Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 1, 63 - 71, 30.06.2023
https://doi.org/10.56430/japro.1307611

Abstract

Supporting Institution

MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, EGE ÜNİVERSİTESİ

References

  • Abdel-Wahab, B. A., F. Abd El-Kareem, H., Alzamami, A., A. Fahmy, C., H. Elesawy, B., Mostafa Mahmoud, M., & M. Saied, E. (2022). Novel exopolysaccharide from marine bacillus subtilis with broad potential biological activities: Insights into antioxidant, anti-inflammatory, cytotoxicity, and anti-alzheimer activity. Metabolites, 12(8), 715. https://doi.org/10.3390/metabo12080715
  • Ahmad, S., Tanweer, M. S., Mir, T. A., Alam, M., Ikram, S., & Sheikh, J. N. (2023). Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. Journal of Water Process Engineering, 51, 103377. https://doi.org/10.1016/j.jwpe.2022.103377
  • Al‐Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L., & Somanath, P. R., (2012). Antiangiogenic therapy for cancer: An update. Pharmacotherapy, 32(12), 1095-1111. https://doi.org/10.1002/phar.1147
  • Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  • Barcelos, M. C., Vespermann, K. A., Pelissari, F. M., & Molina, G. (2020). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 60(9), 1475-1495. https://doi.org/10.1080/10408398.2019.1575791
  • Bello, K., Sarojini, B. K., Narayana, B., Rao, A., & Byrappa, K. (2018). A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydrate Polymers, 181, 605–615. https://doi.org/10.1016/j.carbpol.2017.11.106
  • Botelho, P. S., Maciel, M. I., Bueno, L. A., Maria de Fátima, F. M., Marques, D. N., & Silva, T. M. S. (2014). Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydrate Polymers, 107, 1-6. https://doi.org/10.1016/j.carbpol.2014.02.036
  • Castellane, T. C. L., Campanharo, J. C., Colnago, L. A., Coutinho, I. D., Lopes, É. M., Lemos, M. V. F., & de Macedo Lemos, E. G. (2017). Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. International Journal of Biological Macromolecules, 96, 361-369. https://doi.org/10.1016/j.ijbiomac.2016.11.123
  • Chaisuwan, W., Jantanasakulwong, K., Wangtueai, S., Phimolsiripol, Y., Chaiyaso, T., Techapun, C., Phongthai, S., You, S., Regenstein, J. M., & Seesuriyachan, P. (2020). Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience, 35, 100564. https://doi.org/10.1016/j.fbio.2020.100564
  • Chirakkara, S. P., & Abraham, A. (2023). Exopolysaccharide from the mice ovarian bacterium Bacillus velezensis OM03 triggers caspase-3-dependent apoptosis in ovarian cancer cells. Journal of Applied Pharmaceutical Science, 13(6), 154-164. https://doi.org/10.7324/JAPS.2023.110355
  • Deepak, V., Ramachandran, S., Balahmar, R. M., Pandian, S. R. K., Sivasubramaniam, S. D., Nellaiah, H., & Sundar, K. (2016). In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines. In Vitro Cellular & Developmental Biology-Animal, 52(2), 163-173. https://doi.org/10.1007/s11626-015-9970-3
  • Erdoğdu, T. (2018). Enterobacter sp. KF052587 (ZZ40) ve Rhodococcus pyridinivorans AF173005 (ZZ 47) izolatlarından elde edilen ekzopolisakkaritlerin çeşitli yöntemlerle karakterizasyonu ve biyoteknolojik uygulamalarının değerlendirilmesi (Master’s thesis, Muğla Sıtkı Koçman University). (In Turkish)
  • Gürleyendağ, B. (2006) Polisakkarit üreten ekstremofillerin belirlenmesi ve ekzopolisakkarit üretimi (Master’s thesis, Marmara University). (In Turkish)
  • Güvensen, C. N., Erdoğdu, T., Alper, M., & Güneş, H. (2018). Evaluation of antibiofilm and cytotoxic potential of exopolysaccharides from ZZ40 Enterobacter sp. and ZZ47 Rhodococcus pyridinovorans strains. Kastamonu Üniversitesi International Ecology 2018 Symposium. Kastamonu.
  • Güvensen, N. C., Alper, M., & Taşkaya, A. (2022). The evaluation of biological activities of exopolysaccharide from Rhodococcus pyridinivorans in vitro. The European Journal of Research and Development, 2(2), 491-504. https://doi.org/10.56038/ejrnd.v2i2.46
