Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 4, 641 - 650, 15.12.2022
https://doi.org/10.28979/jarnas.1097397

Abstract

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol, 215(3), 403-10. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
  • Anand, A. A., Vennison, S. J., Sankar, S. G., Prabhu, D. I., Vasan, P. T., Raghuraman, T., Geoffrey, C. J., & Vendan, S. E. (2010). Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Sci, 10, 107. DOI: https://doi.org/10.1673/031.010.10701
  • Basset, Y., Cizek, L., Cuenoud, P., Didham, R. K., Guilhaumon, F., Missa, O., Novotny, V., Odegaard, F., Roslin, T., & Leponce, M. (2012). Arthropod diversity in a tropical forest. Science, 338(6113), 1481-1484. DOI: 10.1126/science.1226727
  • Ben-Dov, E. (2014). Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins (Basel), 6(4), 1222-1243. DOI: https://doi.org/10.3390/toxins6041222
  • Benson, D. A., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J., & Sayers, E. W. (2012). GenBank. Nucleic Acids Res, 40(Database issue), D48-53. DOI: https://doi.org/10.1093/nar/28.1.15
  • Campbell, A. M., Lawrence, A. J., Hudspath, C. B., & Gruwell, M. E. (2014). Molecular Identification of Diaspididae and Elucidation of Non-Native Species Using the Genes 28s and 16s. Insects, 5(3), 528-538. DOI: https://doi.org/10.3390/insects5030528
  • Chen, B., The, B. S., Sun, C., Hu, S., Lu, X., Boland, W., & Shao, Y. (2016). Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep, 6, 29505. DOI: https://doi.org/10.1038/srep29505
  • Christie, R. D., Sumalde, A. C., Schulz, J. T., & Gudmestad, N. C. (1991). Insect transmission of the bac-terial ring rot pathogen. Am Potato J, 68(6), 363-372. DOI: https://doi.org/10.1007/BF02853617
  • Crawford, R. L., Hutton, S. W., & Chapman, P. J. (1975). Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol, 121(3), 794-9. DOI: https://doi.org/10.1128/jb.121.3.794-799.1975
  • de Maagd, R. A., Bravo, A., & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific tox-ins to colonize the insect world. Trends Gen, 17(4), 193-199. DOI: https://doi.org/10.1016/S0168-9525(01)02237-5
  • Douglas, A. E. (2014). The molecular basis of bacterial-insect symbiosis. J Mol Biol, 426(23), 3830-38377. DOI: https://doi.org/10.1016/j.jmb.2014.04.005
  • Douglas, A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Ann Rev Entomol, 60, 17-34. DOI: https://doi.org/10.1146/annurev-ento-010814-020822
  • Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev, 37(5), 699-735. DOI: https://doi.org/10.1111/1574-6976.12025
  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 3(5), 294-9. DOI:
  • Gartemann, K. H., Kirchner, O., Engemann, J., Gräfen, I., Eichenlaub, R., & Burger, A. (2003). Clavibac-ter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol, 106(2), 179-191. DOI: https://doi.org/10.1016/j.jbiotec.2003.07.011
  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95-98. DOI:
  • Hawn, E. J. (1971). Mode of Transmission of Corynebacterium insidiosum by Ditylenchus dipsaci. J Nema-tol, 3(4), 420-1. DOI:
  • Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnos-tic laboratory: pluses, perils, and pitfalls. J Clin Microbiol, 45(9), 2761-4. DOI: https://doi.org/10.1128/JCM.01228-07
  • Kandi, V., Palange, P., Vaish, R., Bhatti, A. B., Kale, V., Kandi, M. R., & Bhoomagiri, M. R. (2016). Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species. Cureus, 8(8), e731. DOI: 10.7759/cureus.731
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Ge-netics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. DOI: 10.1093/molbev/msy096
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol, 132, 1-41. DOI: https://doi.org/10.1016/j.jip.2015.07.009
  • Liu, W., Li, Y., Guo, S., Yin, H., Lei, C. L., & Wang, X. P. (2016). Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Sci Rep, 6, 38900-38900. DOI: https://doi.org/10.1038/srep38900
  • Madigan, M. T., Martinko, J. M., Parker. J., & Brock, T. D. B. (2003). Brock Biology of Microorganisms. New York, NY: Prentice Hall. Retrieved from:
  • Mereghetti, V., Chouaia, B., & Montagna, M. (2017). New Insights into the Microbiota of Moth Pests. Int J Mol Sci, 18(11), 2450. DOI: https://doi.org/10.3390/ijms18112450
  • Minard, G., Tran, F. H., Raharimalala, F. N., Hellard, E., Ravelonandro, P., Mavingui, P., & Moro, C. V. (2013). Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol, 83(1), 63-73. DOI: https://doi.org/10.1111/j.1574-6941.2012.01455.x
  • Moore, S. J., & Warren, M. J. (2012). The anaerobic biosynthesis of vitamin B12. Biochem Soc Trans, 40(3), 581-6. DOI: https://doi.org/10.1042/BST20120066
  • Mutanen, M., Wahlberg, N., & Kaila, L. (2010). Comprehensive gene and taxon coverage elucidates radia-tion patterns in moths and butterflies. Proc Roy Soc B, 277(1695), 2839-2848. DOI: https://doi.org/10.1098/rspb.2010.0392
  • Novotny, V., Basset, Y., Miller, S. E., Weiblen, G. D., Bremer, B., Cizek, L., & Drozd, P. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature, 416(6883), 841-844. DOI: https://doi.org/10.1038/416841a
  • Perilla-Henao, L. M., & Casteel, C. L. (2016). Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. Front Plant Sci, 7, 1163-1163. DOI: https://doi.org/10.3389/fpls.2016.01163
  • Peterkova-Koci, K., Robles-Murguia, M., Ramalho-Ortigao, M., & Zurek, L. (2012). Significance of bacte-ria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasites Vectors, 5, 145. DOI: https://doi.org/10.1186/1756-3305-5-145
  • Ruiu, L. (2015). Insect Pathogenic Bacteria in Integrated Pest Management. Insects, 6(2), 352-67. DOI: https://doi.org/10.3390/insects6020352
  • Scudder, G. G. E. (2009). The importance of insects. Foottit R G, Adler PH, editors. Insect Biodiversity (pp. 7-32). Oxford: Blackwell Publishing Ltd. Retrieved from:
  • Sevim, E., Çelebi, Ö., & Sevim, A. (2012). Determination of the bacterial flora as a microbial control agent of Toxoptera aurantii (Homoptera: Aphididae). Biologia, 67(2), 397-404. DOI: https://doi.org/10.2478/s11756-012-0022-0
  • Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorgan-ism-Based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Front Physiol, 10, 152. DOI: https://doi.org/10.3389/fphys.2019.00152

Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)

Year 2022, Volume: 8 Issue: 4, 641 - 650, 15.12.2022
https://doi.org/10.28979/jarnas.1097397

Abstract

Many bacterial species are frequently associated with insects in symbiotic, mutualistic, or parasitic rela-tionships. Symbiotic bacteria living in mostly insect gut have many roles in insect’s biology such as nutrition, devel-opment, sex determination and evolution. Therefore, studying of symbiotic bacteria in insects is very important to elucidate their roles in their hosts biology. In this study, we purposed to isolate and identify the culturable bacterial species in internal organs (mostly gut parts) of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuidae) which was selected as model organism. The bacterial flora of different development stages of S. irrosea was studied by culture dependent techniques and the isolated bacteria was identified by 16S rRNA sequencing and phylogenetic analysis. A total of 22 bacterial isolates were obtained from different instar larvae of the insect and were identified. Among the identified bacterial species, Staphylococcus, Micrococcus and Bacillus species were dominant. In addition, some potential slug, human and plant pathogenic bacteria (Moraxella osloensis, Kocuria rosea and Clavibacter michi-ganensis) were isolated. The results were discussed with respect to the bacterial composition of S. irrosea regarding effects of bacterial diversity on the larval development of the insect. Results obtained from this study should be beneficial for future studies to understand roles of bacteria in the larval development of Lepidopteran insects.

