Research Article
BibTex RIS Cite

Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method

Year 2023, Volume: 4 Issue: 2, 35 - 45, 22.12.2023

Abstract

The present work aims to decide on machining parameters and enhance machinability of the biomedical Ti6Al7Nb alloy using nanofluid MQL with nanoparticles of graphene (NMQL) and ultrasonic vibration assisted (UVA) machining methods were applied both separately and in a hybrid manner. Consequently, for the chosen cutting parameters, when compared to the conventional turning (CT) with vegetable cutting oil-based MQL, the UVA-NMQL hybrid method has achieved a reduction in cutting forces ranging from approximately 11% to 23%, a decrease in cutting temperatures by around 9% to 17%, and an enhancement in average surface roughness by roughly 15% to 53% across all the analyzed results compare to vegetable oil based conventional MQL turning conditions. Additionally, using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method, the optimum cutting parameters were determined as UVA-NMQL cutting condition, 130 m/min cutting speed, and 0.1 mm feed value.

Thanks

The authors would like to express their appreciation to Yildiz Technical University Machining Science and Sustainability (YTU MASSUS- www.massus.yildiz.edu.tr ) research group, for their laboratory facility's support of this research.

References

  • [1] Zhang, L. C., & Chen, L. Y. (2019). A review on biomedical titanium alloys: recent progress and prospect. Advanced Engineering Materials, 21(4), Article 1801215. [CrossRef]
  • [2] Baltatu, M. S., Tugui, C. A., Perju, M. C., Benchea, M., Spataru, M. C., Sandu, A. V., & Vizureanu, P. (2019). Biocompatible titanium alloys used in medical applications. Revista de Chimie (Rev Chim), 70(4), 1302–1306. [CrossRef]
  • [3] Kumar, A., & Misra, R. (2018). 3D-printed titanium alloys for orthopedic applications. In Titanium in Medical and Dental Applications (pp. 251-275). Elsevier. [CrossRef]
  • [4] Kanapaakala, G., & Subramani, V. (2023). A review on β-Ti alloys for biomedical applications: The influence of alloy composition and thermomechanical processing on mechanical properties, phase composition, and microstructure. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(6), 1251–1294. [CrossRef]
  • [5] Asserghine, A., Filotás, D., Németh, B., Nagy, L., & Nagy, G. (2018). Potentiometric scanning electrochemical microscopy for monitoring the pH distribution during the self-healing of passive titanium dioxide layer on titanium dental root implant exposed to physiological buffered (PBS) medium. Electrochemistry Communications, 95, 1–4. [CrossRef]
  • [6] Sarraf, M., Rezvani Ghomi, E., Alipour, S., Ramakrishna, S., & Sukiman, L. N. (2021). A state-ofthe- art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Design and Manufacturing, 1–25. [CrossRef]
  • [7] Hanawa, T. (2019). Overview of metals and applications. In Metals for Biomedical Devices (pp. 3-29). Elsevier. [CrossRef]
  • [8] Ashida, M., Chen, P., Doi, H., Tsutsumi, Y., Hanawa, T., & Horita, Z. (2014). Microstructures and mechanical properties of Ti-6Al-7Nb processed by high-pressure torsion. Procedia Engineering, 81, 1523–1528. [CrossRef]
  • [9] Rotaru, H., Armencea, G., Spîrchez, D., Berce, C., Marcu, T., Leordean, D., Kim, S. G., Lee, S.-W., Dinu, C., & Băciuţ, G. (2013). In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants: A preliminary study. Romanian Journal of Morphology and Embryology (Rom J Morphol Embryol), 54(3 Suppl), 791–796. [CrossRef]
  • [10] Shapira, L., Klinger, A., Tadir, A., Wilensky, A., & Halabi, A. (2009). Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Clinical Oral Implants Research, 20(6), 578–582. [CrossRef]
  • [11] Boehlert, C., Cowen, C., Jaeger, C., Niinomi, M., & Akahori, T. (2005). Tensile and fatigue evaluation of Ti–15Al–33Nb (at.%) and Ti–21Al–29Nb (at.%) alloys for biomedical applications. Materials Science and Engineering: C, 25(3), 263–275. [CrossRef]
  • [12] López, M. F., Gutiérrez, A., & Jiménez, J. A. (2002). In vitro corrosion behaviour of titanium alloys without vanadium. Electrochimica Acta, 47(9), 1359–1364. [CrossRef]
  • [13] Sun, Y., Huang, B., Puleo, D., Schoop, J., & Jawahir, I. S. (2016). Improved surface integrity from cryogenic machining of Ti-6Al-7Nb alloy for biomedical applications. Procedia CIRP, 45, 63–66.
