Research Article
BibTex RIS Cite

Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia

Year 2021, Volume: 7 Issue: 4, 512 - 526, 15.12.2021
https://doi.org/10.28979/jarnas.927842

Abstract

This study was performed with the aim of revealing the Late Cenozoic stress state of the Gulf of Güllük and close surroundings. In this study, the tectonic regime and stress states from the Pliocene to the present day were determined. Mesoscopic fault plane data were collected from outcrops at 19 different stations in the region between the Gulf of Güllük and Milas. Additionally, focal mechanism inverse solutions were calculated for 12 earthquakes larger than M:3.0 occurring from 2004 to 2015 to reveal the current tectonic regime. According to kinematic analysis results from fault assemblages and focal mechanism solutions for earthquakes, two tectonic regimes affected the region before the Pliocene and at present. In the first tectonic regime, strike-slip faulting developed under a NW-SE oriented compressional regime. There was an R ratio of 0.426 between the principal stress axes and this shows faulting had transtensional character. The region converted to a NE-SW oriented extensional regime dominated by normal faulting in the Quaternary. This currently effective extensional regime was understood from focal mechanism solutions of earthquakes developing in the region. The reason for this regime being effective is the rapid pull by the African plate on the Anatolian plate, which rides above the African plate, and horizontal extension in the Anatolian plate.

Supporting Institution

ÇOMÜ-BAP

Project Number

FHD-2018-2536

Thanks

This work was supported by Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit, Project number: FHD-2018-2536