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol, 215(3), 403-10. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
  • Anand, A. A., Vennison, S. J., Sankar, S. G., Prabhu, D. I., Vasan, P. T., Raghuraman, T., Geoffrey, C. J., & Vendan, S. E. (2010). Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Sci, 10, 107. DOI: https://doi.org/10.1673/031.010.10701
  • Basset, Y., Cizek, L., Cuenoud, P., Didham, R. K., Guilhaumon, F., Missa, O., Novotny, V., Odegaard, F., Roslin, T., & Leponce, M. (2012). Arthropod diversity in a tropical forest. Science, 338(6113), 1481-1484. DOI: 10.1126/science.1226727
  • Ben-Dov, E. (2014). Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins (Basel), 6(4), 1222-1243. DOI: https://doi.org/10.3390/toxins6041222
  • Benson, D. A., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J., & Sayers, E. W. (2012). GenBank. Nucleic Acids Res, 40(Database issue), D48-53. DOI: https://doi.org/10.1093/nar/28.1.15
  • Campbell, A. M., Lawrence, A. J., Hudspath, C. B., & Gruwell, M. E. (2014). Molecular Identification of Diaspididae and Elucidation of Non-Native Species Using the Genes 28s and 16s. Insects, 5(3), 528-538. DOI: https://doi.org/10.3390/insects5030528
  • Chen, B., The, B. S., Sun, C., Hu, S., Lu, X., Boland, W., & Shao, Y. (2016). Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep, 6, 29505. DOI: https://doi.org/10.1038/srep29505
  • Christie, R. D., Sumalde, A. C., Schulz, J. T., & Gudmestad, N. C. (1991). Insect transmission of the bac-terial ring rot pathogen. Am Potato J, 68(6), 363-372. DOI: https://doi.org/10.1007/BF02853617
  • Crawford, R. L., Hutton, S. W., & Chapman, P. J. (1975). Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol, 121(3), 794-9. DOI: https://doi.org/10.1128/jb.121.3.794-799.1975
  • de Maagd, R. A., Bravo, A., & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific tox-ins to colonize the insect world. Trends Gen, 17(4), 193-199. DOI: https://doi.org/10.1016/S0168-9525(01)02237-5
  • Douglas, A. E. (2014). The molecular basis of bacterial-insect symbiosis. J Mol Biol, 426(23), 3830-38377. DOI: https://doi.org/10.1016/j.jmb.2014.04.005
  • Douglas, A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Ann Rev Entomol, 60, 17-34. DOI: https://doi.org/10.1146/annurev-ento-010814-020822
  • Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev, 37(5), 699-735. DOI: https://doi.org/10.1111/1574-6976.12025
  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 3(5), 294-9. DOI:
  • Gartemann, K. H., Kirchner, O., Engemann, J., Gräfen, I., Eichenlaub, R., & Burger, A. (2003). Clavibac-ter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol, 106(2), 179-191. DOI: https://doi.org/10.1016/j.jbiotec.2003.07.011
  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95-98. DOI:
  • Hawn, E. J. (1971). Mode of Transmission of Corynebacterium insidiosum by Ditylenchus dipsaci. J Nema-tol, 3(4), 420-1. DOI:
  • Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnos-tic laboratory: pluses, perils, and pitfalls. J Clin Microbiol, 45(9), 2761-4. DOI: https://doi.org/10.1128/JCM.01228-07
  • Kandi, V., Palange, P., Vaish, R., Bhatti, A. B., Kale, V., Kandi, M. R., & Bhoomagiri, M. R. (2016). Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species. Cureus, 8(8), e731. DOI: 10.7759/cureus.731
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Ge-netics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. DOI: 10.1093/molbev/msy096
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol, 132, 1-41. DOI: https://doi.org/10.1016/j.jip.2015.07.009
  • Liu, W., Li, Y., Guo, S., Yin, H., Lei, C. L., & Wang, X. P. (2016). Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Sci Rep, 6, 38900-38900. DOI: https://doi.org/10.1038/srep38900
  • Madigan, M. T., Martinko, J. M., Parker. J., & Brock, T. D. B. (2003). Brock Biology of Microorganisms. New York, NY: Prentice Hall. Retrieved from:
  • Mereghetti, V., Chouaia, B., & Montagna, M. (2017). New Insights into the Microbiota of Moth Pests. Int J Mol Sci, 18(11), 2450. DOI: https://doi.org/10.3390/ijms18112450
  • Minard, G., Tran, F. H., Raharimalala, F. N., Hellard, E., Ravelonandro, P., Mavingui, P., & Moro, C. V. (2013). Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol, 83(1), 63-73. DOI: https://doi.org/10.1111/j.1574-6941.2012.01455.x
  • Moore, S. J., & Warren, M. J. (2012). The anaerobic biosynthesis of vitamin B12. Biochem Soc Trans, 40(3), 581-6. DOI: https://doi.org/10.1042/BST20120066
  • Mutanen, M., Wahlberg, N., & Kaila, L. (2010). Comprehensive gene and taxon coverage elucidates radia-tion patterns in moths and butterflies. Proc Roy Soc B, 277(1695), 2839-2848. DOI: https://doi.org/10.1098/rspb.2010.0392
  • Novotny, V., Basset, Y., Miller, S. E., Weiblen, G. D., Bremer, B., Cizek, L., & Drozd, P. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature, 416(6883), 841-844. DOI: https://doi.org/10.1038/416841a
  • Perilla-Henao, L. M., & Casteel, C. L. (2016). Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. Front Plant Sci, 7, 1163-1163. DOI: https://doi.org/10.3389/fpls.2016.01163
  • Peterkova-Koci, K., Robles-Murguia, M., Ramalho-Ortigao, M., & Zurek, L. (2012). Significance of bacte-ria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasites Vectors, 5, 145. DOI: https://doi.org/10.1186/1756-3305-5-145
  • Ruiu, L. (2015). Insect Pathogenic Bacteria in Integrated Pest Management. Insects, 6(2), 352-67. DOI: https://doi.org/10.3390/insects6020352
  • Scudder, G. G. E. (2009). The importance of insects. Foottit R G, Adler PH, editors. Insect Biodiversity (pp. 7-32). Oxford: Blackwell Publishing Ltd. Retrieved from:
  • Sevim, E., Çelebi, Ö., & Sevim, A. (2012). Determination of the bacterial flora as a microbial control agent of Toxoptera aurantii (Homoptera: Aphididae). Biologia, 67(2), 397-404. DOI: https://doi.org/10.2478/s11756-012-0022-0
  • Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorgan-ism-Based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Front Physiol, 10, 152. DOI: https://doi.org/10.3389/fphys.2019.00152
There are 34 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article
Authors

