Research Article
BibTex RIS Cite

Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying

Year 2023, Volume: 9 Issue: 1, 89 - 106, 06.03.2023
https://doi.org/10.28979/jarnas.1172336

Abstract

The aim of this study is to investigate the effect of the rotational rate of the turntable on drying kinetics of lemon peels and some functional and flow properties of lemon peel powders. Lemon peels were dried by microwave drying using different rates of rotation (0, 6.5, 9.5, and 12.5 rpm) at different microwave power levels (180W, 300W, 450W and 600W), and dried by oven drying and freeze-drying methods. Drying time was shortened by 72- 95% by microwave drying compared to oven drying. Microwave drying with rotation provided 5.6-23.8% reduction in drying time of peels compared to drying without rotation. Effect of rotation rate on drying time of lemon peels depended on the microwave power level. Page model provided lower SSE, RMSE, and higher R2 values within 5 different thin layer models. The effective moisture diffusivity value, ranging between 1.7x10-8 m2 s -1 -7.6x10-8 m2 s -1, was higher during microwave drying with rotation. The activation energy ranged between 21.3-22.7 W/g. Microwave drying provided higher bulk density, similar or lower water holding capacity and oil retention capacity values compared to freeze drying and oven drying. Freeze dried lemon peel powder had the lowest bulk density due to its porous structure. Microwave drying without rotation and the highest power level caused lower bulk density. At higher power levels, influence of turntable rotation on water holding capacity was more notable. Microwave drying technique can be used as alternative drying techniques to obtain high quality dried lemon peel powder if appropriate processing conditions are selected.

Supporting Institution

Ordu Üniversitesi

Project Number

B 2127

Thanks

This study was funded by Ordu University (B 2127).

