Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 2, 111 - 116, 30.12.2023
https://doi.org/10.56430/japro.1365163

Abstract

Project Number

FYD-2021-9409

References

  • Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668-25680. https://doi.org/10.1007/s11356-017-8987-4
  • Ahmad, M. S. A., Ashraf M., Tabassam, Q., Hussain, M., & Firdous, H., (2011). Lead (Pb) induced regulation in growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 144(1-3), 1229-1239. https://doi.org/10.1007/s12011-011-9099-5
  • Arnon, D. I. (1949). Copper enzymes in isolatedchloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104%2Fpp.24.1.1
  • Ashraf, M. A., Maah, M. J., & Yusoff, I. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology, 8, 401-416. https://doi.org/10.1007/BF03326227
  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growtth. Planta, 212(5-6), 696-709. https://doi.org/10.1007/s004250000439
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
  • De Lespinay, A., Lequeux, H., Lambillotte, B., & Lutts, S. (2010). Protein synthesis is differentially required for germination in Poa pratensis and Trifolium repens in the absence or in the presence of cadmium. Plant Growth Regulation, 61(2), 205-214. https://doi.org/10.1007/s10725-010-9471-z
  • Dong, Q., Fang, J., Huang, F., & Cai, K. (2019). Silicon amendment reduces soil Cd availability and Cd uptake of two pennisetum species. International Journal of Environmental Research and Public Health, 16(9), 1624. https://doi.org/10.3390%2Fijerph16091624
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., & Rosales, M. D. (2012). Unravelling cadmium toxicity and tolerance in plant: Insight into regulatory mechanism. Environmental and Experimental Botany, 83, 33-46. https://doi.org/10.1016/j.envexpbot.2012.04.006
  • Guilherme, M. de F. S., Oliveira, H. M., & Silva, E. D. (2015). Cadmium toxicity on seed germination and seedling growth of wheat Triticum aestivum. Acta Scientiarum Biological Sciences, 37(4), 499-511. https://doi.org/10.4025/actascibiolsci.v37i4.28148
  • Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
  • Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., & Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30(2), 165-174.
  • Huybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M., & Hendrix, S. (2019). Cadmium and plant development: An agony from seed to seed. International Journal of Molecular Sciences, 20(16), 3971. https://doi.org/10.3390%2Fijms20163971
  • Kalai, T., Bouthour, D., Manai, J., Ben-Kaab, L. B., & Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archives of Agronomy and Soil Science, 62(6), 892-904. https://doi.org/10.1080/03650340.2015.1100295
  • Kumar, B., Verma, S. K., Ram, G., & Singh, H. P. (2012). Temperature relations for seed germination potential and seedling vigor in Palmarosa (Cymbopogon martinii). Journal of Crop Improvement, 26(6), 791-801. https://doi.org/10.1080/15427528.2012.689799
  • Li, Q., Lu, Y., Shi, Y., Wang, T., Ni, K., Xu, L., & Giesy, J. P. (2013). Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal of Environmental Sciences, 25(9), 1936-1946. https://doi.org/10.1016/S1001-0742(12)60264-2
  • Lichtenthaler, H., & Wellburn A. (1983). Determinations of total carotenoids, chlorophylls a, and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
  • Mahajan, P., & Kaushal, J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. Journal of Toxicology, 2018, 1-16. https://doi.org/10.1155/2018/4864365
  • Rafiq, M. T., Aziz, R., Yang, X., Xiao, W., Rafiq, M. K., Ali, B., & Li, T. (2014). Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety, 103, 101-107. https://doi.org/10.1016/j.ecoenv.2013.10.016
  • Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 9(7), 177-189. https://doi.org/10.3390/biology9070177
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258-260. https://doi.org/10.1104/pp.53.2.258
  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364-372. https://doi.org/10.1016/j.pbi.2009.05.001

The Effects of Cadmium Concentrations on Germination and Physiological Parameters in Tomato (Solanum lycopersicum Lam.)

Year 2023, Volume: 4 Issue: 2, 111 - 116, 30.12.2023
https://doi.org/10.56430/japro.1365163

Abstract

Cadmium (Cd) is omnipresent trace element in environmental that is unessential in plants. Cd levels rise because of anthropogenic activity such as the combustion of fossil fuels, phosphate fertilizer manufacturing, mineral fertilizers, batteries technology. It is extremely toxic metal and reduces plant growth. In this context, the aim of this study was to investigate the effect of different concentrations (5/10/20/40 ppm) of Cd on germination of seeds and physiological effects in early developmental stage of tomato Solanum lycopersicum Lam. seedlings. 20 ppm (80%) and 40 ppm (83.3%) Cd concentrations caused significantly decrease in germination percentage. All Cd treatments were resulted with decrease in Vigor Index, especially in 20 ppm (42% decrease compared to control). Application of 5 ppm Cd caused decreases in chlorophyll and carotenoid contents in seedlings. Finally, significant decrease in protein content of 5 ppm, 10 ppm and 20 ppm treated seedlings were determined compared to control. As a conclusion, Cd negatively affected germination and physiological parameters of tomato in early developmental stage. Overall, these results indicate that Cd affects different physiologic processes and pathways according to concentration.