  • [14] Kobayashi, E., Wang, T., Doi, H., Yoneyama, T., & Hamanaka, H. (1998). Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings. Journal of Materials Science: Materials in Medicine, 9, 567–574.
  • [15] Challa, V., Mali, S., & Misra, R. (2013). Reduced toxicity and superior cellular response of preosteoblasts to Ti‐6Al‐7Nb alloy and comparison with Ti‐6Al‐4V. Journal of Biomedical Materials Research Part A, 101(7), 2083–2089. [CrossRef]
  • [16] Singh, V., Kumar, K., & Katyal, P. (2021). Experimental investigation on surface integrity and wear behavior of Ti-6Al-7Nb alloy under rough and trim cut modes of wire electrical discharge machining. Journal of Materials Engineering and Performance, 30(1), 66–76. [CrossRef]
  • [17] Carvalho, S., Horovistiz, A., & Davim, J. (2023). Morphological characterization of chip segmentation in Ti-6Al-7Nb machining: A novel method based on digital image processing. Measurement, 206, Article 112330. [CrossRef]
  • [18] Mello, A. O., Pereira, R. B. D., Lauro, C. H., Brandão, L. C., & Davim, J. P. (2021). Comparison between the machinability of different titanium alloys (Ti–6Al–4V and Ti–6Al–7Nb) employing the multi-objective optimization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(11), 1–14. [CrossRef]
  • [19] del Risco-Alfonso, R., Siller, H. R., Pérez-Rodríguez, R., & Molina, A. (2019). Study of a novel ceramic tool performance in the machining of Ti-6Al-7Nb alloys. MRS Advances, 4(55-56), 3007–3015. [CrossRef]
  • [20] Gupta, A., Kumar, R., Kumar, H., & Garg, H. (2019). Optimization of process parameters during machining of Ti6Al7Nb by grey relational analysis based on Taguchi. In Journal of Physics: Conference Series (Vol. 2019, No. 012121). IOP Publishing. [CrossRef]
  • [21] Lauro, C. H., Ribeiro Filho, S. L., Brandão, L. C., & Davim, J. P. (2016). Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-cutting. Measurement, 93, 529–540. [CrossRef]
  • [22] Sharma, V. S., Singh, G., & Sørby, K. (2015). A review on minimum quantity lubrication for machining processes. Materials and Manufacturing Processes, 30(8), 935–953. [CrossRef]
  • [23] Gupta, M. K., Khan, A. M., Song, Q., Liu, Z., Khalid, Q. S., Jamil, M., Kuntoğlu, M., Usca, Ü. A., Sarıkaya, M., & Pimenov, D. Y. (2021). A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process. The International Journal of Advanced Manufacturing Technology, 117, 729–750. [CrossRef]
  • [24] Jagatheesan, K., Babu, K., & Madhesh, D. (2021). Experimental investigation of machining parameter in MQL turning operation using AISI 4320 alloy steel. Materials Today: Proceedings, 46, 4331–4335. [CrossRef]
  • [25] Kannan, C., Chaitanya, C. V., Padala, D., Reddy, L., Ramanujam, R., & Balan, A. (2020). Machinability studies on aluminium matrix nanocomposite under the influence of MQL. Materials Today: Proceedings, 22, 1507–1516. [CrossRef] [26] Gong, L., Bertolini, R., Ghiotti, A., He, N., & Bruschi,S. (2020). Sustainable turning of Inconel 718 nickel alloy using MQL strategy based on graphene nanofluids. The International Journal of Advanced Manufacturing Technology, 108, 3159–3174. [CrossRef]
  • [27] Mosleh, M., Shirvani, K. A., Smith, S. T., Belk, J. H., & Lipczynski, G. (2019). A study of minimum quantity lubrication (MQL) by nanofluids in orbital drilling and tribological testing. Journal of Manufacturing and Materials Processing, 3(1), 5. [CrossRef]