References

  • Abano, E. E., Haile, M. A. Owusu, J., & Engmann, F. N. (2013). Microwave-vacuum drying effect on drying kinetics, lycopene and ascorbic acid content of tomato slices. Journal of Stored Products and Postharvest Research, 4, 11-22. DOI: https://doi.org/10.5897/JSPPR12.030
  • Abou-Arab, E. A., Mahmoud, M. H., & Abu-Salem, F. M. (2017). Functional properties of citrus peel as affected by drying methods. American Journal of Food Technology, 12, 193-200. DOI: https://doi.org/10.3923/ajft.2017.193.200
  • Alibas, I., & Yilmaz, A. (2021). Microwave and convective drying kinetics and thermal properties of orange slices and effect of drying on some phytochemical parameters. Journal of Thermal Analysis and Calorimetry,1-21. DOI: https://doi.org/10.1007/s10973-021-11108-3
  • Bejar, A. K., Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2011a). Effect of infrared drying on drying kinetics, color, total phenols and water and oil holding capacities of orange (Citrus sinensis) peel and leaves. International Journal of Food Engineering, 7, 5. DOI: https://doi.org/10.2202/1556-3758.2222
  • Bejar, A. K., Kechaou, N., & Mihoubi, N. B. (2011b). Effect of microwave treatment on physical and functional properties of orange (Citrus sinensis) peel and leaves. Journal of Food Processing and Technology, 2, 109. DOI: https://doi.org/10.4172/2157-7110.1000109
  • Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineering, 72, 163-168.
  • Crank, J. (1979). The mathematics of diffusion. Revised edition. Oxford, Great Britain: Clarendon Press.
  • Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13, 130-8. DOI: https://doi.org/10.1016/j.jssas.2013.03.002
  • Deng, L. Z., Mujumdar, A. S., Yang, W. X., Zhang, Q., Zheng, Z. A., Wu, M., & Xiao, H. W. (2019). Hot air impingement drying kinetics and quality attributes of orange peel. Journal of Food Processing and Preservation, 44, e14294. DOI: https://doi.org/10.1111/jfpp.14294
  • Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transfer, 53, 1817-27. DOI: https://doi.org/10.1007/s00231-016-1943-x
  • Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57, 701-717. DOI: http://dx.doi.org/10.1080/10408398.2014.910493.
  • FAO (Food and Agriculture Organization of the United Nations) (2021). Citrus Fruit Statistical Compendium 2020. Rome.
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2019). Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: Changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. Journal of Food Measurement and Characterization, 14, 862-75. DOI: https://doi.org/10.1007/s11694-019-00334-x
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2020). Changes in chemical composition and biological activity of essential oil from Thomson Navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food Science and Nutrition, 8, 124-138. DOI: https://doi.org/10.1002/fsn3.1279
  • Garau, M. C., Simal, S., Femenia, A., & Rossello, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75, 288-95. DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.017
  • Garau, M. C., Simal, S., Rossello, C., & Femenia, A. (2007). Effect of air-drying temperature on physicochemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104, 1014-24. DOI: https://doi.org/10.1016/j.foodchem.2007.01.009
  • Garcia-Perez, J. V., Carcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27, 281-87. DOI: https://doi.org/10.1080/07373930802606428
  • Garcia-Perez, J. V., Ortuno, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5, 2256-65. DOI: https://doi.org/10.1007/s11947-011-0645-0
  • Ghanem, N., Mihoubi, D., Bonazzi, C., Kechaou, N., & Boudhrioua, N. (2020). Drying characteristics of lemon by-product (Citrus limon. v. lunari): Effects of drying modes on quality attributes kinetics. Waste Biomass Valorization, 11, 303-22. DOI: https://doi.org/10.1007/s12649-018-0381-z
  • Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage, and total phenols content. Industrial Crops and Products, 40, 167-77. DOI: https://doi.org/10.1016/j.indcrop.2012.03.009
  • Hausner, H. H. (1967). Friction conditions in a mass of metal powder. International Journal of Powder Metallurgy, 3, 7-13.
  • Kirbas, I., Tuncer, A. D., Sirin, C., & Usta, H. (2019). Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165, 104928. DOI: https://doi.org/10.1016/j.compag.2019.104928
  • Lee, C., Oh, H., Han, S., & Lim, S. (2012). Effects of hot air and freeze drying methods on physico-chemical properties of citrus ‘hallabong’ powders. Food Science and Biotechnology, 21, 1633-9.
  • Liu, Y., Fan, C., Tian, M., Yang, Z., Liu, F., & Pan, S. (2017). Effect of drying methods on physicochemical properties and in vitro hypoglycemic effects of orange peel dietary fiber. Journal of Food Processing and Preservation, 41, e13292. DOI: https://doi.org/10.1111/jfpp.13292
