The aim of this study is to investigate the effect of the rotational rate of the turntable on drying kinetics of lemon peels and some functional and flow properties of lemon peel powders. Lemon peels were dried by microwave drying using different rates of rotation (0, 6.5, 9.5, and 12.5 rpm) at different microwave power levels (180W, 300W, 450W and 600W), and dried by oven drying and freeze-drying methods. Drying time was shortened by 72- 95% by microwave drying compared to oven drying. Microwave drying with rotation provided 5.6-23.8% reduction in drying time of peels compared to drying without rotation. Effect of rotation rate on drying time of lemon peels depended on the microwave power level. Page model provided lower SSE, RMSE, and higher R2 values within 5 different thin layer models. The effective moisture diffusivity value, ranging between 1.7x10-8 m2 s -1 -7.6x10-8 m2 s -1, was higher during microwave drying with rotation. The activation energy ranged between 21.3-22.7 W/g. Microwave drying provided higher bulk density, similar or lower water holding capacity and oil retention capacity values compared to freeze drying and oven drying. Freeze dried lemon peel powder had the lowest bulk density due to its porous structure. Microwave drying without rotation and the highest power level caused lower bulk density. At higher power levels, influence of turntable rotation on water holding capacity was more notable. Microwave drying technique can be used as alternative drying techniques to obtain high quality dried lemon peel powder if appropriate processing conditions are selected.
Ordu Üniversitesi
B 2127
This study was funded by Ordu University (B 2127).
B 2127
Primary Language | English |
---|---|
Subjects | Food Engineering |
Journal Section | Research Article |
Authors | |
Project Number | B 2127 |
Early Pub Date | March 3, 2023 |
Publication Date | March 6, 2023 |
Submission Date | September 8, 2022 |
Published in Issue | Year 2023 Volume: 9 Issue: 1 |
As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).