Research Article
BibTex RIS Cite

Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method

Year 2023, Volume: 9 Issue: 1, 158 - 166, 06.03.2023
https://doi.org/10.28979/jarnas.1168028

Abstract

The superhydrophobic surfaces are contained two essential principles. First, low surface energy polymers, such as fluoropolymers pushing the liquid onto the surface are necessary. The surface roughness is the second necessity to obtain superhydrophobicity, providing air packets between the roughness and reducing surface interaction with the liquid. This study fabricated the superhydrophobic blend coating using a spray coating method. The flat surface of PFMA homopolymer synthesized in scCO2 medium was fabricated free meniscus coating method due to the lack of solubility in the conventional solvent. To overcome the solubility problems of the PFMA, the p(Perfluoromethacrylate-ran-Styrene) copolymer was fabricated in a scCO2 medium. Blend solutions are prepared to reduce costs and provide high hydrophobicity by using p(Perfluoromethacrylate-ran-Styrene) copolymer and PS homopolymers. The surface roughness of the blend films was altered using silica nanoparticles coated on a glass slide by a spray coating. The surface morphology was characterized by SEM analyses indicating that double-scale surface morphology was obtained by increasing the SNp of the composite solution. The water contact angle indicated that the superhydrophobic rough surface was obtained with TMS70 and PS blend formation having 33.0 % PS and 12.5% silica nanoparticles.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FHD-2021-3581.

Thanks

This work was supported by Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit, Project number: FHD-2021-3581

References

  • Bayer, I. S., Brown, A., Steele, A., & Loth, E. (2009). Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity. Applied Physics Express, 2(12). doi:10.1143/APEX.2.125003
  • Cengiz, U., & Erbil, H. Y. (2014). Perfluoromethacrylate-styrene statistical copolymers synthesized in CO2-expanded monomers. Colloid and Polymer Science, 292(9), 2207-2215. doi:10.1007/s00396-014-3250-8
  • Erbil, H. Y., Demirel, A. L., Avci, Y., & Mert, O. (2003). Transformation of a simple plastic into a superhydrophobic surface. Science, 299(5611), 1377-1380. doi:DOI 10.1126/science.1078365
  • Gengec, N. A., Cengiz, U., & Erbil, H. Y. (2016). Superhydrophobic perfluoropolymer/polystyrene blend films induced by nonsolvent. Applied Surface Science, 383, 33-41. doi:10.1016/j.apsusc.2016.04.160
  • Han, D. W., & Steckl, A. J. (2009). Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning. Langmuir, 25(16), 9454-9462.
  • Huang, H. L., Goh, S. H., Lai, D. M. Y., Huan, C. H. A., & Wee, A. T. S. (2004). Surface Properties of Miscible Poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate)/Phenoxy Blends. Journal of Applied Polymer Science, 91, 1798-1805.
  • Kraus, G. (1978). Block Copolymers in Blends with Other Polymers In D. R. Paul & S. Newman (Eds.), Polymer Blends (Vol. 2, pp. 243-261): Academic Press.
  • Latthe, S. S., Imai, H., Ganesan, V., & Rao, A. V. (2010). Porous superhydrophobic silica films by sol-gel process. Microporous and Mesoporous Materials, 130(1-3), 115-121. doi:10.1016/j.micromeso.2009.10.020
  • Lee, E. J., Jung, C. H., Hwang, I. T., Choi, J. H., Cho, S. O., & Nhos, Y. C. (2011). Surface Morphology Control of Polymer Films by Electron Irradiation and Its Application to Superhydrophobic Surfaces. Acs Applied Materials & Interfaces, 3(8), 2988-2993. doi:10.1021/am200464a
  • Li, B. G., Lian, Z. X., Yu, H. D., Xu, J. K., Shi, G. F., Yu, Z. J., & Wang, Z. B. (2018). Underwater superoleophobic stainless steel mesh fabricated by laser cladding a copper foil for oil-water separation. Materials Research Express, 5(7). doi:ARTN 075014 10.1088/2053-1591/aac200
  • Mawson, S., Johnston, K. P., Combes, J. R., & DeSimone, J. M. (1995). Formation of Poly(1,1,2,2-Tetrahydroperfluorodecyl Acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions. Macromolecules, 28, 3182–3191.
  • Meng, L. Y., & Park, S. J. (2012). Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers. Materials Chemistry and Physics, 132(2-3), 324-329. doi:10.1016/j.matchemphys.2011.11.024
  • Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., & Ueda, Y. (1999). The Lowest Surface Free Energy Based on -CF3 Alignment. Langmuir, 15, 4121-4123.
  • Novick, B. J., DeSimone, J. M., & Carbonell, R. G. (2004). Deposition of Thin Polymeric Films from Liquid Carbon Dioxide Using a High-Pressure Free-Meniscus Coating Process Industrial and Engineering Chemical Research, 43, 515–524.
  • Ozbay, S., Cengiz, U., & Erbil, H. Y. (2019). Solvent-Free Synthesis of a Superamphiphobic Surface by Green Chemistry. Acs Applied Polymer Materials, 1(8), 2033-2043. doi:10.1021/acsapm.9b00322
  • Ozbay, S., Yuceel, C., & Erbil, H. Y. (2015). Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid. Acs Applied Materials & Interfaces, 7(39), 22067-22077. doi:10.1021/acsami.5b07265
  • Topcu, A. S. K., Erdogan, E., & Cengiz, U. (2018). Preparation of stable, transparent superhydrophobic film via one step one pot sol-gel method. Colloid and Polymer Science, 296(9), 1523-1532. doi:10.1007/s00396-018-4377-9
  • Wang, Y., Yao, L., Ren, T. T., & He, J. H. (2019). Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy. Journal of Colloid and Interface Science, 540, 107-114. doi:10.1016/j.jcis.2019.01.008
Year 2023, Volume: 9 Issue: 1, 158 - 166, 06.03.2023
https://doi.org/10.28979/jarnas.1168028