  • [28] Roy, S., Kumar, R., Sahoo, A. K., & Das, R. K. (2019). A brief review on effects of conventional and nanoparticle-based machining fluid on machining performance of minimum quantity lubrication machining. Materials Today: Proceedings, 18, 5421–5431. [CrossRef]
  • [29] Tuan, N. M., Duc, T. M., Long, T. T., Hoang, V. L., & Ngoc, T. B. (2022). Investigation of machining performance of MQL and MQCL hard turning using nano cutting fluids. Fluids, 7(5), 143. [CrossRef]
  • [30] Makhesana, M. A., Patel, K. M., Krolczyk, G. M., Danish, M., Singla, A. K., & Khanna, N. (2023). Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature, and microhardness in machining of Inconel 625. CIRP Journal of Manufacturing Science and Technology, 41, 225–238. [CrossRef]
  • [31] Seyedzavvar, M., Abbasi, H., Kiyasatfar, M., & Ilkhchi, R. N. (2020). Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding operations. Advances in Manufacturing, 8, 344–360. [CrossRef]
  • [32] Sinha, M. K., Kishore, K., & Sharma, P. (2023). Surface integrity evaluation in ecological nanofluids assisted grinding of Inconel 718 superalloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Article 09544089231171042. [CrossRef]
  • [33] Jagatheesan, K., Babu, K., & Madhesh, D. (2023). Optimization of process parameters in turning operation using CNT based minimum quantity lubrication (MQL). Materials Today: Proceedings, 72, 2552–2556. [CrossRef]
  • [34] Ge, X., Chai, Z., Shi, Q., Liu, Y., & Wang, W. (2023). Graphene superlubricity: A review. Friction, 2023, 1–21. [CrossRef]
  • [35] Kim, K.-S., Lee, H.-J., Lee, C., Lee, S.-K., Jang, H., Ahn, J.-H., Kim, J.-H., & Lee, H.-J. (2011). Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano, 5(6), 5107–5114. [CrossRef]
  • [36] Gürgen, S., & Sofuoğlu, M. A. (2021). Advancements in conventional machining: a case of vibration and heat-assisted machining of aerospace alloys. In Advanced Machining and Finishing (pp. 143-175). Elsevier. [CrossRef]
  • [37] Koshimizu, S. (2009). Ultrasonic vibration-assisted cutting of titanium alloy. Key Engineering Materials, 389, 277–282. [CrossRef]
  • [38] Kandi, R., Sahoo, S. K., & Sahoo, A. K. (2020). Ultrasonic vibration-assisted turning of Titanium alloy Ti–6Al–4V: numerical and experimental investigations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1–17. [CrossRef]
  • [39] Airao, J., Nirala, C. K., & Khanna, N. (2022). Novel use of ultrasonic-assisted turning in conjunction with cryogenic and lubrication techniques to analyze the machinability of Inconel 718. Journal of Manufacturing Processes, 81, 962–975. [CrossRef]
  • [40] Shaw, M. C., & Cookson, J. (2005). Metal cutting principles (Vol. 2). Oxford University Press.
  • [41] Molaie, M., Akbari, J., & Movahhedy, M. (2016). Ultrasonic assisted grinding process with minimum quantity lubrication using oil-based nanofluids. Journal of Cleaner Production, 129, 212–222. [CrossRef]
  • [42] Jia, D., Li, C., Zhang, Y., Yang, M., Zhang, X., Li, R., & Ji, H. (2019). Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. The International Journal of Advanced Manufacturing Technology, 100, 457–473. [CrossRef]
  • [43] Ni, C., Zhu, L., & Yang, Z. (2019). Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from a dynamic view. Wear, 436, Article 203006. [CrossRef]
  • [44] Veiga, C., Davim, J., & Loureiro, A. (2012). Properties and applications of titanium alloys: a brief review. Revista Avanzada en Ciencias de Materiales, 32(2), 133–148.