  • Hu, X., Li, D., Qiao, Y., Wang, X., Zhang, Q., Zhao, W., & Huang, L. (2020). Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. International Journal of Biological Macromolecules, 145, 646-654. https://doi.org/10.1016/j.ijbiomac.2019.12.228
  • Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10-27. https://doi.org/10.1016/j.ijbiomac.2016.09.104
  • Krenn, L., & Paper, D. H. (2009). Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine, 16(12), 1083-1088. https://doi.org/10.1016/j.phymed.2009.05.017
  • Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbial Biofilms, 223-247. https://doi.org/10.1128/9781555817466.ch11
  • Loeb, W. F., & Quimby, F. W. (1999). The clinical chemistry of laboratory animals, second edition. CRC Press.
  • Madhuri, K., & Prabhakar, V. (2014). Microbial exopolysaccharides: Biosynthesis and potential applications. Oriental Journal of Chemistry, 30(3), 1401-1410. http://dx.doi.org/10.13005/ojc/300362
  • Mahto, K. U., Priyadarshanee, M., Samantaray, D. P., & Das, S. (2022). Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: Beyond the protective role in survivability. Journal of Cleaner Production, 379, 134759. https://doi.org/10.1016/j.jclepro.2022.134759
  • Maia, M. R., Marques, S., Cabrita, A. R., Wallace, R. J., Thompson, G., Fonseca, A. J., & Oliveira, H. M. (2016). Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria. Frontiers in Microbiology, 7, 1381. https://doi.org/10.3389/fmicb.2016.01381
  • Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3-4), 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  • Mohd Nadzir, M., Nurhayati, R. W., Idris, F. N., & Nguyen, M. H. (2021). Biomedical applications of bacterial exopolysaccharides: A review. Polymers, 13(4), 530. https://doi.org/10.3390/polym13040530
  • Moscovici, M. (2015). Present and future medical applications of microbial exopolysaccharides. Frontiers in Microbiology, 6, 1012. https://doi.org/10.3389/fmicb.2015.01012
  • OECD. (2002). OECD guideline for the testing of chemicals. https://www.oecd-ilibrary.org/test-no-423-acute-oral-toxicity-acute-toxic-class-method_5lmqcr2k7mzp.pdf?itemId=%2Fcontent%2Fpublication%2F9789264071001-en&mimeType=pdf
  • Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021). Anti-angiogenesis in cancer therapeutics: The magic bullet. Journal of the Egyptian National Cancer Institute, 33(1), 1-11. https://doi.org/10.1186/s43046-021-00072-6
  • Pinto, F. C. M., De-Oliveira, A. C. A., De-Carvalho, R. R., Gomes-Carneiro, M. R., Coelho, D. R., Lima, S. V. C., & Aguiar, J. L. A. (2016). Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses. Carbohydrate Polymers, 137, 556-560. https://doi.org/10.1016/j.carbpol.2015.10.071
  • Ramirez, M. A. J. R., (2016). Characterization and safety evaluation of exopolysaccharide produced by Rhodotorula minuta BIOTECH 2178. International Journal of Food Engineering, 2(1), 31-35. https://doi.org/10.18178/ijfe.2.1.31-35
  • Venkatesh, K. S., Gopinath, K., Palani, N. S., Arumugam, A., Jose, S. P., Bahadur, S. A., & Ilangovan, R. (2016). Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: Antibacterial and antibiofilm activity. RSC advances, (48), 42720-42729. https://doi.org/10.1039/C6RA05003D
  • Wang, J., Zhao, X., Yang, Y., Zhao, A., & Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74, 119-126. https://doi.org/10.1016/j.ijbiomac.2014.12.006
  • Yildiz, B. M., Yuzbasioglu, D., Yuksekdag, Z., Cetin, D., Unal, F., & Suludere, Z. (2023). In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicology in Vitro, 86, 105507. https://doi.org/10.1016/j.tiv.2022.105507
  • Zhao, M., Cui, N., Qu, F., Huang, X., Yang, H., Nie, S., Zha, X., Cui S. W., Nishinari, K., Phillips, G. O., & Fang, Y., (2017). Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers, 171(2017), 252-258. https://doi.org/10.1016/j.carbpol.2017.05.015