Abstract

Project Number

FHD-2021-3581.

References

  • Bayer, I. S., Brown, A., Steele, A., & Loth, E. (2009). Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity. Applied Physics Express, 2(12). doi:10.1143/APEX.2.125003
  • Cengiz, U., & Erbil, H. Y. (2014). Perfluoromethacrylate-styrene statistical copolymers synthesized in CO2-expanded monomers. Colloid and Polymer Science, 292(9), 2207-2215. doi:10.1007/s00396-014-3250-8
  • Erbil, H. Y., Demirel, A. L., Avci, Y., & Mert, O. (2003). Transformation of a simple plastic into a superhydrophobic surface. Science, 299(5611), 1377-1380. doi:DOI 10.1126/science.1078365
  • Gengec, N. A., Cengiz, U., & Erbil, H. Y. (2016). Superhydrophobic perfluoropolymer/polystyrene blend films induced by nonsolvent. Applied Surface Science, 383, 33-41. doi:10.1016/j.apsusc.2016.04.160
  • Han, D. W., & Steckl, A. J. (2009). Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning. Langmuir, 25(16), 9454-9462.
  • Huang, H. L., Goh, S. H., Lai, D. M. Y., Huan, C. H. A., & Wee, A. T. S. (2004). Surface Properties of Miscible Poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate)/Phenoxy Blends. Journal of Applied Polymer Science, 91, 1798-1805.
  • Kraus, G. (1978). Block Copolymers in Blends with Other Polymers In D. R. Paul & S. Newman (Eds.), Polymer Blends (Vol. 2, pp. 243-261): Academic Press.
  • Latthe, S. S., Imai, H., Ganesan, V., & Rao, A. V. (2010). Porous superhydrophobic silica films by sol-gel process. Microporous and Mesoporous Materials, 130(1-3), 115-121. doi:10.1016/j.micromeso.2009.10.020
  • Lee, E. J., Jung, C. H., Hwang, I. T., Choi, J. H., Cho, S. O., & Nhos, Y. C. (2011). Surface Morphology Control of Polymer Films by Electron Irradiation and Its Application to Superhydrophobic Surfaces. Acs Applied Materials & Interfaces, 3(8), 2988-2993. doi:10.1021/am200464a
  • Li, B. G., Lian, Z. X., Yu, H. D., Xu, J. K., Shi, G. F., Yu, Z. J., & Wang, Z. B. (2018). Underwater superoleophobic stainless steel mesh fabricated by laser cladding a copper foil for oil-water separation. Materials Research Express, 5(7). doi:ARTN 075014 10.1088/2053-1591/aac200
  • Mawson, S., Johnston, K. P., Combes, J. R., & DeSimone, J. M. (1995). Formation of Poly(1,1,2,2-Tetrahydroperfluorodecyl Acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions. Macromolecules, 28, 3182–3191.
  • Meng, L. Y., & Park, S. J. (2012). Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers. Materials Chemistry and Physics, 132(2-3), 324-329. doi:10.1016/j.matchemphys.2011.11.024
  • Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., & Ueda, Y. (1999). The Lowest Surface Free Energy Based on -CF3 Alignment. Langmuir, 15, 4121-4123.