  • [45] Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, A. R., Tomaz, Í. V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T., & Kapłonek, W. (2021). Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: A review and future prospect. Journal of Materials Research and Technology, 11, 719–753. [CrossRef]
  • [46] Obikawa, T., Kamata, Y., & Shinozuka, J. (2006). High-speed grooving with applying MQL. International Journal of Machine Tools and Manufacture, 46(14), 1854–1861. [CrossRef]
  • [47] Li, K.-M., & Liang, S. Y. (2007). Performance profiling of minimum quantity lubrication in machining. The International Journal of Advanced Manufacturing Technology, 35, 226–233. [CrossRef]
  • [48] Kurgin, S., Dasch, J. M., Simon, D. L., Barber, G. C., & Zou, Q. (2012). Evaluation of the convective heat transfer coefficient for minimum quantity lubrication (MQL). Industrial Lubrication and Tribology, 64(6), 376–386. [CrossRef]
  • [49] Bowers, K. T., Keller, J. C., Randolph, B. A., Wick, D. G., & Michaels, C. M. (1992). Optimization of surface micromorphology for enhanced osteoblast responses in vitro. International Journal of Oral & Maxillofacial Implants, 7(3).
  • [50] Deligianni, D. D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., & Missirlis, Y. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241–1251. [CrossRef]
  • [51] Podany, J., Stary, V., & Tomicek, J. (2021). 3D surface roughness characteristics for biological applications. Manufacturing Technology, 21(6), 836–841. [CrossRef]
  • [52] Guilherme, A. S., Henriques, G. E. P., Zavanelli, R. A., & Mesquita, M. F. (2005). Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols. The Journal of Prosthetic Dentistry, 93(4), 378–385. [CrossRef]
  • [53] Etri, H. E., Singla, A. K., Özdemir, M. T., Korkmaz, M. E., Demirsöz, R., Gupta, M. K., Krolczyk, J., & Ross, N. S. (2023). Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants. Archives of Civil and Mechanical Engineering, 23(3), 147. [CrossRef]
  • [54] Hamdi, A., Yapan, Y. F., Uysal, A., & Abderazek, H. (2023). Multi-objective analysis and optimization of energy aspects during dry and MQL turning of unreinforced polypropylene (PP): an approach based on ANOVA, ANN, MOWCA, and MOALO. International Journal of Advanced Manufacturing Technology, 1–18. [CrossRef]
  • [55] Do, D., & Nguyen, N. (2022). Applying Cocoso, Mabac, Mairca, Eamr, Topsis and Weight Determination Methods for Multi-Criteria Decision Making in Hole Turning Process. Strojnícky časopis - Journal of Mechanical Engineering, 72(2), 15–40. [CrossRef]
  • [56] Saatçi, E., Yapan, Y. F., Uslu Uysal, M., & Uysal, A. (2023). Orthogonal turning of AISI 310S austenitic stainless steel under hybrid nanofluid-assisted MQL and a sustainability optimization using NSGA-II and TOPSIS. Sustainable Materials and Technologies, 36, Article e00628. [CrossRef]
  • [57] Oussama, B., Yapan, Y. F., Uysal, A., Abdelhakim, C., & Mourad, N. (2023). Assessment of turning AISI 316L stainless steel under MWCNT-reinforced nanofluid-assisted MQL and optimization of process parameters by NSGA-II and TOPSIS. International Journal of Advanced Manufacturing Technology, 127, 3855–3868. [CrossRef]
  • [58] Khanna, N., Kshitij, G., Solanki, M., Bhatt, T., Patel, O., Uysal, A., & Sarıkaya, M. (2023). In pursuit of sustainability in machining thin-walled α-titanium tubes: An industry-supported study. Sustainable Materials and Technologies, 36, Article e00647. [CrossRef]
  • [59] Jawaid, A., Che-Haron, C. H., & Abdullah, A. (1999). Tool wear characteristics in turning of titanium alloy Ti-6246. Journal of Materials Processing Technology, 92–93, 329–334. [CrossRef]