References

  • Akgün, E. & Özden, S. (2019). Plio-Quaternary stress states along the Kutahya Fault and surroundings, NW Turkey. Turkish Journal of Earth Sciences, 28, 5, 671-686. https://dergipark.org.tr/tr/download/article-file/893517
  • Aktuğ, B., Nocquet, J. M., Cingöz, A., Parsons, B., Erkan, Y., England, P., Lenk, O., Gürdal, M. A., Kılıçoğlu A., Akdeniz, H. & Tekgül, A. (2009). Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior. Journal of Geophysical Re search: Solid Earth 114, 1978– 2012. https://doi.org/10.1029/2008JB006000
  • Angelier, J. & Mechler, P. (1977). Sur Methode Graphique de Recherche des Contraintes Princ. Egalement Utilisable en Tectonique et en Sismologie: la Methode Diédre Droit, Bulletin de la Société Geologique de France, 19, 1309-1318. https://doi.org/10.2113/gssgfbull.S7-XIX.6.1309
  • Armijo, R., Meyer, B., Hubert-Ferrari, A. & Barka, A. (1999). Westward propagation of North Anatolian Fault into the Northern Aegean: timing and kinematics. Geology, 27, 267–270. https://doi.org/10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
  • Bozkurt, E. (2001). Neotectonics of Turkey – A synthesis. Geodinamica Acta, 14, 3–30.
  • Carey, E. (1976). Analyse Numérique d'un Modéle Mécanique Elémentaire Appliqué a L'étuded'une Popultion de Failles: Calcul d'un Tenseur Moyen des Contraintes a Partir des Stries de Glissement. Thése de 3º cycle, Université de Paris-Sud, Orsay, 138.
  • Carey, E. (1979). Recherche des Directions Principales de Contraintes Associées au jeu d'une Population de Failles, Revue Geological Dynamic and Géography physic, 21, 57-66.
  • Carey-Gailhardis, E. & Mercier, J. L. (1987). A numerical Method for Determining the State of Stress Using Focal Mech. of Earthquake Populations: application to Tibetan teleseisms and microseismicity of Southern Peru. Earth and Planetary Science Letters. 82, 165-179. https://doi.org/10.1016/0012- 821X(87)90117-8
  • Dreger D., (2002) Manual of the Time-Domain Moment Tensor Inverse Code (TDMT_INVC), Release 1.1. Berkeley Seismology Laboratory. pp. 18.
  • Dreger, D.S. & Helmberger, D.V., (1993) Determination of source at regional distances with single stations or sparse network data, Journal of Geophysical Research Atmospheres, 98, 8107-8125. DOI:10.1029/93JB00023
  • Duman, T.Y., Emre, Ö., Özalp, S. & Elmacı, H., (2011). Türkiye Diri Fay Haritası Serisi, 1:250.000 Ölçekli Aydın (NJ 35-11) Paftası, Seri No:7, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.
  • Emre, Ö., Duman, T. Y., Özalp, S. & Elmacı, H. (2011). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Denizli (NJ 35-12) Paftası, Seri No:12, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara Türkiye.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering 16 (8), 3229-3275. https://link.springer.com/article/10.1007/s10518-016-0041-2
  • Gündoğdu, E., Özden, S. & Bekler, T. (2020). Sındırgı Fayı ve Düvertepe Fay Zonu Yakın Civarının Kinematik ve Sismotektonik Özellikleri: Batı Anadolu (Türkiye). Çanakkale Onsekiz Mart University Journal of Advanced Research in Natural and Applied Sciences. 6, 2, 378-395. https://doi.org/10.28979/jarnas.844958
  • Jackson, J. & McKenzie, D.P. (1984). Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International. 77, 185–246. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
  • Jost, M. L. & Herrmann, R. B. (1989). A student’s guide and review to moment tensors. Seismological Research Letters, 60:37-57. https://doi.org/10.1785/gssrl.60.2.37
  • Kadiroğlu, F. T., Kartal, R. F., Kılıç, T., Kalafat, D., Duman, T. Y., Eroğlu-Azak, T., Özalp, S. & Emre, Ö. (2018). An Improved Earthquake Catalogue (M >= 4.0) for Turkey and Its Near Vicinity (1900-2012). Bulletin of Earthquake Engineering, 16, 8, 3317-3338. https://link.springer.com/article/10.1007/s10518-016-0064-8
  • Kalafat D., Gürbüz C. & Üçer S.B., (1987). Batı Türkiye’de Kabuk ve Üst Manto Yapısının Araştırılması. Deprem Araştırma Bülteni Sayı 59: 43–64. http://deprem.afad.gov.tr/downloadDocument?id=1964
  • Karabacak, V. (2016). Seismic damage in the Lagina sacred area on the Mugla Fault: a key point for the understanding of the obliquely situated faults of western Anatolia. Journal of Seismology, 20 (1), 277-289. https://link.springer.com/article/10.1007/s10950-015-9526-8
  • Kırkan, E., Akyüz, H. S., Zabcı, C., Basmenji, M., Dikbaş, A., Yazıcı, M., Aksoy, M. E., Uçarkuş, G. & Yakupoğlu, N. (2017). Milas Fayı’nın Paleosismolojik, Morfotektonik ve Depremsellik Özelliklerine Dair İlk Bulgular. Aktif Tektonik Araştırma Grubu 21. Çalıştayı. 26-28 Ekim 2017, s51.