  • Mahato, N., Sharma, K., Sinha, M., Baral, E. R., Koteswararao, R. Dhyani, A., Cho, M. H., & Cho, S. (2020). Bio-sorbents, industrially important chemicals and novel materials from citrus pro-cessing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Re-search, 23, 61-82. DOI: https://doi.org/10.1016/j.jare.2020.01.007.
  • Mello, R. E., Fontana, A., Mulet, A., Luiz, J., Correa, G., & Carcel, J. A. (2020). Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology, 38, 259-67. DOI: https://doi.org/10.1080/07373937.2019.1645685
  • Mujaffar, S., & Loy, A. L. (2016). Drying kinetics of microwave-dried vegetable amaranth (Amaran-thus dubius) leaves. Journal of Food Research, 5, 33-44. DOI: https://doi.org/10.5539/jfr.v5n6p33
  • Murthy T. P. K., Manohar B. (2012). Microwave-drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modeling and artificial neural network. International Journal of Food Science and Technology, 47, 1229-36. DOI: https://doi.org/10.1111/j.1365-2621.2012.02963.x
  • Onwude, D. I., Hashim, N., Janius, R., Nawi, N. M., & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15, 599-618. DOI: https://doi.org/10.1111/1541-4337.12196
  • Ozcan, M. M., Ghafoor, K., Al Juhaimi, F., Uslu, N., Babiker, E. E., Ahmed, I. A. M., & Almusallam, I. A. (2020) Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. Journal of Food Science and Technology, 58, 147-58. DOI: https://doi.org/10.1007/s13197-020-04524-0
  • Romdhane, N. G., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33, 1581-89. DOI: https://doi.org/10.1080/07373937.2015.1012266
  • Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2017). Effect of carrier agents on flowability and microstructural properties of foam-mat freeze dried date powder. Journal of Food Engineering, 215, 33-43. DOI: https://doi.org/ 10.1016/j.jfoodeng.2017.07.016
  • Shu, B., Wu, G. X., Wang, Z. N., Wang, J. N., Huang, F., Dong, L. H., Zhang, R. F., Wang, Y., & Su, D. X. (2020). The effect of microwave vacuum drying process on citrus: drying kinetics, physi-cochemical composition, and antioxidant activity of dried citrus (Citrus reticulata Blanco) peel. Journal of Food Measurement and Characterization, 14, 2443-52. DOI: https://doi.org/10.1007/s11694-020-00492-3
  • Soysal, Y. (2005). Mathematical modeling and evaluation of microwave drying kinetics of mint. Journal of Applied Sciences, 5,1266-1274. DOI: https://doi.org/10.3923/jas.2005.1266.1274
  • Talens, C., Castro-Giraldez, M., & Fito, P. J. (2016). Study of the effect of microwave power coupled with hot air drying on orange peel by dielectric spectroscopy. LWT - Food Science and Technology, 66, 622-628. DOI: https://doi.org/10.1016/j.lwt.2015.11.015
  • Talens, C., M. Castro-Giraldez, & P.J. Fito. (2018). Effect of microwave power coupled with hot air drying on sorption isotherms and microstructure of orange peel. Food and Bioprocess Technology 11(4), 723-734. DOI: https://doi.org/10.1007/s11947-017-2041-x. Tamer, C., Isci, A., Kutlu, N., Sakiyan, O., Sahin, S., & Sumnu, G. (2016). Effect of drying on porous characteristics of orange peel. International Journal of Food Engineering, 12, 921-928. DOI: https://doi.org/10.1515/ijfe-2016-0075
  • Tasirin, S. M., Puspasari, I., Sahalan, A. Z., Mokhtar, M., Ghani, M. K. A., & Yaakob, Z. (2014). Drying of citrus sinensis peels in an inert fluidized bed: Kinetics, microbiological activity, vitamin C, and limonene determination. Drying Technology, 32, 497-508. DOI: https://doi.org/10.1080/07373937.2013.838782
  • Tekgül, Y., & Baysal, T. (2018). Comparative evaluation of quality properties and volatile profiles of lemon peels subjected to different drying techniques. Journal of Food Process Engineering, 41, e12902. DOI: https://doi.org/10.1111/jfpe.12902
  • Trigo, J. P., Alexandre, E. M. C., Saraiva, J. A., & Pintado, M. E. (2020). High value-added compounds from fruit and vegetable by-products - Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60, 1388-1416. DOI: https://doi.org/10.1080/10408398.2019.1572588
  • Tuncer, A. D., Güler, H. Ö., & Usta, H. (2020). Modeling of drying characteristics of pomelo (Citrus maxima) peel. El-Cezeri Journal of Science and Engineering, 7, 198-210. DOI: https://doi.org/10.31202/ecjse.616497
  • Xu, M. Y., Tian, G. F., Zhao, C. Y., Ahmad, A., Zhang, H. J., Bi, J. F., Xiao, H., & Zheng, J. K. (2017). Infrared drying as a quick preparation method for dried tangerine peel. International Journal of Analytical Chemistry, 6254793. DOI: https://doi.org/10.1155/2017/6254793
  • Zema, D. A., Calabro, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste Management, 80, 252-73. DOI: https://doi.org/10.1016/j.wasman.2018.09.024.
Year 2023, Volume: 9 Issue: 1, 89 - 106, 06.03.2023
https://doi.org/10.28979/jarnas.1172336