  • [60] Usluer, E., Emiroğlu, U., Yapan, Y. F., Kshitij, G., Khanna, N., Sarıkaya, M., & Uysal, A. (2023). Investigation on the effect of hybrid nanofluid in MQL condition in orthogonal turning and a sustainability assessment. Sustainable Materials and Technologies, 36, Article e00618. [CrossRef]
Year 2023, Volume: 4 Issue: 2, 35 - 45, 22.12.2023

Abstract

References

  • [1] Zhang, L. C., & Chen, L. Y. (2019). A review on biomedical titanium alloys: recent progress and prospect. Advanced Engineering Materials, 21(4), Article 1801215. [CrossRef]
  • [2] Baltatu, M. S., Tugui, C. A., Perju, M. C., Benchea, M., Spataru, M. C., Sandu, A. V., & Vizureanu, P. (2019). Biocompatible titanium alloys used in medical applications. Revista de Chimie (Rev Chim), 70(4), 1302–1306. [CrossRef]
  • [3] Kumar, A., & Misra, R. (2018). 3D-printed titanium alloys for orthopedic applications. In Titanium in Medical and Dental Applications (pp. 251-275). Elsevier. [CrossRef]
  • [4] Kanapaakala, G., & Subramani, V. (2023). A review on β-Ti alloys for biomedical applications: The influence of alloy composition and thermomechanical processing on mechanical properties, phase composition, and microstructure. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(6), 1251–1294. [CrossRef]
  • [5] Asserghine, A., Filotás, D., Németh, B., Nagy, L., & Nagy, G. (2018). Potentiometric scanning electrochemical microscopy for monitoring the pH distribution during the self-healing of passive titanium dioxide layer on titanium dental root implant exposed to physiological buffered (PBS) medium. Electrochemistry Communications, 95, 1–4. [CrossRef]
  • [6] Sarraf, M., Rezvani Ghomi, E., Alipour, S., Ramakrishna, S., & Sukiman, L. N. (2021). A state-ofthe- art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Design and Manufacturing, 1–25. [CrossRef]
  • [7] Hanawa, T. (2019). Overview of metals and applications. In Metals for Biomedical Devices (pp. 3-29). Elsevier. [CrossRef]
  • [8] Ashida, M., Chen, P., Doi, H., Tsutsumi, Y., Hanawa, T., & Horita, Z. (2014). Microstructures and mechanical properties of Ti-6Al-7Nb processed by high-pressure torsion. Procedia Engineering, 81, 1523–1528. [CrossRef]
  • [9] Rotaru, H., Armencea, G., Spîrchez, D., Berce, C., Marcu, T., Leordean, D., Kim, S. G., Lee, S.-W., Dinu, C., & Băciuţ, G. (2013). In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants: A preliminary study. Romanian Journal of Morphology and Embryology (Rom J Morphol Embryol), 54(3 Suppl), 791–796. [CrossRef]
  • [10] Shapira, L., Klinger, A., Tadir, A., Wilensky, A., & Halabi, A. (2009). Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Clinical Oral Implants Research, 20(6), 578–582. [CrossRef]
  • [11] Boehlert, C., Cowen, C., Jaeger, C., Niinomi, M., & Akahori, T. (2005). Tensile and fatigue evaluation of Ti–15Al–33Nb (at.%) and Ti–21Al–29Nb (at.%) alloys for biomedical applications. Materials Science and Engineering: C, 25(3), 263–275. [CrossRef]
  • [12] López, M. F., Gutiérrez, A., & Jiménez, J. A. (2002). In vitro corrosion behaviour of titanium alloys without vanadium. Electrochimica Acta, 47(9), 1359–1364. [CrossRef]
  • [13] Sun, Y., Huang, B., Puleo, D., Schoop, J., & Jawahir, I. S. (2016). Improved surface integrity from cryogenic machining of Ti-6Al-7Nb alloy for biomedical applications. Procedia CIRP, 45, 63–66.
  • [14] Kobayashi, E., Wang, T., Doi, H., Yoneyama, T., & Hamanaka, H. (1998). Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings. Journal of Materials Science: Materials in Medicine, 9, 567–574.