  • Kırkan, E., Akyüz, H. S., Basmenji, M., Zabcı, C., Dikbaş, A., Yazıcı, M., Aksoy, M. E. (2019). Tectonic and paleoseismological analysis of active deformation along the Milas Fault (Muğla, SW Turkey): Earthquake history and seismicity 20th Anniversary of the 1999 Marmara Earthquakes: 23rd Active Tectonics Research Group Meeting, 15 - 18 October 2019, s98.
  • Kürçer, A., Özalp S., Özdemir, E., Güldoğan, Ç. U. & Duman, T. Y. (2019). 18 Mart 1953 Yenice-Gönen Depremi (Ms=7.2) ışığında Yenice-Gönen Fayı’nın aktif tektonik ve paleosismolojik özellikleri, KB Türkiye. MTA Dergisi (2019) 159: 29-637. https://doi.org/10.19111/bulletinofmre.500553
  • Lee, W. H. K. & Lahr, J. C. (1972). HYPO71: a computer program for determining hypocenter, magnitude and first-motion pattern of local earthquakes, U.S. Geological survey open-file report, pp. 100
  • Le Pichon, X Chamot-Rooke, N., Lallemant,S., Noomen, R. & Veis, G. (1995). Geodetic determination of the kinematics of central Greece with respect to Europe implications for eastern Mediterranean tectonics, Journal of Geophysical Research Atmospheres, 100, 12675-12690. https://www.researchgate.net/publication/316932738_Geodetic_determination_of_the_kinematics_of_central_Greece_with_respect_to_Europe_implications_for_eastern_Mediterranean_tectonics
  • M.T.A. (2002). Türkiye Jeoloji Haritası, 1:500.000 Ölçekli Denizli Paftası
  • McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International. 30 (2), 109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • McKenzie, D. P. (1978). Active tectonics of the Alpine Himalayan Belt The Aegean Sea and surrounding regions, Geophysical Journal International. 55, 217-254. https://doi.org/10.1111/j.1365-246X.1978.tb04759.x
  • Özden, S., Över, S., Kavak, K. Ş. & İnal, S. S. (2008). Late Cenozoic stress states around the Bolu Basin along the North Anatolian Fault, NW Turkey. Journal of Geodynamics. vol.46, pp.48-62. https://doi.org/10.1016/j.jog.2008.04.004
  • Özden S., Gündoğdu E. & Bekler T. (2015). "Interactions between Eurasian/African and Arabian plates: Eskişehir Fault, NW Turkey", Journal of African Earth Sciences, pp.1-19. https://doi.org/10.1016/j.jafrearsci.2015.08.014
  • Pasyanos, M, Dreger D.S. & Romanowicz B. (1996). Toward real-time estimation of regional moment tensors, Bulletin of the Seismological Society of America. 86, 1255-1269. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/86/5/1255/120115/Toward-real-time- estimation-of-regional-moment?redirectedFrom=fulltext
  • Sözbilir, H., Uzel, B., Ökmen, S. & Eski, S. (2017). 22-25 Kasım 2017 Muğla Depremleri ve Muğla İlinin Depremselliği Raporu. Dokuz Eylül Üniversitesi Deprem Araştırma ve Uygulama Merkezi Diri Fay Araştırma Grubu. 27 Kasım 2017, Buca / İzmir.
  • Sümer, Ö., Uzel, B., Özkaymak, Ç. & Sözbilir, H. (2018). Kinematics of the Havran-Balıkesir Fault Zone and its implication on geodynamic evolution of the Southern Marmara Region, NW Anatolia. Geodinamica Acta 30 (1), 306-323. https://doi.org/10.1080/09853111.2018.1540145
  • Şengör, A. M. C. (1979). The North Anatolian transform fault: Its age, offset and tectonic significance. Journal of the Geological Society, 136, 269–282. https://doi.org/10.1144/gsjgs.136.3.0269
  • Şengör, A. M. C. (1980). Türkiye’nin Neotektoniği’nin Esasları, Türkiye Jeoloji Kurumu Konferans Serisi 2.
  • Şengör, A. M. C., Yılmaz, Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241. https://doi.org/10.1016/0040-1951(81)90275-4
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. Society of economic paleontologists and mineralogists special publication. 37:227–264.
  • Tan, O., Tapırdamaz, M. C. & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, vol.17, no.2, 405-418. https://journals.tubitak.gov.tr/earth/issues/yer-08-17-2/yer-17-2-8-0608-8.pdf
  • Taymaz, T., Jackson, J. & McKenzie, A. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2):433–490. https://doi.org/10.1111/j.1365-246X.1991.tb03906.x
  • Uzel, B. & Sözbilir, H. (2008). A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences 17 (3), 559-591. https://dergipark.org.tr/tr/pub/tbtkearth/issue/12006/143683
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N. & Langereis, C. G. (2013). Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics 65, 94-116. . https://doi.org/10.1016/j.jog.2012.06.009
  • Wells, D. L. & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America. 84:974–1002. https://www.researchgate.net/publication/215755871_New_Empirical_Relationships_among_Magni tude_Rupture_Length_Rupture_Width_Rupture_Area_and_Surface_Displacement
  • Yılmazer, M., (2003). Deprem kaynak parametrelerinin Online Belirlenmesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 47 s, İstanbul (Turkish)
Year 2021, Volume: 7 Issue: 4, 512 - 526, 15.12.2021
https://doi.org/10.28979/jarnas.927842