Abstract

Project Number

B 2127

References

  • Abano, E. E., Haile, M. A. Owusu, J., & Engmann, F. N. (2013). Microwave-vacuum drying effect on drying kinetics, lycopene and ascorbic acid content of tomato slices. Journal of Stored Products and Postharvest Research, 4, 11-22. DOI: https://doi.org/10.5897/JSPPR12.030
  • Abou-Arab, E. A., Mahmoud, M. H., & Abu-Salem, F. M. (2017). Functional properties of citrus peel as affected by drying methods. American Journal of Food Technology, 12, 193-200. DOI: https://doi.org/10.3923/ajft.2017.193.200
  • Alibas, I., & Yilmaz, A. (2021). Microwave and convective drying kinetics and thermal properties of orange slices and effect of drying on some phytochemical parameters. Journal of Thermal Analysis and Calorimetry,1-21. DOI: https://doi.org/10.1007/s10973-021-11108-3
  • Bejar, A. K., Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2011a). Effect of infrared drying on drying kinetics, color, total phenols and water and oil holding capacities of orange (Citrus sinensis) peel and leaves. International Journal of Food Engineering, 7, 5. DOI: https://doi.org/10.2202/1556-3758.2222
  • Bejar, A. K., Kechaou, N., & Mihoubi, N. B. (2011b). Effect of microwave treatment on physical and functional properties of orange (Citrus sinensis) peel and leaves. Journal of Food Processing and Technology, 2, 109. DOI: https://doi.org/10.4172/2157-7110.1000109
  • Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineering, 72, 163-168.
  • Crank, J. (1979). The mathematics of diffusion. Revised edition. Oxford, Great Britain: Clarendon Press.
  • Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13, 130-8. DOI: https://doi.org/10.1016/j.jssas.2013.03.002
  • Deng, L. Z., Mujumdar, A. S., Yang, W. X., Zhang, Q., Zheng, Z. A., Wu, M., & Xiao, H. W. (2019). Hot air impingement drying kinetics and quality attributes of orange peel. Journal of Food Processing and Preservation, 44, e14294. DOI: https://doi.org/10.1111/jfpp.14294
  • Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transfer, 53, 1817-27. DOI: https://doi.org/10.1007/s00231-016-1943-x
  • Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57, 701-717. DOI: http://dx.doi.org/10.1080/10408398.2014.910493.
  • FAO (Food and Agriculture Organization of the United Nations) (2021). Citrus Fruit Statistical Compendium 2020. Rome.
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2019). Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: Changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. Journal of Food Measurement and Characterization, 14, 862-75. DOI: https://doi.org/10.1007/s11694-019-00334-x
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2020). Changes in chemical composition and biological activity of essential oil from Thomson Navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food Science and Nutrition, 8, 124-138. DOI: https://doi.org/10.1002/fsn3.1279
  • Garau, M. C., Simal, S., Femenia, A., & Rossello, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75, 288-95. DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.017
  • Garau, M. C., Simal, S., Rossello, C., & Femenia, A. (2007). Effect of air-drying temperature on physicochemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104, 1014-24. DOI: https://doi.org/10.1016/j.foodchem.2007.01.009
  • Garcia-Perez, J. V., Carcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27, 281-87. DOI: https://doi.org/10.1080/07373930802606428
  • Garcia-Perez, J. V., Ortuno, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5, 2256-65. DOI: https://doi.org/10.1007/s11947-011-0645-0
  • Ghanem, N., Mihoubi, D., Bonazzi, C., Kechaou, N., & Boudhrioua, N. (2020). Drying characteristics of lemon by-product (Citrus limon. v. lunari): Effects of drying modes on quality attributes kinetics. Waste Biomass Valorization, 11, 303-22. DOI: https://doi.org/10.1007/s12649-018-0381-z
  • Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage, and total phenols content. Industrial Crops and Products, 40, 167-77. DOI: https://doi.org/10.1016/j.indcrop.2012.03.009
  • Hausner, H. H. (1967). Friction conditions in a mass of metal powder. International Journal of Powder Metallurgy, 3, 7-13.
  • Kirbas, I., Tuncer, A. D., Sirin, C., & Usta, H. (2019). Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165, 104928. DOI: https://doi.org/10.1016/j.compag.2019.104928
  • Lee, C., Oh, H., Han, S., & Lim, S. (2012). Effects of hot air and freeze drying methods on physico-chemical properties of citrus ‘hallabong’ powders. Food Science and Biotechnology, 21, 1633-9.
  • Liu, Y., Fan, C., Tian, M., Yang, Z., Liu, F., & Pan, S. (2017). Effect of drying methods on physicochemical properties and in vitro hypoglycemic effects of orange peel dietary fiber. Journal of Food Processing and Preservation, 41, e13292. DOI: https://doi.org/10.1111/jfpp.13292
