltu˘g, Y. Yaylı, On the quaternionic Mannheim curves of Aw(k)-type in Euclidean space E3 42(2), (2015).
Year 2019, Volume: 2 Issue: 3, 1 - 11, 01.10.2019

Abstract

References

  • [1] A. C. C¸ ¨oken, A. Tuna, On the quaternionic inclined curves in the semi-Euclidean space E4 2 , Appl. Math. Computation, 155, (2004), 373-389.
  • [2] C. Ozg¨ur, F. Gezgin, On some curves of AW(k)-type, Differ. Geom. Dyn. Syst, 7, (2005) , 74–80. ¨
  • [3] C¸ . Camcı, K. ˙Ilarslan, L. Kula, H.H. Hacısaliho˘glu, Harmonic curvatures and generalized helices in En, Chaos Solitons & Fractals, (2009), 40(5):2590–6.
  • [4] E. Ata, Y. Yaylı, Dual quaternions and dual projective spaces, Chaos Solitons & Fractals 40, (2009), 15(3):1255-1263.
  • [5] E. Ata, Y. Yaylı, Split quaternions and semi-Euclidean projective spaces, Chaos Solitons & Fractals 41, (2009), 30(4):1910-1915.
  • [6] F. Kahraman, ˙I. G¨ok, H.H. Hacısaliho˘glu, On the quaternionic B2-Slant Helices in the semi-Euclidean Space E4 2 , Appl. Math. Computation, 218, (2012), 6391-6400.
  • [7] ˙I. G¨ok ˙I, O. Z. Okuyucu, F. Kahraman and H. H. Hacisaliho˘glu, On the Quaternionic B2-Slant Helices in the Euclidean Space E4 , Adv. Appl. Clifford Algebras, 21 (2011), 707–719.
  • [8] K. Arslan, C. Ozg¨ur, Curves and surfaces of AW(k)-type, Geometry and Topology of Submanifolds, ¨ IX (Valenciennes/Lyan/Leuven,1997), World. Sci. Publishing, River Edge, NJ, (1999), pp. 21–26.
  • [9] K. Bharathi, M. Nagaraj, Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math, 16, (1985), 741-756.
  • [10] M. Karada˘g, A.˙I. Sivrida˘g, Kuaterniyonik E˘gilim C¸ izgileri i¸cin karakterizasyonlar, Erc. Unv. Fen ¨ Bil. Derg. 13 1-2, (1997), 37-53.
  • [11] M. K¨ulahcı, M. Bektas, M. Erg¨ut, Curves of AW(k)-type in 3-dimensional null cone, Physics Letters A 371, (2007), 275-277.
  • [12] M. K¨ulahcı, M. Bektas, M. Erg¨ut, On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos Solitons & Fractals 41, (2009), 1668–1675.
  • [13] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74, (2002), 97–109.
  • [14] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math., 28 (2), (2004), 153–163.
  • [15] S. Kızıltu˘g, Y. Yaylı, Bertrand curves of AW(k)-type in according to the Equiform Geometry of the Galilean Space, Abstract and Applied Analysis Volume, (2014), Article ID 402360, 6 pages. [16] S. Kızıltu˘g, Y. Yaylı, On the quaternionic Mannheim curves of Aw(k)-type in Euclidean space E3 42(2), (2015).
There are 15 citations in total.

Details

Primary Language English
Journal Section Some Notes on the Extendibility of an Especial Family of Diophantine 𝑷𝟐 Pairs
Authors

Sezai Kızıltuğ This is me

Gökhan Mumcu

Publication Date October 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Kızıltuğ, S., & Mumcu, G. (2019). On the quaternionic Bertrand curves of AW k -type in Euclidean space E³. Journal of Advanced Mathematics and Mathematics Education, 2(3), 1-11.