  • [15] Challa, V., Mali, S., & Misra, R. (2013). Reduced toxicity and superior cellular response of preosteoblasts to Ti‐6Al‐7Nb alloy and comparison with Ti‐6Al‐4V. Journal of Biomedical Materials Research Part A, 101(7), 2083–2089. [CrossRef]
  • [16] Singh, V., Kumar, K., & Katyal, P. (2021). Experimental investigation on surface integrity and wear behavior of Ti-6Al-7Nb alloy under rough and trim cut modes of wire electrical discharge machining. Journal of Materials Engineering and Performance, 30(1), 66–76. [CrossRef]
  • [17] Carvalho, S., Horovistiz, A., & Davim, J. (2023). Morphological characterization of chip segmentation in Ti-6Al-7Nb machining: A novel method based on digital image processing. Measurement, 206, Article 112330. [CrossRef]
  • [18] Mello, A. O., Pereira, R. B. D., Lauro, C. H., Brandão, L. C., & Davim, J. P. (2021). Comparison between the machinability of different titanium alloys (Ti–6Al–4V and Ti–6Al–7Nb) employing the multi-objective optimization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(11), 1–14. [CrossRef]
  • [19] del Risco-Alfonso, R., Siller, H. R., Pérez-Rodríguez, R., & Molina, A. (2019). Study of a novel ceramic tool performance in the machining of Ti-6Al-7Nb alloys. MRS Advances, 4(55-56), 3007–3015. [CrossRef]
  • [20] Gupta, A., Kumar, R., Kumar, H., & Garg, H. (2019). Optimization of process parameters during machining of Ti6Al7Nb by grey relational analysis based on Taguchi. In Journal of Physics: Conference Series (Vol. 2019, No. 012121). IOP Publishing. [CrossRef]
  • [21] Lauro, C. H., Ribeiro Filho, S. L., Brandão, L. C., & Davim, J. P. (2016). Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-cutting. Measurement, 93, 529–540. [CrossRef]
  • [22] Sharma, V. S., Singh, G., & Sørby, K. (2015). A review on minimum quantity lubrication for machining processes. Materials and Manufacturing Processes, 30(8), 935–953. [CrossRef]
  • [23] Gupta, M. K., Khan, A. M., Song, Q., Liu, Z., Khalid, Q. S., Jamil, M., Kuntoğlu, M., Usca, Ü. A., Sarıkaya, M., & Pimenov, D. Y. (2021). A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process. The International Journal of Advanced Manufacturing Technology, 117, 729–750. [CrossRef]
  • [24] Jagatheesan, K., Babu, K., & Madhesh, D. (2021). Experimental investigation of machining parameter in MQL turning operation using AISI 4320 alloy steel. Materials Today: Proceedings, 46, 4331–4335. [CrossRef]
  • [25] Kannan, C., Chaitanya, C. V., Padala, D., Reddy, L., Ramanujam, R., & Balan, A. (2020). Machinability studies on aluminium matrix nanocomposite under the influence of MQL. Materials Today: Proceedings, 22, 1507–1516. [CrossRef] [26] Gong, L., Bertolini, R., Ghiotti, A., He, N., & Bruschi,S. (2020). Sustainable turning of Inconel 718 nickel alloy using MQL strategy based on graphene nanofluids. The International Journal of Advanced Manufacturing Technology, 108, 3159–3174. [CrossRef]
  • [27] Mosleh, M., Shirvani, K. A., Smith, S. T., Belk, J. H., & Lipczynski, G. (2019). A study of minimum quantity lubrication (MQL) by nanofluids in orbital drilling and tribological testing. Journal of Manufacturing and Materials Processing, 3(1), 5. [CrossRef]
  • [28] Roy, S., Kumar, R., Sahoo, A. K., & Das, R. K. (2019). A brief review on effects of conventional and nanoparticle-based machining fluid on machining performance of minimum quantity lubrication machining. Materials Today: Proceedings, 18, 5421–5431. [CrossRef]
  • [29] Tuan, N. M., Duc, T. M., Long, T. T., Hoang, V. L., & Ngoc, T. B. (2022). Investigation of machining performance of MQL and MQCL hard turning using nano cutting fluids. Fluids, 7(5), 143. [CrossRef]
  • [30] Makhesana, M. A., Patel, K. M., Krolczyk, G. M., Danish, M., Singla, A. K., & Khanna, N. (2023). Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature, and microhardness in machining of Inconel 625. CIRP Journal of Manufacturing Science and Technology, 41, 225–238. [CrossRef]