  • Novick, B. J., DeSimone, J. M., & Carbonell, R. G. (2004). Deposition of Thin Polymeric Films from Liquid Carbon Dioxide Using a High-Pressure Free-Meniscus Coating Process Industrial and Engineering Chemical Research, 43, 515–524.
  • Ozbay, S., Cengiz, U., & Erbil, H. Y. (2019). Solvent-Free Synthesis of a Superamphiphobic Surface by Green Chemistry. Acs Applied Polymer Materials, 1(8), 2033-2043. doi:10.1021/acsapm.9b00322
  • Ozbay, S., Yuceel, C., & Erbil, H. Y. (2015). Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid. Acs Applied Materials & Interfaces, 7(39), 22067-22077. doi:10.1021/acsami.5b07265
  • Topcu, A. S. K., Erdogan, E., & Cengiz, U. (2018). Preparation of stable, transparent superhydrophobic film via one step one pot sol-gel method. Colloid and Polymer Science, 296(9), 1523-1532. doi:10.1007/s00396-018-4377-9
  • Wang, Y., Yao, L., Ren, T. T., & He, J. H. (2019). Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy. Journal of Colloid and Interface Science, 540, 107-114. doi:10.1016/j.jcis.2019.01.008
There are 18 citations in total.

Details

Primary Language English
Subjects Plating Technology
Journal Section Research Article
Authors

Özge Ünzal This is me 0000-0002-8079-3703

Sema Nur Belen This is me 0000-0002-4870-7377

Uğur Cengiz 0000-0002-0400-3351

Project Number FHD-2021-3581.
Early Pub Date March 3, 2023
Publication Date March 6, 2023
Submission Date September 2, 2022
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Ünzal, Ö., Belen, S. N., & Cengiz, U. (2023). Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 158-166. https://doi.org/10.28979/jarnas.1168028
AMA Ünzal Ö, Belen SN, Cengiz U. Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method. JARNAS. March 2023;9(1):158-166. doi:10.28979/jarnas.1168028
Chicago Ünzal, Özge, Sema Nur Belen, and Uğur Cengiz. “Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 158-66. https://doi.org/10.28979/jarnas.1168028.
EndNote Ünzal Ö, Belen SN, Cengiz U (March 1, 2023) Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method. Journal of Advanced Research in Natural and Applied Sciences 9 1 158–166.
IEEE Ö. Ünzal, S. N. Belen, and U. Cengiz, “Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method”, JARNAS, vol. 9, no. 1, pp. 158–166, 2023, doi: 10.28979/jarnas.1168028.
ISNAD Ünzal, Özge et al. “Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 158-166. https://doi.org/10.28979/jarnas.1168028.
JAMA Ünzal Ö, Belen SN, Cengiz U. Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method. JARNAS. 2023;9:158–166.
MLA Ünzal, Özge et al. “Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 158-66, doi:10.28979/jarnas.1168028.
Vancouver Ünzal Ö, Belen SN, Cengiz U. Fabrication of Self-Cleaning Perfluoroacrylate Blend Films by Spray Coating Method. JARNAS. 2023;9(1):158-66.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).