Abstract

Project Number

FHD-2018-2536

References

  • Akgün, E. & Özden, S. (2019). Plio-Quaternary stress states along the Kutahya Fault and surroundings, NW Turkey. Turkish Journal of Earth Sciences, 28, 5, 671-686. https://dergipark.org.tr/tr/download/article-file/893517
  • Aktuğ, B., Nocquet, J. M., Cingöz, A., Parsons, B., Erkan, Y., England, P., Lenk, O., Gürdal, M. A., Kılıçoğlu A., Akdeniz, H. & Tekgül, A. (2009). Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior. Journal of Geophysical Re search: Solid Earth 114, 1978– 2012. https://doi.org/10.1029/2008JB006000
  • Angelier, J. & Mechler, P. (1977). Sur Methode Graphique de Recherche des Contraintes Princ. Egalement Utilisable en Tectonique et en Sismologie: la Methode Diédre Droit, Bulletin de la Société Geologique de France, 19, 1309-1318. https://doi.org/10.2113/gssgfbull.S7-XIX.6.1309
  • Armijo, R., Meyer, B., Hubert-Ferrari, A. & Barka, A. (1999). Westward propagation of North Anatolian Fault into the Northern Aegean: timing and kinematics. Geology, 27, 267–270. https://doi.org/10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
  • Bozkurt, E. (2001). Neotectonics of Turkey – A synthesis. Geodinamica Acta, 14, 3–30.
  • Carey, E. (1976). Analyse Numérique d'un Modéle Mécanique Elémentaire Appliqué a L'étuded'une Popultion de Failles: Calcul d'un Tenseur Moyen des Contraintes a Partir des Stries de Glissement. Thése de 3º cycle, Université de Paris-Sud, Orsay, 138.
  • Carey, E. (1979). Recherche des Directions Principales de Contraintes Associées au jeu d'une Population de Failles, Revue Geological Dynamic and Géography physic, 21, 57-66.
  • Carey-Gailhardis, E. & Mercier, J. L. (1987). A numerical Method for Determining the State of Stress Using Focal Mech. of Earthquake Populations: application to Tibetan teleseisms and microseismicity of Southern Peru. Earth and Planetary Science Letters. 82, 165-179. https://doi.org/10.1016/0012- 821X(87)90117-8
  • Dreger D., (2002) Manual of the Time-Domain Moment Tensor Inverse Code (TDMT_INVC), Release 1.1. Berkeley Seismology Laboratory. pp. 18.
  • Dreger, D.S. & Helmberger, D.V., (1993) Determination of source at regional distances with single stations or sparse network data, Journal of Geophysical Research Atmospheres, 98, 8107-8125. DOI:10.1029/93JB00023
  • Duman, T.Y., Emre, Ö., Özalp, S. & Elmacı, H., (2011). Türkiye Diri Fay Haritası Serisi, 1:250.000 Ölçekli Aydın (NJ 35-11) Paftası, Seri No:7, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.
  • Emre, Ö., Duman, T. Y., Özalp, S. & Elmacı, H. (2011). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Denizli (NJ 35-12) Paftası, Seri No:12, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara Türkiye.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering 16 (8), 3229-3275. https://link.springer.com/article/10.1007/s10518-016-0041-2
  • Gündoğdu, E., Özden, S. & Bekler, T. (2020). Sındırgı Fayı ve Düvertepe Fay Zonu Yakın Civarının Kinematik ve Sismotektonik Özellikleri: Batı Anadolu (Türkiye). Çanakkale Onsekiz Mart University Journal of Advanced Research in Natural and Applied Sciences. 6, 2, 378-395. https://doi.org/10.28979/jarnas.844958
  • Jackson, J. & McKenzie, D.P. (1984). Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International. 77, 185–246. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
  • Jost, M. L. & Herrmann, R. B. (1989). A student’s guide and review to moment tensors. Seismological Research Letters, 60:37-57. https://doi.org/10.1785/gssrl.60.2.37
  • Kadiroğlu, F. T., Kartal, R. F., Kılıç, T., Kalafat, D., Duman, T. Y., Eroğlu-Azak, T., Özalp, S. & Emre, Ö. (2018). An Improved Earthquake Catalogue (M >= 4.0) for Turkey and Its Near Vicinity (1900-2012). Bulletin of Earthquake Engineering, 16, 8, 3317-3338. https://link.springer.com/article/10.1007/s10518-016-0064-8
  • Kalafat D., Gürbüz C. & Üçer S.B., (1987). Batı Türkiye’de Kabuk ve Üst Manto Yapısının Araştırılması. Deprem Araştırma Bülteni Sayı 59: 43–64. http://deprem.afad.gov.tr/downloadDocument?id=1964
  • Karabacak, V. (2016). Seismic damage in the Lagina sacred area on the Mugla Fault: a key point for the understanding of the obliquely situated faults of western Anatolia. Journal of Seismology, 20 (1), 277-289. https://link.springer.com/article/10.1007/s10950-015-9526-8
  • Kırkan, E., Akyüz, H. S., Zabcı, C., Basmenji, M., Dikbaş, A., Yazıcı, M., Aksoy, M. E., Uçarkuş, G. & Yakupoğlu, N. (2017). Milas Fayı’nın Paleosismolojik, Morfotektonik ve Depremsellik Özelliklerine Dair İlk Bulgular. Aktif Tektonik Araştırma Grubu 21. Çalıştayı. 26-28 Ekim 2017, s51.