Exopolysaccharide from Rhodococcus pyridinivorans ZZ47 Strain: Evaluation of Biological Activity and Toxicity

Year 2023, Volume: 4 Issue: 1, 63 - 71, 30.06.2023
https://doi.org/10.56430/japro.1307611

Abstract

Microbial polysaccharides are extracellular polymeric macromolecules excreted in microorganisms. These are widely used in food, cosmetic and pharmaceutical industries. One of them, exopolysaccharides (EPS), plays important role against the factors such as phage attack, antibiotics, toxic compounds or osmotic stress. Recently, this natural polymer has received great attention due to their therapeutic potential. The purpose of the study was to evaluate biological activity and potential toxicity of EPS from Rhodococcus pyridinivorans ZZ47 strain isolated from nature. EPS has no genotoxic effect on Salmonella typhimurium TA98, TA102, and TA1537 strains by Ames Test. No death occurred with single dose oral toxicity test of EPS and LD50 value of it is calculated by >2000 mg/kg in mice. The EPS showed antibiofilm activity on different bacteria. In addition, EPS demonstrated dose-dependent anti-angiogenic properties by HET-CAM test. In conclusion, the isolated EPS has antioxidant activity with no genotoxicity and the biological activities of the polymer indicated that it may be suitable for use in different sectors and industrial applications.