  • [31] Seyedzavvar, M., Abbasi, H., Kiyasatfar, M., & Ilkhchi, R. N. (2020). Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding operations. Advances in Manufacturing, 8, 344–360. [CrossRef]
  • [32] Sinha, M. K., Kishore, K., & Sharma, P. (2023). Surface integrity evaluation in ecological nanofluids assisted grinding of Inconel 718 superalloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Article 09544089231171042. [CrossRef]
  • [33] Jagatheesan, K., Babu, K., & Madhesh, D. (2023). Optimization of process parameters in turning operation using CNT based minimum quantity lubrication (MQL). Materials Today: Proceedings, 72, 2552–2556. [CrossRef]
  • [34] Ge, X., Chai, Z., Shi, Q., Liu, Y., & Wang, W. (2023). Graphene superlubricity: A review. Friction, 2023, 1–21. [CrossRef]
  • [35] Kim, K.-S., Lee, H.-J., Lee, C., Lee, S.-K., Jang, H., Ahn, J.-H., Kim, J.-H., & Lee, H.-J. (2011). Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano, 5(6), 5107–5114. [CrossRef]
  • [36] Gürgen, S., & Sofuoğlu, M. A. (2021). Advancements in conventional machining: a case of vibration and heat-assisted machining of aerospace alloys. In Advanced Machining and Finishing (pp. 143-175). Elsevier. [CrossRef]
  • [37] Koshimizu, S. (2009). Ultrasonic vibration-assisted cutting of titanium alloy. Key Engineering Materials, 389, 277–282. [CrossRef]
  • [38] Kandi, R., Sahoo, S. K., & Sahoo, A. K. (2020). Ultrasonic vibration-assisted turning of Titanium alloy Ti–6Al–4V: numerical and experimental investigations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1–17. [CrossRef]
  • [39] Airao, J., Nirala, C. K., & Khanna, N. (2022). Novel use of ultrasonic-assisted turning in conjunction with cryogenic and lubrication techniques to analyze the machinability of Inconel 718. Journal of Manufacturing Processes, 81, 962–975. [CrossRef]
  • [40] Shaw, M. C., & Cookson, J. (2005). Metal cutting principles (Vol. 2). Oxford University Press.
  • [41] Molaie, M., Akbari, J., & Movahhedy, M. (2016). Ultrasonic assisted grinding process with minimum quantity lubrication using oil-based nanofluids. Journal of Cleaner Production, 129, 212–222. [CrossRef]
  • [42] Jia, D., Li, C., Zhang, Y., Yang, M., Zhang, X., Li, R., & Ji, H. (2019). Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. The International Journal of Advanced Manufacturing Technology, 100, 457–473. [CrossRef]
  • [43] Ni, C., Zhu, L., & Yang, Z. (2019). Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from a dynamic view. Wear, 436, Article 203006. [CrossRef]
  • [44] Veiga, C., Davim, J., & Loureiro, A. (2012). Properties and applications of titanium alloys: a brief review. Revista Avanzada en Ciencias de Materiales, 32(2), 133–148.
  • [45] Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, A. R., Tomaz, Í. V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T., & Kapłonek, W. (2021). Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: A review and future prospect. Journal of Materials Research and Technology, 11, 719–753. [CrossRef]
  • [46] Obikawa, T., Kamata, Y., & Shinozuka, J. (2006). High-speed grooving with applying MQL. International Journal of Machine Tools and Manufacture, 46(14), 1854–1861. [CrossRef]
  • [47] Li, K.-M., & Liang, S. Y. (2007). Performance profiling of minimum quantity lubrication in machining. The International Journal of Advanced Manufacturing Technology, 35, 226–233. [CrossRef]
  • [48] Kurgin, S., Dasch, J. M., Simon, D. L., Barber, G. C., & Zou, Q. (2012). Evaluation of the convective heat transfer coefficient for minimum quantity lubrication (MQL). Industrial Lubrication and Tribology, 64(6), 376–386. [CrossRef]
  • [49] Bowers, K. T., Keller, J. C., Randolph, B. A., Wick, D. G., & Michaels, C. M. (1992). Optimization of surface micromorphology for enhanced osteoblast responses in vitro. International Journal of Oral & Maxillofacial Implants, 7(3).