  • Kırkan, E., Akyüz, H. S., Basmenji, M., Zabcı, C., Dikbaş, A., Yazıcı, M., Aksoy, M. E. (2019). Tectonic and paleoseismological analysis of active deformation along the Milas Fault (Muğla, SW Turkey): Earthquake history and seismicity 20th Anniversary of the 1999 Marmara Earthquakes: 23rd Active Tectonics Research Group Meeting, 15 - 18 October 2019, s98.
  • Kürçer, A., Özalp S., Özdemir, E., Güldoğan, Ç. U. & Duman, T. Y. (2019). 18 Mart 1953 Yenice-Gönen Depremi (Ms=7.2) ışığında Yenice-Gönen Fayı’nın aktif tektonik ve paleosismolojik özellikleri, KB Türkiye. MTA Dergisi (2019) 159: 29-637. https://doi.org/10.19111/bulletinofmre.500553
  • Lee, W. H. K. & Lahr, J. C. (1972). HYPO71: a computer program for determining hypocenter, magnitude and first-motion pattern of local earthquakes, U.S. Geological survey open-file report, pp. 100
  • Le Pichon, X Chamot-Rooke, N., Lallemant,S., Noomen, R. & Veis, G. (1995). Geodetic determination of the kinematics of central Greece with respect to Europe implications for eastern Mediterranean tectonics, Journal of Geophysical Research Atmospheres, 100, 12675-12690. https://www.researchgate.net/publication/316932738_Geodetic_determination_of_the_kinematics_of_central_Greece_with_respect_to_Europe_implications_for_eastern_Mediterranean_tectonics
  • M.T.A. (2002). Türkiye Jeoloji Haritası, 1:500.000 Ölçekli Denizli Paftası
  • McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International. 30 (2), 109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • McKenzie, D. P. (1978). Active tectonics of the Alpine Himalayan Belt The Aegean Sea and surrounding regions, Geophysical Journal International. 55, 217-254. https://doi.org/10.1111/j.1365-246X.1978.tb04759.x
  • Özden, S., Över, S., Kavak, K. Ş. & İnal, S. S. (2008). Late Cenozoic stress states around the Bolu Basin along the North Anatolian Fault, NW Turkey. Journal of Geodynamics. vol.46, pp.48-62. https://doi.org/10.1016/j.jog.2008.04.004
  • Özden S., Gündoğdu E. & Bekler T. (2015). "Interactions between Eurasian/African and Arabian plates: Eskişehir Fault, NW Turkey", Journal of African Earth Sciences, pp.1-19. https://doi.org/10.1016/j.jafrearsci.2015.08.014
  • Pasyanos, M, Dreger D.S. & Romanowicz B. (1996). Toward real-time estimation of regional moment tensors, Bulletin of the Seismological Society of America. 86, 1255-1269. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/86/5/1255/120115/Toward-real-time- estimation-of-regional-moment?redirectedFrom=fulltext
  • Sözbilir, H., Uzel, B., Ökmen, S. & Eski, S. (2017). 22-25 Kasım 2017 Muğla Depremleri ve Muğla İlinin Depremselliği Raporu. Dokuz Eylül Üniversitesi Deprem Araştırma ve Uygulama Merkezi Diri Fay Araştırma Grubu. 27 Kasım 2017, Buca / İzmir.
  • Sümer, Ö., Uzel, B., Özkaymak, Ç. & Sözbilir, H. (2018). Kinematics of the Havran-Balıkesir Fault Zone and its implication on geodynamic evolution of the Southern Marmara Region, NW Anatolia. Geodinamica Acta 30 (1), 306-323. https://doi.org/10.1080/09853111.2018.1540145
  • Şengör, A. M. C. (1979). The North Anatolian transform fault: Its age, offset and tectonic significance. Journal of the Geological Society, 136, 269–282. https://doi.org/10.1144/gsjgs.136.3.0269
  • Şengör, A. M. C. (1980). Türkiye’nin Neotektoniği’nin Esasları, Türkiye Jeoloji Kurumu Konferans Serisi 2.
  • Şengör, A. M. C., Yılmaz, Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241. https://doi.org/10.1016/0040-1951(81)90275-4
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. Society of economic paleontologists and mineralogists special publication. 37:227–264.
  • Tan, O., Tapırdamaz, M. C. & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, vol.17, no.2, 405-418. https://journals.tubitak.gov.tr/earth/issues/yer-08-17-2/yer-17-2-8-0608-8.pdf
  • Taymaz, T., Jackson, J. & McKenzie, A. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2):433–490. https://doi.org/10.1111/j.1365-246X.1991.tb03906.x
  • Uzel, B. & Sözbilir, H. (2008). A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences 17 (3), 559-591. https://dergipark.org.tr/tr/pub/tbtkearth/issue/12006/143683
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N. & Langereis, C. G. (2013). Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics 65, 94-116. . https://doi.org/10.1016/j.jog.2012.06.009
  • Wells, D. L. & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America. 84:974–1002. https://www.researchgate.net/publication/215755871_New_Empirical_Relationships_among_Magni tude_Rupture_Length_Rupture_Width_Rupture_Area_and_Surface_Displacement
  • Yılmazer, M., (2003). Deprem kaynak parametrelerinin Online Belirlenmesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 47 s, İstanbul (Turkish)
There are 42 citations in total.