Ali Sevim 0000-0003-2472-599X

Elif Sevim 0000-0002-6455-1333

Early Pub Date December 13, 2022
Publication Date December 15, 2022
Submission Date April 2, 2022
Published in Issue Year 2022 Volume: 8 Issue: 4

Cite

APA Sevim, A., & Sevim, E. (2022). Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae). Journal of Advanced Research in Natural and Applied Sciences, 8(4), 641-650. https://doi.org/10.28979/jarnas.1097397
AMA Sevim A, Sevim E. Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae). JARNAS. December 2022;8(4):641-650. doi:10.28979/jarnas.1097397
Chicago Sevim, Ali, and Elif Sevim. “Culturable Bacterial Communities Related to Different Larval Stages of Sanys Irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 641-50. https://doi.org/10.28979/jarnas.1097397.
EndNote Sevim A, Sevim E (December 1, 2022) Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae). Journal of Advanced Research in Natural and Applied Sciences 8 4 641–650.
IEEE A. Sevim and E. Sevim, “Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)”, JARNAS, vol. 8, no. 4, pp. 641–650, 2022, doi: 10.28979/jarnas.1097397.
ISNAD Sevim, Ali - Sevim, Elif. “Culturable Bacterial Communities Related to Different Larval Stages of Sanys Irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 641-650. https://doi.org/10.28979/jarnas.1097397.
JAMA Sevim A, Sevim E. Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae). JARNAS. 2022;8:641–650.
MLA Sevim, Ali and Elif Sevim. “Culturable Bacterial Communities Related to Different Larval Stages of Sanys Irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 641-50, doi:10.28979/jarnas.1097397.
Vancouver Sevim A, Sevim E. Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae). JARNAS. 2022;8(4):641-50.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).