Supporting Institution

Van Yüzüncü Yıl University

Project Number

FYD-2021-9409

Thanks

The authors are grateful to the Scientific Research Projects Coordination Unit of Van Yüzüncü Yıl University for supporting our project (FYD-2021-9409).

References

  • Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668-25680. https://doi.org/10.1007/s11356-017-8987-4
  • Ahmad, M. S. A., Ashraf M., Tabassam, Q., Hussain, M., & Firdous, H., (2011). Lead (Pb) induced regulation in growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 144(1-3), 1229-1239. https://doi.org/10.1007/s12011-011-9099-5
  • Arnon, D. I. (1949). Copper enzymes in isolatedchloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104%2Fpp.24.1.1
  • Ashraf, M. A., Maah, M. J., & Yusoff, I. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology, 8, 401-416. https://doi.org/10.1007/BF03326227
  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growtth. Planta, 212(5-6), 696-709. https://doi.org/10.1007/s004250000439
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
  • De Lespinay, A., Lequeux, H., Lambillotte, B., & Lutts, S. (2010). Protein synthesis is differentially required for germination in Poa pratensis and Trifolium repens in the absence or in the presence of cadmium. Plant Growth Regulation, 61(2), 205-214. https://doi.org/10.1007/s10725-010-9471-z
  • Dong, Q., Fang, J., Huang, F., & Cai, K. (2019). Silicon amendment reduces soil Cd availability and Cd uptake of two pennisetum species. International Journal of Environmental Research and Public Health, 16(9), 1624. https://doi.org/10.3390%2Fijerph16091624
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., & Rosales, M. D. (2012). Unravelling cadmium toxicity and tolerance in plant: Insight into regulatory mechanism. Environmental and Experimental Botany, 83, 33-46. https://doi.org/10.1016/j.envexpbot.2012.04.006
  • Guilherme, M. de F. S., Oliveira, H. M., & Silva, E. D. (2015). Cadmium toxicity on seed germination and seedling growth of wheat Triticum aestivum. Acta Scientiarum Biological Sciences, 37(4), 499-511. https://doi.org/10.4025/actascibiolsci.v37i4.28148
  • Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
  • Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., & Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30(2), 165-174.
  • Huybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M., & Hendrix, S. (2019). Cadmium and plant development: An agony from seed to seed. International Journal of Molecular Sciences, 20(16), 3971. https://doi.org/10.3390%2Fijms20163971
  • Kalai, T., Bouthour, D., Manai, J., Ben-Kaab, L. B., & Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archives of Agronomy and Soil Science, 62(6), 892-904. https://doi.org/10.1080/03650340.2015.1100295
  • Kumar, B., Verma, S. K., Ram, G., & Singh, H. P. (2012). Temperature relations for seed germination potential and seedling vigor in Palmarosa (Cymbopogon martinii). Journal of Crop Improvement, 26(6), 791-801. https://doi.org/10.1080/15427528.2012.689799
  • Li, Q., Lu, Y., Shi, Y., Wang, T., Ni, K., Xu, L., & Giesy, J. P. (2013). Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal of Environmental Sciences, 25(9), 1936-1946. https://doi.org/10.1016/S1001-0742(12)60264-2
  • Lichtenthaler, H., & Wellburn A. (1983). Determinations of total carotenoids, chlorophylls a, and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
  • Mahajan, P., & Kaushal, J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. Journal of Toxicology, 2018, 1-16. https://doi.org/10.1155/2018/4864365
  • Rafiq, M. T., Aziz, R., Yang, X., Xiao, W., Rafiq, M. K., Ali, B., & Li, T. (2014). Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety, 103, 101-107. https://doi.org/10.1016/j.ecoenv.2013.10.016
  • Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 9(7), 177-189. https://doi.org/10.3390/biology9070177
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258-260. https://doi.org/10.1104/pp.53.2.258
  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364-372. https://doi.org/10.1016/j.pbi.2009.05.001
There are 22 citations in total.

Details

Primary Language English
Subjects Crop and Pasture Biochemistry and Physiology
Journal Section Research Articles
Authors

Ömer Bingöl 0000-0001-8007-4621

Abdulhamit Battal 0000-0001-6098-3908

Mehmet Emre Erez 0000-0002-4944-365X

Project Number FYD-2021-9409
Early Pub Date December 30, 2023
Publication Date December 30, 2023
Submission Date September 23, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Bingöl, Ö., Battal, A., & Erez, M. E. (2023). The Effects of Cadmium Concentrations on Germination and Physiological Parameters in Tomato (Solanum lycopersicum Lam.). Journal of Agricultural Production, 4(2), 111-116. https://doi.org/10.56430/japro.1365163