  • Mahato, N., Sharma, K., Sinha, M., Baral, E. R., Koteswararao, R. Dhyani, A., Cho, M. H., & Cho, S. (2020). Bio-sorbents, industrially important chemicals and novel materials from citrus pro-cessing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Re-search, 23, 61-82. DOI: https://doi.org/10.1016/j.jare.2020.01.007.
  • Mello, R. E., Fontana, A., Mulet, A., Luiz, J., Correa, G., & Carcel, J. A. (2020). Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology, 38, 259-67. DOI: https://doi.org/10.1080/07373937.2019.1645685
  • Mujaffar, S., & Loy, A. L. (2016). Drying kinetics of microwave-dried vegetable amaranth (Amaran-thus dubius) leaves. Journal of Food Research, 5, 33-44. DOI: https://doi.org/10.5539/jfr.v5n6p33
  • Murthy T. P. K., Manohar B. (2012). Microwave-drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modeling and artificial neural network. International Journal of Food Science and Technology, 47, 1229-36. DOI: https://doi.org/10.1111/j.1365-2621.2012.02963.x
  • Onwude, D. I., Hashim, N., Janius, R., Nawi, N. M., & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15, 599-618. DOI: https://doi.org/10.1111/1541-4337.12196
  • Ozcan, M. M., Ghafoor, K., Al Juhaimi, F., Uslu, N., Babiker, E. E., Ahmed, I. A. M., & Almusallam, I. A. (2020) Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. Journal of Food Science and Technology, 58, 147-58. DOI: https://doi.org/10.1007/s13197-020-04524-0
  • Romdhane, N. G., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33, 1581-89. DOI: https://doi.org/10.1080/07373937.2015.1012266
  • Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2017). Effect of carrier agents on flowability and microstructural properties of foam-mat freeze dried date powder. Journal of Food Engineering, 215, 33-43. DOI: https://doi.org/ 10.1016/j.jfoodeng.2017.07.016
  • Shu, B., Wu, G. X., Wang, Z. N., Wang, J. N., Huang, F., Dong, L. H., Zhang, R. F., Wang, Y., & Su, D. X. (2020). The effect of microwave vacuum drying process on citrus: drying kinetics, physi-cochemical composition, and antioxidant activity of dried citrus (Citrus reticulata Blanco) peel. Journal of Food Measurement and Characterization, 14, 2443-52. DOI: https://doi.org/10.1007/s11694-020-00492-3
  • Soysal, Y. (2005). Mathematical modeling and evaluation of microwave drying kinetics of mint. Journal of Applied Sciences, 5,1266-1274. DOI: https://doi.org/10.3923/jas.2005.1266.1274
  • Talens, C., Castro-Giraldez, M., & Fito, P. J. (2016). Study of the effect of microwave power coupled with hot air drying on orange peel by dielectric spectroscopy. LWT - Food Science and Technology, 66, 622-628. DOI: https://doi.org/10.1016/j.lwt.2015.11.015
  • Talens, C., M. Castro-Giraldez, & P.J. Fito. (2018). Effect of microwave power coupled with hot air drying on sorption isotherms and microstructure of orange peel. Food and Bioprocess Technology 11(4), 723-734. DOI: https://doi.org/10.1007/s11947-017-2041-x. Tamer, C., Isci, A., Kutlu, N., Sakiyan, O., Sahin, S., & Sumnu, G. (2016). Effect of drying on porous characteristics of orange peel. International Journal of Food Engineering, 12, 921-928. DOI: https://doi.org/10.1515/ijfe-2016-0075
  • Tasirin, S. M., Puspasari, I., Sahalan, A. Z., Mokhtar, M., Ghani, M. K. A., & Yaakob, Z. (2014). Drying of citrus sinensis peels in an inert fluidized bed: Kinetics, microbiological activity, vitamin C, and limonene determination. Drying Technology, 32, 497-508. DOI: https://doi.org/10.1080/07373937.2013.838782
  • Tekgül, Y., & Baysal, T. (2018). Comparative evaluation of quality properties and volatile profiles of lemon peels subjected to different drying techniques. Journal of Food Process Engineering, 41, e12902. DOI: https://doi.org/10.1111/jfpe.12902
  • Trigo, J. P., Alexandre, E. M. C., Saraiva, J. A., & Pintado, M. E. (2020). High value-added compounds from fruit and vegetable by-products - Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60, 1388-1416. DOI: https://doi.org/10.1080/10408398.2019.1572588
  • Tuncer, A. D., Güler, H. Ö., & Usta, H. (2020). Modeling of drying characteristics of pomelo (Citrus maxima) peel. El-Cezeri Journal of Science and Engineering, 7, 198-210. DOI: https://doi.org/10.31202/ecjse.616497
  • Xu, M. Y., Tian, G. F., Zhao, C. Y., Ahmad, A., Zhang, H. J., Bi, J. F., Xiao, H., & Zheng, J. K. (2017). Infrared drying as a quick preparation method for dried tangerine peel. International Journal of Analytical Chemistry, 6254793. DOI: https://doi.org/10.1155/2017/6254793
  • Zema, D. A., Calabro, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste Management, 80, 252-73. DOI: https://doi.org/10.1016/j.wasman.2018.09.024.
There are 42 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Işıl Barutçu Mazı 0000-0002-5324-8451