Details

Primary Language English
Subjects General Geology, Geology (Other)
Journal Section Research Article
Authors

Erdem Gündoğdu 0000-0002-6836-2951

Alper Demirci 0000-0002-8710-6232

Suha Ozden 0000-0001-6321-0812

Project Number FHD-2018-2536
Publication Date December 15, 2021
Submission Date April 28, 2021
Published in Issue Year 2021 Volume: 7 Issue: 4

Cite

APA Gündoğdu, E., Demirci, A., & Ozden, S. (2021). Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia. Journal of Advanced Research in Natural and Applied Sciences, 7(4), 512-526. https://doi.org/10.28979/jarnas.927842
AMA Gündoğdu E, Demirci A, Ozden S. Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia. JARNAS. December 2021;7(4):512-526. doi:10.28979/jarnas.927842
Chicago Gündoğdu, Erdem, Alper Demirci, and Suha Ozden. “Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 4 (December 2021): 512-26. https://doi.org/10.28979/jarnas.927842.
EndNote Gündoğdu E, Demirci A, Ozden S (December 1, 2021) Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia. Journal of Advanced Research in Natural and Applied Sciences 7 4 512–526.
IEEE E. Gündoğdu, A. Demirci, and S. Ozden, “Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia”, JARNAS, vol. 7, no. 4, pp. 512–526, 2021, doi: 10.28979/jarnas.927842.
ISNAD Gündoğdu, Erdem et al. “Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia”. Journal of Advanced Research in Natural and Applied Sciences 7/4 (December 2021), 512-526. https://doi.org/10.28979/jarnas.927842.
JAMA Gündoğdu E, Demirci A, Ozden S. Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia. JARNAS. 2021;7:512–526.
MLA Gündoğdu, Erdem et al. “Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 4, 2021, pp. 512-26, doi:10.28979/jarnas.927842.
Vancouver Gündoğdu E, Demirci A, Ozden S. Late Cenozoic Stress State in Gulf of Güllük and Surroundings, SW Anatolia. JARNAS. 2021;7(4):512-26.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).