References

  • Abdel-Wahab, B. A., F. Abd El-Kareem, H., Alzamami, A., A. Fahmy, C., H. Elesawy, B., Mostafa Mahmoud, M., & M. Saied, E. (2022). Novel exopolysaccharide from marine bacillus subtilis with broad potential biological activities: Insights into antioxidant, anti-inflammatory, cytotoxicity, and anti-alzheimer activity. Metabolites, 12(8), 715. https://doi.org/10.3390/metabo12080715
  • Ahmad, S., Tanweer, M. S., Mir, T. A., Alam, M., Ikram, S., & Sheikh, J. N. (2023). Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. Journal of Water Process Engineering, 51, 103377. https://doi.org/10.1016/j.jwpe.2022.103377
  • Al‐Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L., & Somanath, P. R., (2012). Antiangiogenic therapy for cancer: An update. Pharmacotherapy, 32(12), 1095-1111. https://doi.org/10.1002/phar.1147
  • Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  • Barcelos, M. C., Vespermann, K. A., Pelissari, F. M., & Molina, G. (2020). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 60(9), 1475-1495. https://doi.org/10.1080/10408398.2019.1575791
  • Bello, K., Sarojini, B. K., Narayana, B., Rao, A., & Byrappa, K. (2018). A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydrate Polymers, 181, 605–615. https://doi.org/10.1016/j.carbpol.2017.11.106
  • Botelho, P. S., Maciel, M. I., Bueno, L. A., Maria de Fátima, F. M., Marques, D. N., & Silva, T. M. S. (2014). Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydrate Polymers, 107, 1-6. https://doi.org/10.1016/j.carbpol.2014.02.036
  • Castellane, T. C. L., Campanharo, J. C., Colnago, L. A., Coutinho, I. D., Lopes, É. M., Lemos, M. V. F., & de Macedo Lemos, E. G. (2017). Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. International Journal of Biological Macromolecules, 96, 361-369. https://doi.org/10.1016/j.ijbiomac.2016.11.123
  • Chaisuwan, W., Jantanasakulwong, K., Wangtueai, S., Phimolsiripol, Y., Chaiyaso, T., Techapun, C., Phongthai, S., You, S., Regenstein, J. M., & Seesuriyachan, P. (2020). Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience, 35, 100564. https://doi.org/10.1016/j.fbio.2020.100564
  • Chirakkara, S. P., & Abraham, A. (2023). Exopolysaccharide from the mice ovarian bacterium Bacillus velezensis OM03 triggers caspase-3-dependent apoptosis in ovarian cancer cells. Journal of Applied Pharmaceutical Science, 13(6), 154-164. https://doi.org/10.7324/JAPS.2023.110355
  • Deepak, V., Ramachandran, S., Balahmar, R. M., Pandian, S. R. K., Sivasubramaniam, S. D., Nellaiah, H., & Sundar, K. (2016). In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines. In Vitro Cellular & Developmental Biology-Animal, 52(2), 163-173. https://doi.org/10.1007/s11626-015-9970-3
  • Erdoğdu, T. (2018). Enterobacter sp. KF052587 (ZZ40) ve Rhodococcus pyridinivorans AF173005 (ZZ 47) izolatlarından elde edilen ekzopolisakkaritlerin çeşitli yöntemlerle karakterizasyonu ve biyoteknolojik uygulamalarının değerlendirilmesi (Master’s thesis, Muğla Sıtkı Koçman University). (In Turkish)
  • Gürleyendağ, B. (2006) Polisakkarit üreten ekstremofillerin belirlenmesi ve ekzopolisakkarit üretimi (Master’s thesis, Marmara University). (In Turkish)
  • Güvensen, C. N., Erdoğdu, T., Alper, M., & Güneş, H. (2018). Evaluation of antibiofilm and cytotoxic potential of exopolysaccharides from ZZ40 Enterobacter sp. and ZZ47 Rhodococcus pyridinovorans strains. Kastamonu Üniversitesi International Ecology 2018 Symposium. Kastamonu.
  • Güvensen, N. C., Alper, M., & Taşkaya, A. (2022). The evaluation of biological activities of exopolysaccharide from Rhodococcus pyridinivorans in vitro. The European Journal of Research and Development, 2(2), 491-504. https://doi.org/10.56038/ejrnd.v2i2.46
  • Hu, X., Li, D., Qiao, Y., Wang, X., Zhang, Q., Zhao, W., & Huang, L. (2020). Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. International Journal of Biological Macromolecules, 145, 646-654. https://doi.org/10.1016/j.ijbiomac.2019.12.228
  • Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10-27. https://doi.org/10.1016/j.ijbiomac.2016.09.104