Sevilay San This is me 0000-0003-2223-0221

Project Number B 2127
Early Pub Date March 3, 2023
Publication Date March 6, 2023
Submission Date September 8, 2022
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Barutçu Mazı, I., & San, S. (2023). Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 89-106. https://doi.org/10.28979/jarnas.1172336
AMA Barutçu Mazı I, San S. Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying. JARNAS. March 2023;9(1):89-106. doi:10.28979/jarnas.1172336
Chicago Barutçu Mazı, Işıl, and Sevilay San. “Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel During Microwave Drying”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 89-106. https://doi.org/10.28979/jarnas.1172336.
EndNote Barutçu Mazı I, San S (March 1, 2023) Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying. Journal of Advanced Research in Natural and Applied Sciences 9 1 89–106.
IEEE I. Barutçu Mazı and S. San, “Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying”, JARNAS, vol. 9, no. 1, pp. 89–106, 2023, doi: 10.28979/jarnas.1172336.
ISNAD Barutçu Mazı, Işıl - San, Sevilay. “Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel During Microwave Drying”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 89-106. https://doi.org/10.28979/jarnas.1172336.
JAMA Barutçu Mazı I, San S. Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying. JARNAS. 2023;9:89–106.
MLA Barutçu Mazı, Işıl and Sevilay San. “Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel During Microwave Drying”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 89-106, doi:10.28979/jarnas.1172336.
Vancouver Barutçu Mazı I, San S. Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying. JARNAS. 2023;9(1):89-106.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).