Research Article
BibTex RIS Cite

Insight into Genaveh 11-29 Runway Geometric Redesign Based on Meteorological Synoptic Data

Year 2021, Volume: 3 Issue: 1, 1 - 20, 15.02.2021
https://doi.org/10.51785/jar.741858

Abstract

Wind information can provide an optimal estimate of the runway orientation by minimizing the crosswind component of the wind at airports, which severely affects aircraft take-off and landing performance. Additionally, a systematic geometric design requires information on wind speed, direction, duration, and specific information about latitude and longitude, temperature variation, and altitude of the airport site. In the present research, meteorological synoptic data has been precisely measured and collected over Genaveh unconstructed airport for a period of five years. Investigation of the gathered data leads to the selection of an optimal runway orientation using wind rose representation and other data analysis. Additionally, the required runway length has been estimated in order to be compatible with the standards and aircraft types considered to apply the Genaveh site. All analyses are executed for variation of temperature, altitude, landing, and take-off situations. The results demonstrate that the previously considered orientation of the runway is considerably different from the optimal direction by at least 10 degrees. Moreover, a longer runway length is required to cope with the standards to reduce the risk of accidents in the presence of crosswinds.

References

  • Ashford, N., Wright, P. H. (1992). Airport Engineering. 3rd edition. New York: John Wiley and Sons. Barros, A. Wirasinghe, S.C., (2002). Designing the airport airside for the new large aircraft, Journal of Air Transport Management, 8, 121–127.
  • Chang, S. (2015). Crosswind‐based optimization of multiple runway orientations, Journal of advanced transportation, 49(1), 1-9.
  • Corleisen, S., (2012). International Civil Aviation Organization (ICAO), Cir 329/AN/191, Runway Surface Condition Assessment, Measurement and Reporting.
  • Crutcher, H.L. (1954, 18 November), Wind aid from wind roses, 133rd National Meeting of the American Meteorological Society, Miami (FL), USA.
  • Daggubati, S., Sharma, S., Raj, S. (2014). Runway design and structural design of an airfield pavement, IOSR Journal of Mechanical and Civil Engineering, 11(2), 10-27.
  • Nicoletta, F., Marais, K. (2016). Detecting safety events during approach in General Aviation operations. 16th AIAA Aviation Technology, Integration, and Operations Conference.
  • Falls, L. W., Brown, S. C. (1972). Optimum runway orientation relative to crosswinds, NASA technical reports, D-6930.
  • Grewe, V., Matthes, S., Frömming, C., Brinkop, S., Jöckel, P., Gierens, K., Champougny, T., Fuglestvedt, J., Haslerud, A.,
  • Irvine, E., Shine, K. (2017). Feasibility of climate-optimized air traffic routing for trans-Atlantic flights, Environmental Research Letters, 12(3), 034003.
  • Horne, W. B., Joyner, U. T. (1965). Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance. Presented at SAE International Automotive Engineering Congress, Detroit, Mich.
  • Jia X., Chung, D., Huang, J., Petrilli M., ARO, L. (2004). Geographic information systems-based system for optimizing airport runway orientation, Journal of transportation engineering; 130 (5), 555-559.
  • Khoemarga, K., Tajudin, A. (2019, 21 November). Structural design of airport runway Case study: Jos Orno Imsula MOA Airport, IOP Conference Series: Materials Science and Engineering, Volume 852, The 2nd Tarumanagara International Conference on the Applications of Technology and Engineering (TICATE), Jakarta, Indonesia.
  • Mousa, R., Mumayiz, SA. (2000). Optimization of runway orientation, Journal of transportation engineering, 126(3), 228-36.
  • Oktal, H., Yildirim, N., (2013, 17 Dec). New model for the optimization of runway orientation, Journal of Transportation Engineering, 140(3).
  • Ong, G., P., Fwa, T. F. (2016). Runway Geometric Design Incorporating Hydroplaning Consideration. Transportation Research Record, 2106 (1), 118–128.
  • Ong, G., P., Fwa., T., F. (2007). Wet-Pavement Hydroplaning Risk and Skid Resistance: Modeling. ASCE Journal of Transportation Engineering, 133(10), 590–598.
  • Ong, G., P., Fwa., T., F. (2005). Prediction of Wet-Pavement Skid Resistance and Hydroplaning Potential. In Transportation Research Record: Journal of the Transportation Research Board, Washington, D.C., 160–171.
  • Silva, E. (2011). European Aviation Safety Agency (EASA) Authority, Organization and Operations Requirements for Aerodromes, NPA 2011-20.
  • Van, E., Van der Geest, G.W.H., Nieuwpoort, T.M.H. (2001). Safety aspects of aircraft operations in crosswinds. Flight Safety Foundation FSF, 11th Annual European Aviation Safety Seminar, Amsterdam. NLR-TP-2001-217.
  • Yu, M., Wu, G., , Kong, L., Tang, U. (2017). Tire-Pavement Friction Characteristics with Elastic Properties of Asphalt Pavements, Applied Science, 7(11), 1123.