  • Krenn, L., & Paper, D. H. (2009). Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine, 16(12), 1083-1088. https://doi.org/10.1016/j.phymed.2009.05.017
  • Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbial Biofilms, 223-247. https://doi.org/10.1128/9781555817466.ch11
  • Loeb, W. F., & Quimby, F. W. (1999). The clinical chemistry of laboratory animals, second edition. CRC Press.
  • Madhuri, K., & Prabhakar, V. (2014). Microbial exopolysaccharides: Biosynthesis and potential applications. Oriental Journal of Chemistry, 30(3), 1401-1410. http://dx.doi.org/10.13005/ojc/300362
  • Mahto, K. U., Priyadarshanee, M., Samantaray, D. P., & Das, S. (2022). Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: Beyond the protective role in survivability. Journal of Cleaner Production, 379, 134759. https://doi.org/10.1016/j.jclepro.2022.134759
  • Maia, M. R., Marques, S., Cabrita, A. R., Wallace, R. J., Thompson, G., Fonseca, A. J., & Oliveira, H. M. (2016). Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria. Frontiers in Microbiology, 7, 1381. https://doi.org/10.3389/fmicb.2016.01381
  • Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3-4), 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  • Mohd Nadzir, M., Nurhayati, R. W., Idris, F. N., & Nguyen, M. H. (2021). Biomedical applications of bacterial exopolysaccharides: A review. Polymers, 13(4), 530. https://doi.org/10.3390/polym13040530
  • Moscovici, M. (2015). Present and future medical applications of microbial exopolysaccharides. Frontiers in Microbiology, 6, 1012. https://doi.org/10.3389/fmicb.2015.01012
  • OECD. (2002). OECD guideline for the testing of chemicals. https://www.oecd-ilibrary.org/test-no-423-acute-oral-toxicity-acute-toxic-class-method_5lmqcr2k7mzp.pdf?itemId=%2Fcontent%2Fpublication%2F9789264071001-en&mimeType=pdf
  • Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021). Anti-angiogenesis in cancer therapeutics: The magic bullet. Journal of the Egyptian National Cancer Institute, 33(1), 1-11. https://doi.org/10.1186/s43046-021-00072-6
  • Pinto, F. C. M., De-Oliveira, A. C. A., De-Carvalho, R. R., Gomes-Carneiro, M. R., Coelho, D. R., Lima, S. V. C., & Aguiar, J. L. A. (2016). Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses. Carbohydrate Polymers, 137, 556-560. https://doi.org/10.1016/j.carbpol.2015.10.071
  • Ramirez, M. A. J. R., (2016). Characterization and safety evaluation of exopolysaccharide produced by Rhodotorula minuta BIOTECH 2178. International Journal of Food Engineering, 2(1), 31-35. https://doi.org/10.18178/ijfe.2.1.31-35
  • Venkatesh, K. S., Gopinath, K., Palani, N. S., Arumugam, A., Jose, S. P., Bahadur, S. A., & Ilangovan, R. (2016). Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: Antibacterial and antibiofilm activity. RSC advances, (48), 42720-42729. https://doi.org/10.1039/C6RA05003D
  • Wang, J., Zhao, X., Yang, Y., Zhao, A., & Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74, 119-126. https://doi.org/10.1016/j.ijbiomac.2014.12.006
  • Yildiz, B. M., Yuzbasioglu, D., Yuksekdag, Z., Cetin, D., Unal, F., & Suludere, Z. (2023). In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicology in Vitro, 86, 105507. https://doi.org/10.1016/j.tiv.2022.105507
  • Zhao, M., Cui, N., Qu, F., Huang, X., Yang, H., Nie, S., Zha, X., Cui S. W., Nishinari, K., Phillips, G. O., & Fang, Y., (2017). Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers, 171(2017), 252-258. https://doi.org/10.1016/j.carbpol.2017.05.015
There are 34 citations in total.

Details

Primary Language English
Subjects Water Resources and Water Structures
Journal Section Research Articles
Authors

Aylin Taşkaya 0000-0002-6221-3365

Nur Ceyhan Güvensen 0000-0001-8753-2664

Cem Güler 0000-0003-4945-4794

Ebru Şancı 0000-0002-0525-9690

Ülkü Karabay 0000-0002-7483-0184

Publication Date June 30, 2023
Submission Date June 1, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Taşkaya, A., Ceyhan Güvensen, N., Güler, C., Şancı, E., et al. (2023). Exopolysaccharide from Rhodococcus pyridinivorans ZZ47 Strain: Evaluation of Biological Activity and Toxicity. Journal of Agricultural Production, 4(1), 63-71. https://doi.org/10.56430/japro.1307611