  • [50] Deligianni, D. D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., & Missirlis, Y. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241–1251. [CrossRef]
  • [51] Podany, J., Stary, V., & Tomicek, J. (2021). 3D surface roughness characteristics for biological applications. Manufacturing Technology, 21(6), 836–841. [CrossRef]
  • [52] Guilherme, A. S., Henriques, G. E. P., Zavanelli, R. A., & Mesquita, M. F. (2005). Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols. The Journal of Prosthetic Dentistry, 93(4), 378–385. [CrossRef]
  • [53] Etri, H. E., Singla, A. K., Özdemir, M. T., Korkmaz, M. E., Demirsöz, R., Gupta, M. K., Krolczyk, J., & Ross, N. S. (2023). Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants. Archives of Civil and Mechanical Engineering, 23(3), 147. [CrossRef]
  • [54] Hamdi, A., Yapan, Y. F., Uysal, A., & Abderazek, H. (2023). Multi-objective analysis and optimization of energy aspects during dry and MQL turning of unreinforced polypropylene (PP): an approach based on ANOVA, ANN, MOWCA, and MOALO. International Journal of Advanced Manufacturing Technology, 1–18. [CrossRef]
  • [55] Do, D., & Nguyen, N. (2022). Applying Cocoso, Mabac, Mairca, Eamr, Topsis and Weight Determination Methods for Multi-Criteria Decision Making in Hole Turning Process. Strojnícky časopis - Journal of Mechanical Engineering, 72(2), 15–40. [CrossRef]
  • [56] Saatçi, E., Yapan, Y. F., Uslu Uysal, M., & Uysal, A. (2023). Orthogonal turning of AISI 310S austenitic stainless steel under hybrid nanofluid-assisted MQL and a sustainability optimization using NSGA-II and TOPSIS. Sustainable Materials and Technologies, 36, Article e00628. [CrossRef]
  • [57] Oussama, B., Yapan, Y. F., Uysal, A., Abdelhakim, C., & Mourad, N. (2023). Assessment of turning AISI 316L stainless steel under MWCNT-reinforced nanofluid-assisted MQL and optimization of process parameters by NSGA-II and TOPSIS. International Journal of Advanced Manufacturing Technology, 127, 3855–3868. [CrossRef]
  • [58] Khanna, N., Kshitij, G., Solanki, M., Bhatt, T., Patel, O., Uysal, A., & Sarıkaya, M. (2023). In pursuit of sustainability in machining thin-walled α-titanium tubes: An industry-supported study. Sustainable Materials and Technologies, 36, Article e00647. [CrossRef]
  • [59] Jawaid, A., Che-Haron, C. H., & Abdullah, A. (1999). Tool wear characteristics in turning of titanium alloy Ti-6246. Journal of Materials Processing Technology, 92–93, 329–334. [CrossRef]
  • [60] Usluer, E., Emiroğlu, U., Yapan, Y. F., Kshitij, G., Khanna, N., Sarıkaya, M., & Uysal, A. (2023). Investigation on the effect of hybrid nanofluid in MQL condition in orthogonal turning and a sustainability assessment. Sustainable Materials and Technologies, 36, Article e00618. [CrossRef]
There are 59 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering, Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Erkin Duman 0000-0001-5842-0436

Yusuf Furkan Yapan 0000-0001-9684-4117

M.alper Sofuoğlu 0000-0003-4681-6390

Publication Date December 22, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Duman, E., Yapan, Y. F., & Sofuoğlu, M. (2023). Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method. Journal of Advances in Manufacturing Engineering, 4(2), 35-45.
AMA Duman E, Yapan YF, Sofuoğlu M. Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method. J Adv Manuf Eng. December 2023;4(2):35-45.
Chicago Duman, Erkin, Yusuf Furkan Yapan, and M.alper Sofuoğlu. “Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method”. Journal of Advances in Manufacturing Engineering 4, no. 2 (December 2023): 35-45.
EndNote Duman E, Yapan YF, Sofuoğlu M (December 1, 2023) Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method. Journal of Advances in Manufacturing Engineering 4 2 35–45.
IEEE E. Duman, Y. F. Yapan, and M. Sofuoğlu, “Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method”, J Adv Manuf Eng, vol. 4, no. 2, pp. 35–45, 2023.
ISNAD Duman, Erkin et al. “Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method”. Journal of Advances in Manufacturing Engineering 4/2 (December 2023), 35-45.
JAMA Duman E, Yapan YF, Sofuoğlu M. Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method. J Adv Manuf Eng. 2023;4:35–45.
MLA Duman, Erkin et al. “Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method”. Journal of Advances in Manufacturing Engineering, vol. 4, no. 2, 2023, pp. 35-45.
Vancouver Duman E, Yapan YF, Sofuoğlu M. Experimental Investigation and Optimization of Hybrid Turning of Ti6Al7Nb Alloy Under Nanofluid Based MQL by TOPSIS Method. J Adv Manuf Eng. 2023;4(2):35-4.