Insight into Genaveh 11-29 Runway Geometric Redesign Based on Meteorological Synoptic Data

Year 2021, Volume: 3 Issue: 1, 1 - 20, 15.02.2021
https://doi.org/10.51785/jar.741858

Abstract

Rüzgar bilgisi, havalimanlarında rüzgarın uçağın kalkış ve iniş performansını ciddi şekilde etkileyen yan rüzgar bileşenini en aza indirerek pist oryantasyonunun optimal bir tahminini sağlayabilir. Ek olarak, sistematik bir geometrik tasarım rüzgar hızı, yönü, süresi hakkında bilgi ve havalimanı sahasının enlem ve boylamı, sıcaklık değişimi ve rakımı hakkında özel bilgiler gerektirir. Mevcut araştırmada, meteorolojik sinoptik veriler hassas bir şekilde ölçülmüş ve beş yıllık bir süre boyunca Genaveh'in yapılmamış havalimanı üzerinden toplanmıştır. Toplanan verilerin araştırılması, rüzgar gülü gösterimi ve diğer veri analizleri kullanılarak optimal bir pist oryantasyonunun seçilmesine yol açar. Ek olarak, Genaveh sahasını uyguladığı düşünülen standartlar ve uçak tipleri ile uyumlu olması için gerekli pist uzunluğu tahmin edilmiştir. Tüm analizler sıcaklık, irtifa, iniş ve kalkış durumlarının değişimi için yapılır. Sonuçlar, pistin önceden dikkate alınan yönünün, optimum yönden en az 10 derece önemli ölçüde farklı olduğunu göstermektedir. Ayrıca, yan rüzgarların varlığında kaza riskini azaltmak için standartlarla başa çıkmak için daha uzun bir pist uzunluğu gereklidir.

References

  • Ashford, N., Wright, P. H. (1992). Airport Engineering. 3rd edition. New York: John Wiley and Sons. Barros, A. Wirasinghe, S.C., (2002). Designing the airport airside for the new large aircraft, Journal of Air Transport Management, 8, 121–127.
  • Chang, S. (2015). Crosswind‐based optimization of multiple runway orientations, Journal of advanced transportation, 49(1), 1-9.
  • Corleisen, S., (2012). International Civil Aviation Organization (ICAO), Cir 329/AN/191, Runway Surface Condition Assessment, Measurement and Reporting.
  • Crutcher, H.L. (1954, 18 November), Wind aid from wind roses, 133rd National Meeting of the American Meteorological Society, Miami (FL), USA.
  • Daggubati, S., Sharma, S., Raj, S. (2014). Runway design and structural design of an airfield pavement, IOSR Journal of Mechanical and Civil Engineering, 11(2), 10-27.
  • Nicoletta, F., Marais, K. (2016). Detecting safety events during approach in General Aviation operations. 16th AIAA Aviation Technology, Integration, and Operations Conference.
  • Falls, L. W., Brown, S. C. (1972). Optimum runway orientation relative to crosswinds, NASA technical reports, D-6930.
  • Grewe, V., Matthes, S., Frömming, C., Brinkop, S., Jöckel, P., Gierens, K., Champougny, T., Fuglestvedt, J., Haslerud, A.,
  • Irvine, E., Shine, K. (2017). Feasibility of climate-optimized air traffic routing for trans-Atlantic flights, Environmental Research Letters, 12(3), 034003.
  • Horne, W. B., Joyner, U. T. (1965). Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance. Presented at SAE International Automotive Engineering Congress, Detroit, Mich.
  • Jia X., Chung, D., Huang, J., Petrilli M., ARO, L. (2004). Geographic information systems-based system for optimizing airport runway orientation, Journal of transportation engineering; 130 (5), 555-559.
  • Khoemarga, K., Tajudin, A. (2019, 21 November). Structural design of airport runway Case study: Jos Orno Imsula MOA Airport, IOP Conference Series: Materials Science and Engineering, Volume 852, The 2nd Tarumanagara International Conference on the Applications of Technology and Engineering (TICATE), Jakarta, Indonesia.
  • Mousa, R., Mumayiz, SA. (2000). Optimization of runway orientation, Journal of transportation engineering, 126(3), 228-36.
  • Oktal, H., Yildirim, N., (2013, 17 Dec). New model for the optimization of runway orientation, Journal of Transportation Engineering, 140(3).
  • Ong, G., P., Fwa, T. F. (2016). Runway Geometric Design Incorporating Hydroplaning Consideration. Transportation Research Record, 2106 (1), 118–128.
  • Ong, G., P., Fwa., T., F. (2007). Wet-Pavement Hydroplaning Risk and Skid Resistance: Modeling. ASCE Journal of Transportation Engineering, 133(10), 590–598.
  • Ong, G., P., Fwa., T., F. (2005). Prediction of Wet-Pavement Skid Resistance and Hydroplaning Potential. In Transportation Research Record: Journal of the Transportation Research Board, Washington, D.C., 160–171.
  • Silva, E. (2011). European Aviation Safety Agency (EASA) Authority, Organization and Operations Requirements for Aerodromes, NPA 2011-20.
  • Van, E., Van der Geest, G.W.H., Nieuwpoort, T.M.H. (2001). Safety aspects of aircraft operations in crosswinds. Flight Safety Foundation FSF, 11th Annual European Aviation Safety Seminar, Amsterdam. NLR-TP-2001-217.
  • Yu, M., Wu, G., , Kong, L., Tang, U. (2017). Tire-Pavement Friction Characteristics with Elastic Properties of Asphalt Pavements, Applied Science, 7(11), 1123.
There are 20 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Hasan Haghighi This is me 0000-0002-0265-4775

Davood Asadi 0000-0002-2066-6016

Daniel Delahaye This is me 0000-0002-4965-6815

Publication Date February 15, 2021
Acceptance Date September 12, 2020
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Haghighi, H., Asadi, D., & Delahaye, D. (2021). Insight into Genaveh 11-29 Runway Geometric Redesign Based on Meteorological Synoptic Data. Journal of Aviation Research, 3(1), 1-20. https://doi.org/10.51785/jar.741858

15550155491554815547155461554415543

15854  17159  17426   17988logo.png








17297
Bu dergi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.